Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.201
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Discov Med ; 36(183): 753-764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665024

RESUMO

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Assuntos
Cálcio , Suplementos Nutricionais , Fluorose Dentária , Animais , Masculino , Camundongos , Fator 6 Ativador da Transcrição/metabolismo , Adenina/análogos & derivados , Ameloblastos/metabolismo , Ameloblastos/patologia , Ameloblastos/efeitos dos fármacos , Anoctamina-1/metabolismo , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/genética , Cálcio/metabolismo , Modelos Animais de Doenças , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Fluoretos/toxicidade , Fluoretos/efeitos adversos , Fluorose Dentária/patologia , Fluorose Dentária/metabolismo , Fluorose Dentária/etiologia , Indóis , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
2.
Methods ; 226: 28-34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608850

RESUMO

It is generally accepted that mineral deficiencies, including magnesium and calcium, are widespread globally. Dietary supplementation may be an effective approach to combat such deficiencies. However, challenges associated with limited mineral solubility in the digestive system can impede effective dissolution and hinder absorption, leading to deficiency, and undesirable gastrointestinal disturbances including diarrhoea. Seawater is considered to be a rich source of bioactive magnesium, calcium, and 72 other trace minerals. In this study, we examine two different marine-derived multimineral products as potential dietary supplements. Aquamin-Mg, sourced from seawater is rich in magnesium (12%), and Aquamin F, a seaweed-derived multimineral is rich in calcium (32%). Both products also contain a diverse array of over 72 minerals, characteristic of their oceanic origin. Our study comprises two experiments. The first experiment evaluates and compares the solubility of Aquamin-Mg, commercially available magnesium bisglycinate, and Pure Magnesium Bisglycinate (PrizMAG) during in vitro digestion using the INFOGEST method. Results demonstrate that Aquamin-Mg exhibits superior solubility than the other magnesium sources during the gastric and intestinal phases, particularly when administered alongside food materials. The second experiment is a randomized, double-blind, placebo-controlled study in a small cohort of healthy older aged adults to assess the tolerability of a combined Aquamin-Mg/Aquamin-F supplement over a 12-week period. The findings indicate that this combination supplement is well-tolerated, with no significant adverse events reported, emphasizing its potential as a means of addressing mineral deficiencies.


Assuntos
Cálcio , Suplementos Nutricionais , Magnésio , Humanos , Magnésio/química , Suplementos Nutricionais/análise , Cálcio/química , Cálcio/metabolismo , Feminino , Masculino , Idoso , Método Duplo-Cego , Solubilidade , Água do Mar/química , Digestão , Pessoa de Meia-Idade , Disponibilidade Biológica , Alga Marinha/química , Adulto , Minerais
3.
Calcif Tissue Int ; 114(5): 513-523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38656326

RESUMO

Previously, we demonstrated that prebiotics may provide a complementary strategy for increasing calcium (Ca) absorption in adolescents which may improve long-term bone health. However, not all children responded to prebiotic intervention. We determine if certain baseline characteristics of gut microbiome composition predict prebiotic responsiveness. In this secondary analysis, we compared differences in relative microbiota taxa abundance between responders (greater than or equal to 3% increase in Ca absorption) and non-responders (less than 3% increase). Dual stable isotope methodologies were used to assess fractional Ca absorption at the end of crossover treatments with placebo, 10, and 20 g/day of soluble corn fiber (SCF). Microbial DNA was obtained from stool samples collected before and after each intervention. Sequencing of the 16S rRNA gene was used to taxonomically characterize the gut microbiome. Machine learning techniques were used to build a predictive model for identifying responders based on baseline relative taxa abundances. Model output was used to infer which features contributed most to prediction accuracy. We identified 19 microbial features out of the 221 observed that predicted responsiveness with 96.0% average accuracy. The results suggest a simplified prescreening can be performed to determine if a subject's bone health may benefit from a prebiotic. Additionally, the findings provide insight and prompt further investigation into the metabolic and genetic underpinnings affecting calcium absorption during pubertal bone development.


Assuntos
Cálcio , Microbioma Gastrointestinal , Prebióticos , Adolescente , Criança , Feminino , Humanos , Masculino , Cálcio/metabolismo , Estudos Cross-Over , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/genética , Projetos Piloto , Prebióticos/administração & dosagem
4.
Signal Transduct Target Ther ; 9(1): 86, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584163

RESUMO

During spaceflight, the cardiovascular system undergoes remarkable adaptation to microgravity and faces the risk of cardiac remodeling. Therefore, the effects and mechanisms of microgravity on cardiac morphology, physiology, metabolism, and cellular biology need to be further investigated. Since China started constructing the China Space Station (CSS) in 2021, we have taken advantage of the Shenzhou-13 capsule to send human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to the Tianhe core module of the CSS. In this study, hPSC-CMs subjected to space microgravity showed decreased beating rate and abnormal intracellular calcium cycling. Metabolomic and transcriptomic analyses revealed a battery of metabolic remodeling of hPSC-CMs in spaceflight, especially thiamine metabolism. The microgravity condition blocked the thiamine intake in hPSC-CMs. The decline of thiamine utilization under microgravity or by its antagonistic analog amprolium affected the process of the tricarboxylic acid cycle. It decreased ATP production, which led to cytoskeletal remodeling and calcium homeostasis imbalance in hPSC-CMs. More importantly, in vitro and in vivo studies suggest that thiamine supplementation could reverse the adaptive changes induced by simulated microgravity. This study represents the first astrobiological study on the China Space Station and lays a solid foundation for further aerospace biomedical research. These data indicate that intervention of thiamine-modified metabolic reprogramming in human cardiomyocytes during spaceflight might be a feasible countermeasure against microgravity.


Assuntos
Células-Tronco Pluripotentes , Ausência de Peso , Humanos , Reprogramação Metabólica , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo
5.
Acta Biomater ; 179: 284-299, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494084

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is the primary pathogenic agent responsible for epidermal wound infection and suppuration, seriously threatening the life and health of human beings. To address this fundamental challenge, we propose a heterojunction nanocomposite (Ca-CN/MnS) comprised of Ca-doped g-C3N4 and MnS for the therapy of MRSA-accompanied wounds. The Ca doping leads to a reduction in both the bandgap and the singlet state S1-triplet state T2 energy gap (ΔEST). The Ca doping also facilitates the two-photon excitation, thus remarkably promoting the separation and transfer of 808 nm near-infrared (NIR) light-triggered electron-hole pairs together with the built-in electric field. Thereby, the production of reactive oxygen species and heat are substantially augmented nearby the nanocomposite under 808 nm NIR light irradiation. Consequently, an impressive photocatalytic MRSA bactericidal efficiency of 99.98 ± 0.02 % is achieved following exposure to NIR light for 20 min. The introduction of biologically functional elements (Ca and Mn) can up-regulate proteins such as pyruvate kinase (PKM), L-lactate dehydrogenase (LDHA), and calcium/calmodulin-dependent protein kinase (CAMKII), trigger the glycolysis and calcium signaling pathway, promote cell proliferation, cellular metabolism, and angiogenesis, thereby expediting the wound-healing process. This heterojunction nanocomposite, with its precise charge-transfer pathway, represents a highly effective bactericidal and bioactive system for treating multidrug-resistant bacterial infections and accelerating tissue repair. STATEMENT OF SIGNIFICANCE: Due to the bacterial resistance, developing an antibiotic-free and highly effective bactericidal strategy to treat bacteria-infected wounds is critical. We have designed a heterojunction consisting of calcium doped g-C3N4 and MnS (Ca-CN/MnS) that can rapidly kill methicillin-resistant Staphylococcus aureus (MRSA) without damaging normal tissue through a synergistic effect of two-photon stimulated photothermal and photodynamic therapy. In addition, the release of trace amounts of biofunctional elements Mn and Ca triggers glycolysis and calcium signaling pathways that promote cellular metabolism and cell proliferation, contributing to tissue repair and wound healing.


Assuntos
Cálcio , Glicólise , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Animais , Cálcio/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Fototerapia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/tratamento farmacológico , Humanos , Nanocompostos/química , Cicatrização/efeitos dos fármacos , Camundongos , Raios Infravermelhos
6.
J Food Sci ; 89(4): 2277-2291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488738

RESUMO

Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.


Assuntos
Cálcio , Galinhas , Animais , Feminino , Cálcio/metabolismo , Galinhas/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Hidrólise , Papaína/química , Aminoácidos , Cálcio da Dieta/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Carne , Etanol
7.
Food Chem ; 446: 138763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428077

RESUMO

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Assuntos
Cálcio , Osteoporose , Ratos , Animais , Ovinos , Cálcio/metabolismo , Hidrolisados de Proteína/farmacologia , Cloreto de Cálcio/farmacologia , Cálcio da Dieta , Densidade Óssea , Osteoporose/metabolismo , Dieta
8.
J Exp Zool A Ecol Integr Physiol ; 341(5): 544-552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462737

RESUMO

The hatch rate of chick embryos cultured outside of the eggshell with 350 mg calcium l-lactate hydrate (CaL) and 3.5 mL water is fourfold greater in cultures in which the chorioallantoic membrane (CAM) surrounds the egg contents by incubation day 17.5 (E17.5) an event which occurs in ovo by E13. It was first investigated whether decreasing the volume of water added with 350 mg CaL would promote CAM expansion due to the smaller volume to enclose. When 350 mg CaL was present, the CAM did not surround the egg contents by E13. By E17.5, the CAM surrounded the egg contents in 53%-74% of cultures; however, CAM expansion was not significantly different when 0, 1, 2, or 3.5 mL water was present. The hatch rate with 2 or 3.5 mL water was greater than 50% but was not improved with less water. Second, it was investigated whether CaL or water inhibits CAM expansion. In the absence of CaL, the CAM surrounded the egg contents in up to two-thirds of cultures by E13, whether 2 mL water was present or not. Thus CaL, but not water, inhibits expansion of the CAM by E13, even though CaL promotes hatching. Finally, it was investigated whether injection of aqueous CaL into the allantoic fluid, in conjunction with not adding CaL to culture hammocks, would promote CAM expansion. Allantoic injection of CaL starting at E13 did not promote CAM expansion at E17.5 but resulted in hatch rates of approximately 30%. Allantoic injection is a novel route for supplementation of calcium in cultured chick embryos.


Assuntos
Membrana Corioalantoide , Animais , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Alantoide , Cálcio/metabolismo , Compostos de Cálcio/farmacologia , Compostos de Cálcio/administração & dosagem , Técnicas de Cultura Embrionária/veterinária , Lactatos/administração & dosagem , Casca de Ovo , Injeções
9.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540339

RESUMO

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Assuntos
Bloqueio Atrioventricular , Cálcio , Adulto , Animais , Humanos , Cálcio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Nó Atrioventricular/metabolismo , Técnicas Eletrofisiológicas Cardíacas/efeitos adversos , Bloqueio Atrioventricular/complicações , Arritmias Cardíacas/genética , Doença do Sistema de Condução Cardíaco
10.
Zhen Ci Yan Jiu ; 49(3): 302-306, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500328

RESUMO

Ischemic stroke is currently the most common type of stroke, and the key pathological link is cerebral ischemia-reperfusion injury (CIRI), while the key factor leading to apoptosis and necrosis of ischemic nerve cells is calcium overload. Current studies have confirmed that acupuncture therapy has a good modulating effect on calcium homeostasis and can reduce cerebral ischemia-reperfusion induced damage of neuronal cells by inhibiting calcium overload. After reviewing the relevant literature published in the past 15 years, we find that acupuncture plays a role in regulating the pathological mechanism of calcium overload after CIRI by inhibiting the opening of connexin 43 hemichannels, regulating the intracellular free calcium ion concentration, suppressing the expression of calmodulin, and blocking the function of L-type voltage-gated calcium channels, thereby inhibiting calcium overload, regulating calcium homeostasis and antagonizing neuronal damage resulted from cerebral ischemia-reperfusion, which may provide ideas for future research.


Assuntos
Terapia por Acupuntura , Acupuntura , Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Cálcio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto Cerebral
11.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas Alimentares/farmacologia
12.
Phytomedicine ; 128: 155500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484627

RESUMO

Ginger, a well-known spice plant, has been used widely in medicinal preparations for pain relief. However, little is known about its analgesic components and the underlying mechanism. Here, we ascertained, the efficacy of ginger ingredient 8-Shogaol (8S), on inflammatory pain and tolerance induced by morphine, and probed the role of TRPV1 in its analgesic action using genetic and electrophysiology approaches. Results showed that 8S effectively reduced nociceptive behaviors of mice elicited by chemical stimuli, noxious heat as well as inflammation, and antagonized morphine analgesic tolerance independent on opioid receptor function. Genetic deletion of TRPV1 significantly abolished 8S' analgesia action. Further calcium imaging and patch-clamp recording showed that 8S could specifically activate TRPV1 in TRPV1-expressing HEK293T cells and dorsal root ganglion (DRG) neurons. The increase of [Ca2+]i in DRG was primarily mediated through TRPV1. Mutational and computation studies revealed the key binding sites for the interactions between 8S and TRPV1 included Leu515, Leu670, Ile573, Phe587, Tyr511, and Phe591. Further studies showed that TRPV1 activation evoked by 8S resulted in channel desensitization both in vitro and in vivo, as may be attributed to TRPV1 degradation or TRPV1 withdrawal from the cell surface. Collectively, this work provides the first evidence for the attractive analgesia of 8S in inflammatory pain and morphine analgesic tolerance mediated by targeting pain-sensing TRPV1 channel. 8S from dietary ginger has potential as a candidate drug for the treatment of inflammatory pain.


Assuntos
Catecóis , Gânglios Espinais , Canais de Cátion TRPV , Zingiber officinale , Canais de Cátion TRPV/metabolismo , Zingiber officinale/química , Animais , Humanos , Células HEK293 , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Catecóis/farmacologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Analgésicos/farmacologia , Morfina/farmacologia , Cálcio/metabolismo
13.
J Ethnopharmacol ; 328: 117899, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38341111

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY: The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS: ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS: The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 µg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS: Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.


Assuntos
Bacopa , Doenças Neurodegenerativas , Saponinas , Camundongos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Saponinas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia
14.
Phytother Res ; 38(4): 1990-2006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372204

RESUMO

Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1ß. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1ß. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1ß. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1ß-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.


Assuntos
Osteoartrite , Quercetina , Animais , Masculino , Ratos , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Inflamação/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/tratamento farmacológico , Quercetina/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais
15.
Clin Exp Pharmacol Physiol ; 51(4): e13844, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38350599

RESUMO

Botulinum neurotoxin A (BoNT) is being shown to have anticancer action as a potential adjuvant treatment. The transient receptor potential (TRP) melastatin 2 (TRPM2) stimulator action of BoNT was reported in glioblastoma cells, but not in colorectal cancer (HT29) cells. By activating TRPM2, we evaluated the impacts of BoNT and oxaliplatin (OXA) incubations on oxidant and apoptotic values within the HT29 cells. Control, BoNT (5 IU for 24 h), OXA (50 µM for 24 h) and their combinations were induced. We found that TRPM2 protein is upregulated and mediates enhanced BoNT and OXA-induced Ca2+ entry in cells as compared to control cells. The increase of free reactive oxygen species (ROS), but the decrease of glutathione is the main ROS responsible for TRPM2 activation on H29 exposure to oxidative stress. BoNT and OXA-mediated Ca2+ entry through TRPM2 stimulation in response to H2 O2 results in mitochondrial Ca2+ overload, followed by mitochondrial membrane depolarization, apoptosis and caspase-3/-8/-9, although they were diminished in the TRPM2 antagonist groups (N-(p-amylcinnamoyl)anthranilic acid and carvacrol). In conclusion, by increasing the susceptibility of HT29 tumour cells to oxidative stress and apoptosis, the combined administration of BoNT and OXA via the targeting of TRPM2 may offer a different approach to kill the tumour cells.


Assuntos
Toxinas Botulínicas Tipo A , Neoplasias Colorretais , Canais de Cátion TRPM , Humanos , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Regulação para Cima , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Morte Celular , Estresse Oxidativo/fisiologia , Apoptose/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo
16.
Food Funct ; 15(5): 2587-2603, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353975

RESUMO

Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.


Assuntos
Cálcio , Cervos , Camundongos , Animais , Cálcio/metabolismo , Cervos/metabolismo , Proliferação de Células , Cálcio da Dieta/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Íons/metabolismo , Íons/farmacologia , Osteoblastos
17.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396927

RESUMO

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Assuntos
Brassica , Melatonina , Humanos , Brassica/genética , Brassica/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Senescência Vegetal , Cálcio/metabolismo , Atraso no Tratamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
18.
Poult Sci ; 103(4): 103511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340661

RESUMO

An experiment was conducted to evaluate the effects of phytase in calcium (Ca) and available phosphorous (avP)-reduced diet on growth performance, body composition, bone health, and intestinal integrity of broilers challenged with Eimeria maxima and Eimeria acervulina. A total of 672 14-day-old male broilers were allocated to a 2 × 4 factorial arrangement with 6 replicates per treatment and 14 birds per replicate. Two factors were Eimeria challenge and 4 dietary treatments: 1) a positive control (PC; 0.84% Ca and 0.42% avP); 2) a negative control (NC; 0.74% Ca and 0.27% avP); 3) NC + 500 FTU/Kg of phytase (NC + 500PHY); and 4) NC + 1,500 FTU/Kg of phytase (NC + 1500PHY). On d 14, birds in the Eimeria-challenged groups received a solution containing 15,000 sporulated oocysts of E. maxima and 75,000 sporulated oocysts of E. acervulina via oral gavage. At 5 d postinoculation (DPI), the challenged birds showed a higher (P < 0.01) FITC-d level than the unchallenged birds. While the permeability of the NC group did not differ from the PC group, the phytase supplementation groups (NC + 500PHY and NC + 1500PHY) showed lower (P < 0.05) serum FITC-d levels compared to the NC group. Interaction effects (P < 0.05) of Eimeria challenge and dietary treatments on feed intake (FI), mucin-2 (MUC2) gene expression, bone ash concentration, and mineral apposition rate (MAR) were observed. On 0 to 6 and 0 to 9 DPI, Eimeria challenge decreased (P < 0.01) body weight (BW), body weight gain (BWG), FI, bone mineral density (BMD), bone mineral content (BMC), bone area, fat free bone weight (FFBW), bone ash weight, bone ash percentage and bone ash concentration; and it showed a higher FCR (P < 0.01) compared to the unchallenged group. The reduction Ca and avP in the diet (NC) did not exert adverse effects on all parameters in birds, and supplementing phytase at levels of 500 or 1,500 FTU/Kg improved body composition, bone mineralization, and intestinal permeability, with the higher dose of 1,500 FTU/Kg showing more pronounced enhancements. There was an observed increase in FI (P < 0.01) when phytase was supplemented at 1,500 FTU/Kg during 0 to 6 DPI. In conclusion, results from the current study suggest that dietary nutrients, such as Ca and avP, can be moderately reduced with the supplementation of phytase, particularly in birds infected with Eimeria spp., which has the potential to save feed cost without compromising growth performance, bone health, and intestinal integrity of broilers.


Assuntos
6-Fitase , Eimeria , Minerais , Masculino , Animais , Cálcio/metabolismo , Fósforo , Galinhas , Densidade Óssea , Fluoresceína-5-Isotiocianato , Dieta/veterinária , Cálcio da Dieta/metabolismo , Suplementos Nutricionais/análise , Aumento de Peso , Composição Corporal , Ração Animal/análise
19.
J Food Sci ; 89(3): 1773-1790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349030

RESUMO

Sucrose emerges as a chelating agent to form a stable sucrose-metal-ion chelate that can potentially improve metal-ion absorption. This study aimed to analyze the structure of sucrose-calcium chelate and its potential to promote calcium absorption in both Caco-2 monolayer cells and mice. The characterization results showed that calcium ions mainly chelated with hydroxyl groups in sucrose to produce sucrose-calcium chelate, altering the crystal structure of sucrose (forming polymer particles) and improving its thermal stability. Sucrose-calcium chelate dose dependently increased the amount of calcium uptake, retention, and transport in the Caco-2 monolayer cell model. Compared to CaCl2 , there was a significant improvement in the proportion of absorbed calcium utilized for transport but not retention (93.13 ± 1.75% vs. 67.67 ± 7.55%). Further treatment of calcium channel inhibitors demonstrated the active transport of sucrose-calcium chelate through Cav1.3. Cellular thermal shift assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays indicated that the ability of sucrose-calcium chelate to promote calcium transport was attributed to its superior ability to bind with PMCA1b, a calcium transporter located on the basement membrane, and stimulate its gene expression compared to CaCl2 . Pharmacokinetic analysis of mice confirmed the calcium absorption-promoting effect of sucrose-calcium chelate, as evident by the higher serum calcium level (44.12 ± 1.90 mg/L vs. 37.42 ± 1.88 mmol/L) and intestinal PMCA1b gene expression than CaCl2 . These findings offer a new understanding of how sucrose-calcium chelate enhances intestinal calcium absorption and could be used as an ingredient in functional foods to treat calcium deficiency. PRACTICAL APPLICATION: The development of high-quality calcium supplements is crucial for addressing the various adverse symptoms associated with calcium deficiency. This study aimed to prepare a sucrose-calcium chelate and analyze its structure, as well as its potential to enhance calcium absorption in Caco-2 monolayer cells and mice. The results demonstrated that the sucrose-calcium chelate effectively promoted calcium absorption. Notably, its ability to enhance calcium transport was linked to its strong binding with PMCA1b, a calcium transporter located on the basement membrane, and its capacity to stimulate PMCA1b gene expression. These findings contribute to a deeper understanding of how the sucrose-calcium chelate enhances intestinal calcium absorption and suggest its potential use as an ingredient in functional foods for treating calcium deficiency.


Assuntos
Cálcio da Dieta , Cálcio , Humanos , Camundongos , Animais , Cálcio/metabolismo , Células CACO-2 , Cloreto de Cálcio , Fenômenos Químicos
20.
Anim Sci J ; 95(1): e13920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323695

RESUMO

This study aimed to evaluate the effects of calcium salts of fatty acids (CSFA) from soybean oil in diets with different levels of rumen degradable protein (RDP) on bio-hydrogenation extent, and fatty acid (FA) profile intake, omasal digesta, rumen bacteria, and milk fat. Eight Holstein lactating cows were used in a replicated 4 × 4 Latin square design. Treatments were arranged in a 2 × 2 factorial design with two CSFA levels (0 or 33.2 g/kg DM of CSFA) and two RDP levels (98.0 or 110 g/kg DM). There was RDP and CSFA interaction effect on the omasal flow of total FA and some specific FA. Only in -CSFA diets, the higher RDP level increased omasal flow of total FA. Dietary RDP levels did not affect the FA profile of bacteria and milk fat. Feeding CSFA reduced or tended to reduce the bacterial proportion of C15:0, C16:0, C16:1, C17:0, and C18:0 FA and decreased the concentrations of short- and medium-chain FA (<18C) and increased the concentrations of unsaturated and long-chain FA (≥18C) in milk fat. Feeding CSFA of soybean oil increases the intake and omasal flow of FA and augments unsaturated FA content in bacteria pellets and milk fat.


Assuntos
Ácidos Graxos , Lactação , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Leite/metabolismo , Cálcio/metabolismo , Sais/metabolismo , Óleo de Soja , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Bactérias , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA