Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906522

RESUMO

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Cisteína/metabolismo , Cisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Cistationina/farmacologia , Sulfassalazina/farmacologia , Aminoácidos/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Butionina Sulfoximina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Toxicol Lett ; 379: 20-34, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905973

RESUMO

Columbin (CLB) is the most abundant (>1.0%) furan-containing diterpenoid lactone in herbal medicine Tinospora sagittate (Oliv.) Gagnep. The furano-terpenoid was found to be hepatotoxic, but the exact mechanisms remain unknown. The present study demonstrated that administration of CLB at 50 mg/kg induced hepatotoxicity, DNA damage and up-regulation of PARP-1 in vivo. Exposure to CLB (10 µM) induced GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1 and cell death in cultured mouse primary hepatocytes in vitro. Co-treatment of mouse primary hepatocytes with ketoconazole (10 µM) or glutathione ethyl ester (200 µM) attenuated the GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1, and cell death induced by CLB, while co-exposure to L-buthionine sulfoximine (BSO, 1000 µM) intensified such adverse effects resulting from CLB exposure. These results suggest that the metabolic activation of CLB by CYP3A resulted in the depletion of GSH and increase of ROS formation. The resultant over-production of ROS subsequently disrupted the DNA integrity and up-regulated the expression of PARP-1 in response to DNA damage, and ROS-induced DNA damage was involved in the hepatotoxicity of CLB.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Animais , Camundongos , Butionina Sulfoximina/farmacologia , Dano ao DNA , Glutationa/metabolismo , Lactonas , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
3.
J Biol Inorg Chem ; 27(3): 329-343, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247094

RESUMO

Two ternary copper(II) complexes with 2,2'-biquinoline (BQ) and with sulfonamides: sulfamethazine (SMT) or sulfaquinoxaline (SDQ) whose formulae are Cu(SMT)(BQ)Cl and Cu(SDQ)(BQ)Cl·CH3OH, in what follows SMTCu and SDQCu, respectively, induced oxidative stress by increasing ROS level from 1.0 µM and the reduction potential of the couple GSSG/GSH2. The co-treatment with L-buthionine sulfoximine (BSO), which inhibits the production of GSH, enhanced the effect of copper complexes on tumor cell viability and on oxidative damage. Both complexes generated DNA strand breaks given by-at least partially-the oxidation of pyrimidine bases, which caused the arrest of the cell cycle in the G2/M phase. These phenomena triggered processes of apoptosis proven by activation of caspase 3 and externalization of phosphatidylserine and loss of cell integrity from 1.0 µM. The combination with BSO induced a marked increase in the apoptotic population. On the other hand, an improved cell proliferation effect was observed when combining SDQCu with a radiation dose of 2 Gy from 1.0 µM or with 6 Gy from 1.5 µM. Finally, studies in multicellular spheroids demonstrated that even though copper(II) complexes did not inhibit cell invasion in collagen gels up to 48 h of treatment at the higher concentrations, multicellular resistance outperformed several drugs currently used in cancer treatment. Overall, our results reveal an antitumor effect of both complexes in monolayer and multicellular spheroids and an improvement with the addition of BSO. However, only SDQCu was the best adjuvant of ionizing radiation treatment.


Assuntos
Cobre , Neoplasias Pulmonares , Apoptose , Butionina Sulfoximina/farmacologia , Cobre/química , Cobre/farmacologia , Glutationa/metabolismo , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Quinolinas , Radiação Ionizante , Sulfonamidas/farmacologia
4.
Anticancer Agents Med Chem ; 22(13): 2411-2418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34875993

RESUMO

BACKGROUND: Colon cancer is one of the most important causes of death in the entire world. New pharmacological strategies are always needed, especially in resistant variants of this pathology. We have previously reported that drugs such as menadione (MEN), D, L-buthionine-S,R-sulfoximine or calcitriol, used in combination, enhanced cell sensibility of breast and colon tumour models, due to their ability to modify the oxidative status of the cells. Melatonin (MEL), a hormone regulating circadian rhythms, has anti-oxidant and anti-apoptotic properties at low concentrations, while at high doses, it has been shown to inhibit cancer cell growth. OBJECTIVE: The objective of this study is to determine the antitumoral action of the combination MEN and MEL on colon cancer cells. METHODS: Caco-2 cells were employed to evaluate the effects of both compounds, used alone or combined, on cellular growth/morphology, oxidative and nitrosative stress, and cell migration. RESULTS: MEN plus MEL dramatically reduced cell proliferation in a time and dose-dependent manner. The antiproliferative effects began at 48 h. At the same time, the combination modified the content of superoxide anion, induced the formation of reactive nitrogen species and enhanced catalase activity. Cell migration process was delayed. Also, changes in nuclear morphology consistent with cell death were observed. CONCLUSION: The enhanced effect of simultaneous use of MEN and MEL on Caco-2 cells suggests that this combined action may have therapeutic potential as an adjuvant on intestinal cancer acting in different oncogenic pathways.


Assuntos
Neoplasias do Colo , Melatonina , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Butionina Sulfoximina/farmacologia , Células CACO-2 , Neoplasias do Colo/tratamento farmacológico , Humanos , Melatonina/farmacologia , Estresse Oxidativo , Vitamina K 3/farmacologia
5.
Eur Rev Med Pharmacol Sci ; 25(13): 4520-4526, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34286494

RESUMO

OBJECTIVE: Cataract which is defined as opacification of eye lens forms approximately 40% of total blindness causes all through the world. Age is the biggest risk factor for cataracts and oxidative stress is known to be one of the most important factors causing cataract formation. Age-related nuclear cataract (ARN) is associated with a loss of glutathione in the center of the lens. Taurine is an important antioxidant in lens tissue. Although, there is a high amount of taurine in lenses in early life, its concentration declines with age. In this study, we aimed to investigate the effects of supplemental taurine in lens tissues in an in vivo oxidative stress model which is induced by glutathione depletion to mimic ARN. MATERIALS AND METHODS: Glutathione depletion was induced in rabbits subcutaneously with l-Buthionine -(S,R)-sulfoximine (BSO)- a glutathione inhibitor and the rabbits were treated with taurine. Total GSH, reduced GSH, GSH/GSSG ratio and MDA levels were measured. RESULTS: BSO lowered the reduced GSH and total GSH levels and GSH/GSSG ratio. Taurine reversed these effects. On the other hand, BSO enhanced MDA level which is normalized by taurine. CONCLUSIONS: These findings suggest that glutathione depletion with BSO may be a useful model to mimic ARN and dietary intake of taurine, may have an important role in decelerating the process of cataract formation.


Assuntos
Catarata/dietoterapia , Suplementos Nutricionais , Glutationa/deficiência , Cristalino/metabolismo , Taurina/administração & dosagem , Animais , Butionina Sulfoximina/administração & dosagem , Butionina Sulfoximina/toxicidade , Catarata/induzido quimicamente , Catarata/patologia , Modelos Animais de Doenças , Feminino , Glutationa/antagonistas & inibidores , Humanos , Cristalino/efeitos dos fármacos , Cristalino/patologia , Masculino , Estresse Oxidativo , Coelhos
6.
Chem Biol Interact ; 334: 109306, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33309544

RESUMO

Oxidative stress (OS)-induced glutathione (GSH) depletion plays an essential role in several kidney diseases such as chronic kidney disease and nephrotoxicity. The OS-dependent activation of TRPM2 cation channel in several neurons and cells were modulated by the concentration of intracellular GSH. However, the effects of GSH alteration on TRPM2 activation, OS, and apoptosis in the cortical collecting duct (mpkCCDc14) cells still remain elusive. We investigated the effects of GSH supplementation on OS-induced TRPM2 activation, mitochondrial oxidative stress, and apoptosis in the human embryonic kidney 293 (HEK293) and mpkCCDc14 cells treated with buthionine-sulfoximine (BSO), a GSH synthase inhibitor. The HEK293 and mpkCCDc14 cells were divided into five groups as control, GSH (10 mM for 2 h), BSO (0.5 mM for 6 h), BSO + GSH, and BSO + TRPM2 channel blockers. Apoptosis, cell death, mitochondrial OS, caspase -3, caspase -9, cytosolic free Zn2+, and Ca2+ concentrations were increased in the BSO group of the TRPM2 expressing mpkCCDc14 cells, although they were diminished by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2-APB). The BSO-induced decreases in the levels of cell viability and cytosolic GSH were increased by the treatments of GSH, ACA, and 2-APB. However, the effects of BSO and GSH were not observed in the non-TRPM2 expressing HEK293 cells. Current results show that maintaining GSH homeostasis is not only important for quenching OS in the cortical collecting duct cells but equally critical to modulate TRPM2 activation. Thus, suppressing apoptosis and mitochondrial OS responses elicited by oxidant action of GSH depletion.


Assuntos
Apoptose/fisiologia , Glutationa/metabolismo , Córtex Renal/metabolismo , Estresse Oxidativo/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Apoptose/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células HEK293 , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Córtex Renal/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
PLoS One ; 15(12): e0231064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264289

RESUMO

Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.


Assuntos
Ácidos Indolacéticos/uso terapêutico , Mitocôndrias Musculares/metabolismo , Miosite de Corpos de Inclusão/tratamento farmacológico , Fenilbutiratos/uso terapêutico , Trifosfato de Adenosina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Butionina Sulfoximina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA Mitocondrial/genética , Avaliação Pré-Clínica de Medicamentos , Dinaminas/biossíntese , Dinaminas/genética , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Fibroblastos/efeitos dos fármacos , GTP Fosfo-Hidrolases/biossíntese , GTP Fosfo-Hidrolases/genética , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Ácidos Indolacéticos/farmacologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Consumo de Oxigênio , Fenilbutiratos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos
8.
J Mater Chem B ; 8(32): 7149-7159, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32617545

RESUMO

Photodynamic therapy (PDT) has been demonstrated to be a promising strategy for the treatment of cancer, while its therapeutic efficacy is often compromised due to excessive concentrations of glutathione (GSH) as a reactive oxygen species (ROS) scavenger in cancer cells. Herein, we report the development of near-infrared (NIR) photothermal liposomal nanoantagonists (PLNAs) for amplified PDT through through the reduction of intracellular GSH biosynthesis. Such PLNAs were constructed via encapsulating a photosensitizer, indocyanine green (ICG) and a GSH synthesis antagonist, l-buthionine sulfoximine (BSO) into a thermal responsive liposome. Under NIR laser irradiation at 808 nm, PLNAs generate mild heat via a ICG-mediated photothermal conversion effect, which leads to the destruction of thermal responsive liposomes for a controlled release of BSO in a tumor microenvironment, ultimately reducing GSH levels. This amplifies intracellular oxidative stresses and thus synergizes with PDT to afford an enhanced therapeutic efficacy. Both in vitro and in vivo data verify that PLNA-mediated phototherapy has an at least 2-fold higher efficacy in killing cancer cells and inhibiting tumor growth compared to sole PDT. This study thus demonstrates a NIR photothermal drug delivery nanosystem for amplified photomedicine.


Assuntos
Antineoplásicos/química , Butionina Sulfoximina/química , Inibidores Enzimáticos/química , Glutationa/antagonistas & inibidores , Verde de Indocianina/química , Lipossomos/química , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Butionina Sulfoximina/farmacocinética , Liberação Controlada de Fármacos , Inibidores Enzimáticos/farmacocinética , Humanos , Hipertermia Induzida , Verde de Indocianina/farmacocinética , Raios Infravermelhos , Camundongos , Neoplasias Experimentais , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Espécies Reativas de Oxigênio/metabolismo
9.
Biol Trace Elem Res ; 198(2): 464-471, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32146577

RESUMO

Zinc L-carnosine (ZnC) is the chelate form of zinc and L-carnosine and is one of the zinc supplements available in the market. This study aims to determine the protective effects of ZnC against L-buthionine sulfoximine (BSO)-induced oxidative stress in CCD-18co human normal colon fibroblast cell line. CCD-18co cells were pretreated with ZnC (0-100 µM) for 24 h before the induction of oxidative stress by BSO (1 mM) for another 24 h. Results from this present study demonstrated that ZnC up to the concentration of 100 µM was not cytotoxic to CCD-18co cells. Induction with BSO significantly increased the intracellular reactive oxygen species (ROS) levels and reduced the intracellular glutathione (GSH) levels in CCD-18co cells. Pretreatment with ZnC was able to attenuate the increment in intracellular ROS level in CCD-18co cells significantly in a concentration-dependent manner. However, ZnC did not have any effects on intracellular GSH levels and Nrf2 activation. Mechanistically, pretreatment with ZnC was able to upregulate the expression of metallothionein (MT) and superoxide dismutase 1 (SOD1) in CCD-18co cells. Results from dual-luciferase reporter gene assay reported that ZnC was able to increase the MRE-mediated relative luciferase activities in a concentration-dependent manner, suggesting that the induction of MT expression by ZnC was due to the activation of MTF-1 signaling pathway. Taken together, our current findings suggest that ZnC can protect CCD-18co cells from BSO-induced oxidative stress via the induction of MT and SOD1 expression.


Assuntos
Carnosina , Butionina Sulfoximina/farmacologia , Carnosina/análogos & derivados , Glutationa/metabolismo , Humanos , Metalotioneína/metabolismo , Compostos Organometálicos , Estresse Oxidativo , Superóxido Dismutase , Superóxido Dismutase-1 , Compostos de Zinco
10.
Am J Chin Med ; 47(5): 1149-1170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31311297

RESUMO

Three-dimensionally (3D) cultured tumor cells (spheroids) exhibit more resistance to therapeutic agents than the cells cultured in traditional two-dimensional (2D) system (monolayers). We previously demonstrated that arsenic disulfide (As2S2) exerted significant anticancer efficacies in both 2D- and 3D-cultured MCF-7 cells, whereas 3D spheroids were shown to be resistant to the As2S2 treatment. L-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, has been regarded to be a potent candidate for combinatorial treatment due to its GSH modulation function. In the present study, we introduced BSO in combination with As2S2 at a low concentration to investigate the possible enhancing anticancer efficacy by the combinatorial treatment on 2D- and 3D-cultured MCF-7 cells. Our results presented for the first time that the combination of As2S2 and BSO exerted potent anticancer synergism in both MCF-7 monolayers and spheroids. The IC50 values of As2S2 in combinatorial treatment were significantly lower than those in treatment of As2S2 alone in both 2D- and 3D-cultured MCF-7 cells (P<0.01, respectively). In addition, augmented induction of apoptosis and enhanced cell cycle arrest along with the regulation of apoptosis- and cell cycle-related proteins, as well as synergistic inhibitions of PI3K/Akt signals, were also observed following co-treatment of As2S2 and BSO. Notably, the combinatorial treatment significantly decreased the cellular GSH levels in both 2D- and 3D-cultured MCF-7 cells in comparison with each agent alone (P<0.05 in each). Our results suggest that the combinatorial treatment with As2S2 and BSO could be a promising novel strategy to reverse arsenic resistance in human breast cancer.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Neoplasias da Mama/fisiopatologia , Butionina Sulfoximina/farmacologia , Sulfetos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
11.
Curr Pharm Biotechnol ; 20(2): 157-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30806310

RESUMO

BACKGROUND: Terminalia arjuna (TA) has been reported and explored traditionally for its cardiotonic properties while the mechanism of antihypertensive effect of TA has not been clearly reported. METHOD: The oxidative stress is a major cause for hypertension, hence different extracts of TA having variable marker yield were evaluated for their antihypertensive effect in buthionine sulfoxamine (BSO) induced oxidative stress based model. Soxhlet extraction (SE), room temperature extraction (RTE), microwave assisted extraction (MAE), and ultrasound assisted extraction (USAE) were quantitatively estimated for marker compounds arjunolic acid and arjunic acid through HPTLC. RESULTS: The hypertension was induced using buthionine sulfoxamine (2 mmol/kg b.w. i.p.) and results suggested that the MAE and USAE showed better recovery of systolic blood pressure (110.33±0.10 and 118.33±0.10) and GSH level (3.62±0.07 nmoles/mL and 3.22±0.13 nmoles/mL), respectively as compared to the positive control group treated with ascorbic acid (Systolic BP: 119.67±0.10, GSH level: 3.11±0.10 nmoles/mL). The RTE and SE also showed a decrease in hypertension but were having moderate effect as compared with the standard positive control. CONCLUSION: The total percentage yield, the yield of the marker compounds arjunolic and arjunic acid, the IC50 values for antioxidant activity as well as the antihypertensive effect were in order: MAE>USAE>SE>RTE that suggested the role of biomarkers arjunolic acid and arjunic acid in reversing the effect of buthionine sulfoxamine.


Assuntos
Anti-Hipertensivos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Terminalia , Animais , Butionina Sulfoximina , Feminino , Masculino , Casca de Planta/química , Ratos , Ratos Wistar , Terminalia/química , Triterpenos/análise , Triterpenos/farmacologia
12.
Clin Exp Hypertens ; 41(1): 5-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29424564

RESUMO

Reactive oxygen species induce vascular dysfunction and hypertension by directly interacting with nitric oxide (NO) which leads to NO inactivation. In addition to a decrease in NO bioavailability, there is evidence that oxidative stress can also modulate NO signaling during hypertension. Here, we investigated the effect of oxidative stress on NO signaling molecules cGMP-dependent protein kinase (PKG) and vasodilator-stimulated phosphoprotein (VASP) which are known to mediate vasodilatory actions of NO. Male Sprague Dawley (SD) rats were provided with tap water (control), 30 mM L-buthionine sulfoximine (BSO, a pro-oxidant), 1 mM tempol (T, an antioxidant) and BSO + T for 3 wks. BSO-treated rats exhibited high blood pressure and oxidative stress. Incubation of mesenteric arterial rings with NO donors caused concentration-dependent relaxation in control rats. However, the response to NO donors was significantly lower in BSO-treated rats with a marked decrease in pD2. In control rats, NO donors activated mesenteric PKG, increased VASP phosphorylation and its interaction with transient receptor potential channels 4 (TRPC4) and inhibited store-operated Ca2+ influx. NO failed to activate these signaling molecules in mesenteric arteries from BSO-treated rats. Supplementation of BSO-treated rats with tempol reduced oxidative stress and blood pressure and normalized the NO signaling. These data suggest that oxidative stress can reduce NO-mediated PKG activation and VASP-TRPC4 interaction which leads to failure of NO to reduce Ca2+ influx in smooth muscle cells. The increase in intracellular Ca2+ contributes to sustained vasoconstriction and subsequent hypertension. Antioxidant supplementation decreases oxidative stress, normalizes NO signaling and reduces blood pressure.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosfoproteínas/metabolismo , Animais , Antioxidantes/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Cálcio/metabolismo , Óxidos N-Cíclicos/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/farmacologia , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Marcadores de Spin , Canais de Cátion TRPC/metabolismo , Vasodilatação/efeitos dos fármacos
13.
Fish Shellfish Immunol ; 86: 1044-1052, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30590160

RESUMO

Autophagy is a degradation cellular process which also plays an important role in virus infection. Glutamine is an essential substrate for the synthesis of glutathione which is the most abundant thiol-containing compound within the cells and plays a key role in the antioxidant defense and intracellular signaling. There is an endogenous cellular glutathione pool which consists of two forms of glutathione, i.e. the reduced form (GSH) and the oxidized form (GSSG). GSH serves as an intracellular antioxidant to maintain cellular redox homeostasis by scavenging free radicals and other reactive oxygen species (ROS) which can lead to autophagy. Under physiological conditions, the concentration of GSSG is only about 1% of total glutathione, while stress condition can result in a transient increase of GSSG. In our previous report, we showed that the replication of snakehead fish vesiculovirus (SHVV) was significant inhibited in SSN-1 cells cultured in the glutamine-starvation medium, however the underlying mechanism remains enigmatic. Here, we revealed that the addition of L-Buthionine-sulfoximine (BSO), a specific inhibitor of the GSH synthesis, could decrease the γ-glutamate-cysteine ligase (GCL) activity and GSH levels, resulting in autophagy and significantly inhibition of the replication of SHVV in SSN-1 cells cultured in the complete medium. On the other hand, the replication of SHVV was rescued and the autophagy was inhibited in the SSN-1 cells cultured in the glutamine-starvation medium supplemented with additional GSH. Furthermore, the inhibition of the synthesis of GSH had not significantly affected the generation of reactive oxygen species (ROS). However, it significantly decreased level of GSH and enhanced the level of GSSG, resulting in the decrease of the value of GSH/GSSG, indicating that it promoted the cellular oxidative stress. Overall, the present study demonstrated that glutamine starvation impaired the replication of SHVV in SSN-1 cells via inducing autophagy associated with the disturbance of the endogenous glutathione pool.


Assuntos
Autofagia , Glutamina/metabolismo , Dissulfeto de Glutationa/metabolismo , Perciformes/virologia , Vesiculovirus/fisiologia , Animais , Butionina Sulfoximina , Linhagem Celular , Glutationa , Perciformes/fisiologia , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Replicação Viral
14.
J Nat Prod ; 81(3): 625-629, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29406734

RESUMO

Capsicodendrin (CPCD, 1), an epimeric mixture of a dimeric drimane-type sesquiterpene, is one of the major compounds present in the three endemic species of Madagascan traditional chemopreventive plants: Cinnamosma species ( C. fragrans, C. macrocarpa, and C. madagascariensis). Despite the popular use of Cinnamosma in Madagascan traditional medicine and the reported antiproliferative properties of CPCD, elucidation of its mechanism(s) of action is still to be accomplished. In the present study, CPCD at low micromolar concentrations was cytotoxic and induced apoptosis in human myeloid leukemia cells in a time- and concentration-dependent manner. The activity of CPCD in HL-60 and K562 cells was modulated by glutathione (GSH), since depletion of this intracellular thiol-based antioxidant with buthionine sulfoximine resulted in significantly ( p < 0.05) greater potency in antiproliferation assays. GSH depletion also significantly potentiated the cytotoxic activity in CPCD-treated human HL-60 cells. Single-cell gel electrophoresis (Comet) assays revealed that GSH depletion in HL-60 cells enhanced the formation of DNA strand breaks in the presence of CPCD. Although CPCD does not contain an obvious Michael acceptor in its structure, 1H NMR analyses indicated that cinnamodial (2), a monomer of CPCD, was formed within a few hours when dissolved in DMSO- d6 and interacts with GSH to form a covalent bond via Michael addition at the C-7 carbon. Together the results strongly suggest that 2 is responsible for the DNA-damaging, pro-apoptotic, and cytotoxic effects of CPCD and that depletion of GSH enhances overall activity by diminishing covalent interaction between GSH and this 2-alkenal decomposition product of CPCD.


Assuntos
Glutationa/metabolismo , Leucemia Mieloide/tratamento farmacológico , Magnoliopsida/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Glutationa/antagonistas & inibidores , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Sesquiterpenos Policíclicos , Sesquiterpenos/isolamento & purificação
15.
PLoS One ; 12(3): e0174271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28362858

RESUMO

BACKGROUND & AIMS: Acquisition of anoikis resistance is a prerequisite for metastasis in hepatocellular carcinoma (HCC). However, little is known about how energy metabolism and antioxidant systems are altered in anoikis-resistant (AR) HCC cells. We evaluated anti-tumor effects of a combination treatment of 3-bromopyruvate (3-BP) and buthionine sulfoximine (BSO) in AR HCC cells. METHODS: We compared glycolysis, reactive oxygen species (ROS) production, and chemoresistance among Huh-BAT, HepG2 HCC cells, and the corresponding AR cells. Expression of hexokinase II, gamma-glutamylcysteine synthetase (rGCS), and epithelial-mesenchymal transition (EMT) markers in AR cells was assessed. Anti-tumor effects of a combination treatment of 3-BP and BSO were evaluated in AR cells and an HCC xenograft mouse model. RESULTS: AR HCC cells showed significantly higher chemoresistance, glycolysis and lower ROS production than attached cells. Expression of hexokinase II, rGCS, and EMT markers was higher in AR HCC cells than attached cells. A combination treatment of 3-BP/BSO effectively suppressed proliferation of AR HCC cells through apoptosis by blocking glycolysis and enhancing ROS levels. In xenograft mouse models, tumor growth derived from AR HCC cells was significantly suppressed in the group treated with 3-BP/BSO compared to the group treated with 3-BP or sorafenib. CONCLUSIONS: These results demonstrated that a combination treatment of 3-BP/BSO had a synergistic anti-tumor effect in an AR HCC model. This strategy may be an effective adjuvant therapy for patients with sorafenib-resistant HCC.


Assuntos
Anoikis/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Butionina Sulfoximina/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piruvatos/farmacologia , Piruvatos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Hep G2 , Humanos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe
16.
Free Radic Biol Med ; 108: 354-361, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389407

RESUMO

D-penicillamine (DPEN), a copper chelator, has been used in the treatment of Wilson's disease, cystinuria, and rheumatoid arthritis. Recent evidence suggests that DPEN in combination with biologically relevant copper (Cu) concentrations generates H2O2 in cancer cell cultures, but the effects of this on cancer cell responses to ionizing radiation and chemotherapy are unknown. Increased steady-state levels of H2O2 were detected in MB231 breast and H1299 lung cancer cells following treatment with DPEN (100µM) and copper sulfate (15µM). Clonogenic survival demonstrated that DPEN-induced cancer cell toxicity was dependent on Cu and was significantly enhanced by depletion of glutathione [using buthionine sulfoximine (BSO)] as well as inhibition of thioredoxin reductase [using Auranofin (Au)] prior to exposure. Treatment with catalase inhibited DPEN toxicity confirming H2O2 as the toxic species. Furthermore, pretreating cancer cells with iron sucrose enhanced DPEN toxicity while treating with deferoxamine, an Fe chelator that inhibits redox cycling, inhibited DPEN toxicity. Importantly, DPEN also demonstrated selective toxicity in human breast and lung cancer cells, relative to normal untransformed human lung or mammary epithelial cells and enhanced cancer cell killing when combined with ionizing radiation or carboplatin. Consistent with the selective cancer cell toxicity, normal untransformed human lung epithelial cells had significantly lower labile iron pools than lung cancer cells. These results support the hypothesis that DPEN mediates selective cancer cell killing as well as radio-chemo-sensitization by a mechanism involving metal ion catalyzed H2O2-mediated oxidative stress and suggest that DPEN could be repurposed as an adjuvant in conventional cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quelantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Penicilamina/farmacologia , Auranofina/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Butionina Sulfoximina/farmacologia , Carboplatina/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Cobre/química , Cobre/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Estresse Oxidativo , Radiação , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
17.
Biotechnol Prog ; 33(1): 17-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689785

RESUMO

In Lonza Biologics' GS Gene Expression System™, recombinant protein-producing GS-CHOK1SV cell lines are generated by transfection with an expression vector encoding both GS and the protein product genes followed by selection in MSX and glutamine-free medium. MSX is required to inhibit endogenous CHOK1SV GS, and in effect create a glutamine auxotrophy in the host that can be complemented by the expression vector encoded GS in selected cell lines. However, MSX is not a specific inhibitor of GS as it also inhibits the activity of GCL (a key enzyme in the glutathione biosynthesis pathway) to a similar extent. Glutathione species (GSH and GSSG) have been shown to provide both oxidizing and reducing equivalents to ER-resident oxidoreductases, raising the possibility that selection for transfectants with increased GCL expression could result in the isolation of GS-CHOKISV cell lines with improved capacity for recombinant protein production. In this study we have begun to address the relationship between MSX supplementation, the amount of intracellular GCL subunit and mAb production from a panel of GS-CHOK1SV cell lines. We then evaluated the influence of reduced GCL activity on batch culture of an industrially relevant mAb-producing GS-CHOK1SV cell line. To the best of our knowledge, this paper describes for the first time the change in expression of GCL subunits and recombinant mAb production in these cell lines with the degree of MSX supplementation in routine subculture. Our data also shows that partial inhibition of GCL activity in medium containing 75 µM MSX increases mAb productivity, and its more specific inhibitor BSO used at a concentration of 80 µM in medium increases the specific rate of mAb production eight-fold and the concentration in harvest medium by two-fold. These findings support a link between the inhibition of glutathione biosynthesis and recombinant protein production in industrially relevant systems and provide a process-driven method for increasing mAb productivity from GS-CHOK1SV cell lines. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:17-25, 2017.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células/métodos , Glutamato-Amônia Ligase/metabolismo , Glutationa/biossíntese , Proteínas Recombinantes/biossíntese , Animais , Técnicas de Cultura Celular por Lotes/métodos , Butionina Sulfoximina/química , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Glutamina/química , Metionina Sulfoximina/metabolismo , Transfecção
18.
Toxicol Lett ; 264: 20-28, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27816466

RESUMO

Furanoid 8-epidiosbulbin E acetate (EEA) is a major constituent of herbal medicine Dioscorea bulbifera L. (DB), a traditional herbal medicine widely used in Asian nations. Our early studies demonstrated that administration of EEA caused acute hepatotoxicity in mice and the observed toxicity required P450-mediated metabolic activation. Protein modification by reactive metabolites of EEA has been suggested to be an important mechanism of EEA-induced hepatotoxicity. The objectives of the present study were to investigate the interaction of the electrophilic reactive metabolites derived from EEA with lysine and cysteine residues of proteins and to define the correlation of protein adductions of EEA and the hepatotoxicity induced by EEA. EEA-derived cis-enedial was found to modify both lysine and cysteine residues of proteins. The observed modifications increased with the increase in doses administered in the animals. The formation of protein adductions derived from the reactive metabolites of EEA were potentiated by buthionine sulfoximine, but were attenuated by ketoconazole. This work facilitated better understanding of the mechanisms of toxic action of EEA.


Assuntos
Cisteína/química , Diterpenos/toxicidade , Lisina/química , Proteínas/química , Proteínas/efeitos dos fármacos , Ativação Metabólica , Animais , Butionina Sulfoximina/química , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dioscorea/química , Técnicas In Vitro , Cetoconazol/química , Masculino , Medicina Tradicional do Leste Asiático , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Oxirredução
19.
PLoS One ; 11(10): e0163214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788147

RESUMO

BACKGROUND: Although reduced glutathione (rGSH) is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO) results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys) is positively associated with stearoyl-coenzyme A desaturase (SCD) activity and adiposity in humans and animal models. OBJECTIVE: To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice. DESIGN: Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L) for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis). RESULTS: Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001), and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH) and rGSH (by ~70%), and liver tGSH (by 82%). Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23-45%, P<0.001 for all), but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27-38%, P <0.001 for all). CONCLUSION: Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism.


Assuntos
Aminoácidos/metabolismo , Peso Corporal , Ácidos Graxos/metabolismo , Glutationa/deficiência , Fenótipo , Compostos de Sulfidrila/metabolismo , Tecido Adiposo/citologia , Aminoácidos/sangue , Animais , Composição Corporal , Butionina Sulfoximina/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Ácidos Graxos/sangue , Glutationa/urina , Insulina/metabolismo , Fígado/citologia , Fígado/metabolismo , Locomoção , Masculino , Camundongos , Compostos de Sulfidrila/sangue
20.
Amino Acids ; 48(2): 523-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26433892

RESUMO

Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 µM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 µM GSH, 100 µM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 µM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 µM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.


Assuntos
Acetilcisteína/farmacologia , Proliferação de Células/efeitos dos fármacos , Enterócitos/metabolismo , Glutationa/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Butionina Sulfoximina/farmacologia , Linhagem Celular , Cisteína/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Glutationa/análogos & derivados , Glutationa/farmacologia , Maleatos/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sus scrofa , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA