Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Cryo Letters ; 45(2): 122-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557991

RESUMO

BACKGROUND: Acorus calamus Linn. is a medicinally valuable monocot plant belonging to the family Acoraceae. Over-exploitation and unscientific approach towards harvesting to fulfill an ever-increasing demand have placed it in the endangered list of species. OBJECTIVE: To develop vitrification-based cryopreservation protocols for A. calamus shoot tips, using conventional vitrification and V cryo-plate. MATERIALS AND METHODS: Shoot tips (2 mm in size) were cryopreserved with the above techniques by optimizing various parameters such as preculture duration, sucrose concentration in the preculture medium, and PVS2 dehydration time. Regenerated plantlets obtained post-cryopreservation were evaluated by random amplified polymorphic DNA (RAPD) to test their genetic fidelity. RESULTS: The highest regrowth of 88.3% after PVS2 exposure of 60 min was achieved with V cryo-plate as compared to 75% after 90 min of PVS2 exposure using conventional vitrification. After cryopreservation, shoot tips developed into complete plantlets in 28 days on regrowth medium (0.5 mg/L BAP, 0.3 mg/L GA3, and 0.3 mg/L ascorbic acid). RAPD analysis revealed 100% monomorphism in all cryo-storage derived regenerants and in vitro donor (120-days-old) plants. CONCLUSION: Shoot tips of A. calamus that were cryopreserved had 88.3% regrowth using V cryo-plate technique and the regerants retained genetic fidelity. https://doi.org/10.54680/fr24210110412.


Assuntos
Acorus , Plantas Medicinais , Criopreservação/métodos , Plantas Medicinais/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Brotos de Planta/genética , Vitrificação , Crioprotetores
2.
Genes (Basel) ; 13(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36292700

RESUMO

Cnidium officinale is a valuable medicinal plant cultivated in Asia for its rhizomes. This study reports the in vitro regeneration of Cnidium officinale plants and the induction of rhizomes from microshoots. The rhizomatous buds of Cnidium officinale induced multiple shoots on Murashige and Skoog (MS) medium supplemented with 0.5 mg L-1 BA, which led to the regeneration of plants within four weeks of culture. After four weeks of culture, the plants were assessed for fresh weight, the number of leaves, the number of roots, and the length of roots to compare the performance of the different clones. The clones with good growth characteristics were selected with the aid of a flow cytometric analysis of 2C nuclear DNA content. The plants bearing high DNA values showed better growth characteristics. Various factors, namely, sucrose concentration (30, 50, 70, and 90 g L-1), ABA (0, 0.5, 1.0, and 2.0 mg L-1), the synergistic effects of BA (1.0 mg L-1) + NAA (0.5 mg L-1) and BA (1.0 mg L-1) + NAA (0.5 mg L-1) + ABA (1.0 mg L-1) with or without activated charcoal (1 g L-1), and light and dark incubation were tested on rhizome formation from microshoots. The results of the above experiments suggest that MS medium supplemented with 50 g L-1 sucrose, 1.0 mg L-1 ABA, and 1 g L-1 AC is good for the induction of rhizomes from the shoots of Cnidium officinale. Plantlets with rhizomes were successfully transferred to pots, and they showed 100% survival.


Assuntos
Cnidium , Reguladores de Crescimento de Plantas , Brotos de Planta/genética , Reguladores de Crescimento de Plantas/farmacologia , Carvão Vegetal/farmacologia , Células Clonais , Sacarose/farmacologia
3.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3749-3755, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850831

RESUMO

Lonicera japonica is a ubiquitous medicinal species in China.Winter pruning has long been used to improve its quality and yield, but the mechanism is rarely studied.Therefore, in this study, the growth phenotypes of L.japonica processed with different pruning methods were observed and the yield-and quality-boosting mechanism of pruning was analyzed.Specifically, the young shoots of the three-year old L.japonica were cut to different degrees(heavy pruning, mild pruning, and no pruning, respectively) in winter in 2020 and 2021, respectively, and the growth phenotypes, hormone content, and gene expression of the lateral buds at the sprouting stage and young shoots at the anthesis stage in the next year were analyzed.The result showed that the length, flower bud number, internode length, and node number of young shoots in the next year were in the order of heavy pruning>mild pruning>no pruning.The content of auxin and zeatin in apical buds of young shoots at the anthesis stage was the highest in the heavy pruning group, followed by the mild pruning group, and coming in the third was the no pruning group.The content of auxin and zeatin in lateral buds at the sprouting stage was in the order of no pruning>mild pruning>heavy pruning.Transcriptome analysis of the lateral buds at sprouting stage yielded the differentially expressed genes related to auxin and cytokinin, such as Lj1A1163T36, Lj3A719T115, Lj7C657T7, Lj9C505T15, and Lj9A505T70.In conclusion, the growth phenotypes of young shoots of L.japonica processed with different pruning methods in winter were related to the difference in hormone content in the apical buds.Therefore, winter pruning influenced the content of auxin and cytokinin in new shoots of L.japonica and further regulated the expression of hormone-related genes, thereby promoting shoot growth and increasing the yield of L.japonica.


Assuntos
Lonicera , Reguladores de Crescimento de Plantas , Citocininas/genética , Citocininas/metabolismo , Flores/genética , Flores/metabolismo , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Lonicera/genética , Lonicera/metabolismo , Brotos de Planta/genética , Zeatina/metabolismo
4.
BMC Plant Biol ; 22(1): 361, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869421

RESUMO

BACKGROUND: In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS: Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS: The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.


Assuntos
Ácidos Indolacéticos , Ipeca , Citocininas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ipeca/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
5.
PLoS One ; 17(1): e0262099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995297

RESUMO

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.


Assuntos
Antioxidantes/farmacologia , Beta vulgaris/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Putrescina/farmacologia , Estresse Fisiológico , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Estresse Oxidativo , Fotossíntese , Proteínas de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
BMC Plant Biol ; 21(1): 521, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753426

RESUMO

BACKGROUND: Shoot branching is one of the important agronomic traits affecting yields and quality of tea plant (Camellia sinensis). Cytokinins (CTKs) play critical roles in regulating shoot branching. However, whether and how differently alternative splicing (AS) variant of CTKs-related genes can influence shoot branching of tea plant is still not fully elucidated. RESULTS: In this study, five AS variants of CTK biosynthetic gene adenylate isopentenyltransferase (CsA-IPT5) with different 3' untranslated region (3' UTR) and 5' UTR from tea plant were cloned and investigated for their regulatory effects. Transient expression assays showed that there were significant negative correlations between CsA-IPT5 protein expression, mRNA expression of CsA-IPT5 AS variants and the number of ATTTA motifs, respectively. Shoot branching processes induced by exogenous 6-BA or pruning were studied, where CsA-IPT5 was demonstrated to regulate protein synthesis of CsA-IPT5, as well as the biosynthesis of trans-zeatin (tZ)- and isopentenyladenine (iP)-CTKs, through transcriptionally changing ratios of its five AS variants in these processes. Furthermore, the 3' UTR AS variant 2 (3AS2) might act as the predominant AS transcript. CONCLUSIONS: Together, our results indicate that 3AS2 of the CsA-IPT5 gene is potential in regulating shoot branching of tea plant and provides a gene resource for improving the plant-type of woody plants.


Assuntos
Alquil e Aril Transferases/fisiologia , Camellia sinensis/enzimologia , Camellia sinensis/crescimento & desenvolvimento , Regiões 3' não Traduzidas , Alquil e Aril Transferases/genética , Camellia sinensis/genética , Clonagem Molecular , DNA de Plantas , Motivos de Nucleotídeos , Desenvolvimento Vegetal/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Análise de Sequência de DNA
7.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830230

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3'H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Complexo do Signalossomo COP9/genética , Regulação da Expressão Gênica de Plantas , Glycine max/efeitos dos fármacos , Fósforo/farmacologia , Folhas de Planta/efeitos dos fármacos , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo do Signalossomo COP9/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Teste de Complementação Genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Fósforo/deficiência , Folhas de Planta/genética , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transgenes
8.
Plant J ; 107(6): 1616-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216173

RESUMO

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Cloreto de Amônio/farmacologia , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Cebolas/citologia , Cebolas/genética , Oócitos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo , Xenopus laevis
9.
BMC Plant Biol ; 21(1): 243, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049485

RESUMO

BACKGROUND: Branch angle is a pivotal component of tea plant architecture. Tea plant architecture not only affects tea quality and yield but also influences the efficiency of automatic tea plant pruning. However, the molecular mechanism controlling the branch angle, which is an important aspect of plant architecture, is poorly understood in tea plants. RESULTS: In the present study, three CsLAZY genes were identified from tea plant genome data through sequence homology analysis. Phylogenetic tree displayed that the CsLAZY genes had high sequence similarity with LAZY genes from other plant species, especially those in woody plants. The expression patterns of the three CsLAZYs were surveyed in eight tissues. We further verified the expression levels of the key CsLAZY1 transcript in different tissues among eight tea cultivars and found that CsLAZY1 was highly expressed in stem. Subcellular localization analysis showed that the CsLAZY1 protein was localized in the plasma membrane. CsLAZY1 was transferred into Arabidopsis thaliana to investigate its potential role in regulating shoot development. Remarkably, the CsLAZY1 overexpressed plants responded more effectively than the wild-type plants to a gravity inversion treatment under light and dark conditions. The results indicate that CsLAZY1 plays an important role in regulating shoot gravitropism in tea plants. CONCLUSIONS: The results provide important evidence for understanding the functions of CsLAZY1 in regulating shoot gravitropism and influencing the stem branch angle in tea plants. This report identifies CsLAZY1 as a promising gene resource for the improvement of tea plant architecture.


Assuntos
Camellia sinensis/genética , Genoma de Planta/genética , Gravitropismo/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Camellia sinensis/fisiologia , Filogenia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Chá
10.
Sci Rep ; 11(1): 9484, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947950

RESUMO

Improved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oryza/genética , Oryza/metabolismo , Fósforo/metabolismo , Raízes de Plantas/genética , Biomassa , Genótipo , Fenótipo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Locos de Características Quantitativas , Solo
11.
Cryo Letters ; 42(3): 168-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970995

RESUMO

BACKGROUND: Cryopreservation is a reliable and economical method for the long-term ex situ conservation of valuable genetic resources. OBJECTIVE: The present study focuses on establishing novel regeneration strategies and on assessing various cryogenic methods using nodal explants/shoot apices and on developing in vitro technologies for germplasm conservation of Dioscorea prazeri. MATERIALS AND METHODS: Pre-treatment, growth regulators, temperature conditions, treatment period for recovery and growth of explants were optimized and various germplasm conservation methods were conducted to attain the conservation and mass multiplication of the endangered therapeutic plant. The plants regenerated from vitrified tissues were evaluated for physiological stability through morphological characteristics, genetic stability using RAPD analysis and with key metabolites for biochemical characterization. RESULTS: An optimized vitrification method resulted in a regeneration level of 92 ± 2 %, whereas a method comprising encapsulation dehydration resulted in 75 ± 2 % regeneration. In contrast, only a 38 ± 2 % regeneration was achieved using an encapsulation vitrification method. CONCLUSION: Vitrification-based procedures significantly improve cryopreservation survival and can be successfully employed for the long-term conservation of Dioscorea species and, potentially, other medicinal plants.


Assuntos
Conservação dos Recursos Naturais/métodos , Criopreservação , Dioscorea , Vitrificação , Dioscorea/genética , Espécies em Perigo de Extinção , Brotos de Planta/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
12.
Mol Genet Genomics ; 296(4): 863-876, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33899140

RESUMO

Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.


Assuntos
Glicosídeos Iridoides/metabolismo , Picrorhiza , Plantas Medicinais , Vias Biossintéticas/genética , Cinamatos/metabolismo , Cinamatos/farmacologia , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/fisiologia , Genes de Plantas , Ensaios de Triagem em Larga Escala , Glucosídeos Iridoides/metabolismo , Glucosídeos Iridoides/farmacologia , Glicosídeos Iridoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Picrorhiza/química , Picrorhiza/genética , Picrorhiza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Homologia de Sequência , Transcriptoma/fisiologia
13.
PLoS One ; 16(2): e0246971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606806

RESUMO

A protocol for high-frequency direct organogenesis from root explants of Kachai lemon (Citrus jambhiri Lush.) was developed. Full-length roots (~3 cm) were isolated from the in vitro grown seedlings and cultured on Murashige and Skoog basal medium supplemented with Nitsch vitamin (MSN) with different concentrations of cytokinin [6-benzylaminopurine, (BAP)] and gibberellic acid (GA3). The frequency of multiple shoot proliferation was very high, with an average of 34.3 shoots per root explant when inoculated on the MSN medium supplemented with BAP (1.0 mg L-1) and GA3 (1.0 mg L-1). Optimal rooting was induced in the plantlets under half strength MSN medium supplemented with indole-3-acetic acid (IAA, 0.5-1.0 mg L-1). IAA induced better root structure than 1-naphthaleneacetic acid (NAA), which was evident from the scanning electron microscopy (SEM). The expressions of growth regulating factor genes (GRF1 and GRF5) and GA3 signaling genes (GA2OX1 and KO1) were elevated in the regenerants obtained from MSN+BAP (1.0 mg L-1)+GA3 (1.0 mg L-1). The expressions of auxin regulating genes were high in roots obtained in ½ MSN+IAA 1.0 mg L-1. Furthermore, indexing of the regenerants confirmed that there was no amplicons detected for Huanglongbing bacterium and Citrus tristeza virus. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers detected no polymorphic bands amongst the regenerated plants. This is the first report that describes direct organogenesis from the root explant of Citrus jambhiri Lush. The high-frequency direct regeneration protocol in the present study provides an enormous significance in Citrus organogenesis, its commercial cultivation and genetic conservation.


Assuntos
Citrus/crescimento & desenvolvimento , Citrus/genética , Regulação da Expressão Gênica de Plantas , Organogênese Vegetal/genética , Brotos de Planta/crescimento & desenvolvimento , Vírus de Plantas/fisiologia , Citrus/virologia , Brotos de Planta/genética , Brotos de Planta/virologia , Técnica de Amplificação ao Acaso de DNA Polimórfico
14.
ScientificWorldJournal ; 2021: 5928769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628138

RESUMO

AIM: Potato (Solanum tuberosum L.) is one of the important crops in Ethiopia which has a crucial role in nutritional security, poverty alleviation, and income generation. The aim of the present investigation is to develop an efficient in vitro propagation protocol for Belete and Gudiene potato varieties by using lateral bud as explants. MATERIALS AND METHODS: Shoot initiation was achieved by inoculating buds on full-strength MS Murashige and Skoog medium (MS) fortified with variable concentrations of BAP and NAA. Basal MS was used as control throughout the experiment. RESULTS: Results of our study showed that best shoot initiation was obtained on MS medium supplemented with 1.5 mg/l BAP + 3.0 mg/l NAA for Gudiene variety, whereas 1.0 mg/l BAP and 2.0 mg/l NAA produced more shoots in Belete variety. The initiated shoots increased two- to three-fold upon subculture on the MS medium fortified with varying concentrations of BAP and Kinetin. The highest numbers of multiple shoots were obtained in the MS medium containing 2.5 mg/l Kinetin. The combined effect of BAP and Kinetin did not produce any additional positive effect for shoot multiplication. Rooting percentage and number of roots/shoot were found best on the MS medium fortified with 1.0 mg/l IBA + 0.5 IAA. CONCLUSIONS: The variety Gudiene was found best for shoot initiation and root formation, while Belete variety proved its superiority for multiple shoot formation. A total number of 82.66% of plantlets were acclimatized under field conditions. This work indicates the practical applicability of plant tissue culture using lateral bud as explants is effective for micropropagation of potato in vitro.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Regeneração/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Meios de Cultura , Etiópia/epidemiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Solanum tuberosum/efeitos dos fármacos
15.
Plant Cell Physiol ; 62(2): 366-377, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33399871

RESUMO

Tea (Camellia sinensis [L.] O. Kuntze) tree is a perennial plant in which winter dormancy is an important biological adaptation to environmental changes. We discovered and reported a novel tea tree cultivar that can generate tender shoots in winter several years ago, but the molecular mechanism for this unique phenotype remains unknown . Here, we conducted comparative transcriptomics, proteomics and metabolomics along with phytohormone quantitation between the winter and spring tender shoots to investigate the physiological basis and putative regulatory mechanisms of its evergrowing character during winter. Our multi-omics study has led to the following findings. Gibberellin (GA) levels and key enzymes for GA biosynthesis and the signal transduction pathway were increased in the winter shoots, causing the ABA/GA content ratio to decrease, which might play a key regulatory role in maintaining normal growth during winter. The abundance of proteins, genes and metabolites involved in energy metabolism was all increased in winter shoots, indicating that energy is critical for continuous growth under the relatively weak-light and low-temperature environment. Abiotic resistance-related proteins and free amino acids were also increased in abundance in the winter shoots, which possibly represents an adaptation response to winter conditions. These results allowed us to hypothesize a novel molecular mechanism of adaptation for this unique tender shoot evergrowing in winter.


Assuntos
Camellia sinensis/fisiologia , Brotos de Planta/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Camellia sinensis/genética , Camellia sinensis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Metabolômica , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Proteômica , Estações do Ano , Transdução de Sinais/fisiologia
16.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374906

RESUMO

Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Homeostase/efeitos dos fármacos , Homeostase/genética , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Mutação , Nitrogênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Potássio/farmacologia , Força Próton-Motriz , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/genética
17.
BMC Plant Biol ; 20(1): 550, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287728

RESUMO

BACKGROUND: Cadmium (Cd) accumulation in crops affects the yield and quality of crops and harms human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. RESULTS: The results showed that increasing Se supply significantly decreased Cd concentration and accumulation in the shoot and root of winter wheat and the root-to-shoot translocation of Cd. Se application increased the root length, surface area and root volume but decreased the average root diameter. Increasing Se supply significantly decreased Cd concentration in the cell wall, soluble fraction and cell organelles in root and shoot. An increase in Se supply inhibited Cd distribution in the organelles of shoot and root but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in root. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 significantly increased with increasing Cd concentration in root, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root was downregulated by increasing Se supply, regardless of Se supply or Cd stress. The expression of TaHMA3-b in root was significantly downregulated by 10 µM Se at both the 5 µM and 25 µM Cd level but upregulated by 5 µM Se at the 25 µM Cd level. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot was downregulated by increasing Se supply at 5 µM Cd level, and 5 µM Se upregulated the expression of those genes in shoot at 25 µM Cd level. CONCLUSIONS: The results confirm that Se application limits Cd accumulation in wheat by regulating the subcellular distribution and chemical forms of Cd in winter wheat tissues, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.


Assuntos
Cádmio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Selênio/metabolismo , Triticum/metabolismo , Transporte Biológico , Cádmio/química , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plântula/química , Plântula/genética , Plântula/metabolismo , Frações Subcelulares/química , Triticum/química , Triticum/genética
18.
Int J Mol Sci ; 21(19)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992595

RESUMO

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.


Assuntos
Aquaporinas/metabolismo , Cálcio/metabolismo , Hordeum/metabolismo , Transporte de Íons , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Aquaporinas/genética , Cátions/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Técnicas de Patch-Clamp , Fosforilação , Proteínas de Plantas/genética , Brotos de Planta/genética , RNA Complementar/administração & dosagem , Água/metabolismo , Xenopus laevis
19.
J Agric Food Chem ; 68(39): 10750-10762, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32818378

RESUMO

Accumulation of secondary metabolites in the young shoots of tea plants is developmentally modulated, especially flavonoids. Here, we investigate the developmental regulation mechanism of secondary metabolism in the developing leaves of tea plants using an integrated multiomic approach. For the pair of Leaf2/Bud, the correlation coefficient of the fold change of mRNA and RPFs abundances involved in flavonoid biosynthesis was 0.9359, being higher than that of RPFs and protein (R2 = 0.6941). These correlations were higher than the corresponding correlation coefficients for secondary metabolisms and genome-wide scale. Metabolomic analysis demonstrates that the developmental modulations of the structural genes for flavonoid biosynthesis-related pathways align with the concentration changes of catechin and flavonol glycoside groups. Relatively high translational efficiency (TE > 2) was observed in the four flavonoid structural genes (chalcone isomerase, dihydroflavonol 4-reductase, anthocyanidin synthase, and flavonol synthase). In addition, we originally provided the information on identified small open reading frames (small ORFs) and main ORFs in tea leaves and elaborated that the presence of upstream ORFs may have a repressive effect on the translation of downstream ORFs. Our data suggest that transcriptional regulation coordinates with translational regulation and may contribute to the elevation of translational efficiencies for the structural genes involved in the flavonoid biosynthesis pathways during tea leaf development.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/genética , Brotos de Planta/metabolismo , Metabolismo Secundário , Camellia sinensis/química , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Transcriptoma
20.
Plant Cell ; 32(10): 3206-3223, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32769131

RESUMO

During their first year of growth, overwintering biennial plants transport Suc through the phloem from photosynthetic source tissues to storage tissues. In their second year, they mobilize carbon from these storage tissues to fuel new growth and reproduction. However, both the mechanisms driving this shift and the link to reproductive growth remain unclear. During vegetative growth, biennial sugar beet (Beta vulgaris) maintains a steep Suc concentration gradient between the shoot (source) and the taproot (sink). To shift from vegetative to generative growth, they require a chilling phase known as vernalization. We studied sugar beet sink-source dynamics upon vernalization and showed that before flowering, the taproot underwent a reversal from a sink to a source of carbohydrates. This transition was induced by transcriptomic and functional reprogramming of sugar beet tissue, resulting in a reversal of flux direction in the phloem. In this transition, the vacuolar Suc importers and exporters TONOPLAST SUGAR TRANSPORTER2;1 and SUCROSE TRANSPORTER4 were oppositely regulated, leading to the mobilization of sugars from taproot storage vacuoles. Concomitant changes in the expression of floral regulator genes suggest that these processes are a prerequisite for bolting. Our data will help both to dissect the metabolic and developmental triggers for bolting and to identify potential targets for genome editing and breeding.


Assuntos
Beta vulgaris/fisiologia , Floema/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Temperatura Baixa , Esculina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Floema/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Sacarose/metabolismo , Açúcares/metabolismo , Vacúolos/genética , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA