Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biomol Struct Dyn ; 40(1): 572-583, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820704

RESUMO

The theory of the emergence of the matrix mechanism in protocells on complexes of minerals (apatite, carbonate-apatite, calcite, and quartz) with the reciprocal proportions and with the participation of the gas phase radicals (NH3, CH4, and CO) is considered. The structure of apatite and carbonate-apatite predetermined the formation of a double helix of DNA with the complementary pairs of purine-pyrimidine bases, as well as RNA strands complementary to DNA, and helical protein chains combined into supramolecular structures with RNA. It is proposed that during the Archean Eon, a gradual replacement of the mineral matrix with organic matter took place. The site of the origin of the matrix mechanism is the defect-free and growing defective zone of apatite and carbonate-apatite. The size and specificity of DNA, complementary-bound RNA and protein molecules in supramolecular protein-RNA complexes increased as defects accumulated in the structure of minerals. An increase in the size of RNA transcripts was accompanied by an increase in the number of protein molecules in supramolecular protein-RNA complexes. At the first, anhydrous, stage, the formation of a transcriptional-translational apparatus in the form of a crystalline organic-mineral complex -DNA, RNA and protein, based on the "spiral into spiral" principle of gas phase elements. The appearance of water determined the launch of the transcriptional-translational apparatus and the transformation of the organo-mineral crystalline complex into a liquid-crystalline state. A detailed description of the preparation and launch of the matrix mechanism is given. The following problems are discussed: the origin of ribosomal proteins and the role of super-specific aminoacyl-tRNA synthetase as a true carrier of genetic information; properties of the genetic code and synthesis of protocells without violating the second law of thermodynamics; the origin of biological asymmetry; the appearance of nanobacteria and dark genetic matter of eukaryotic systems.Communicated by Ramaswamy H. Sarma.


Assuntos
Aminoacil-tRNA Sintetases , Células Artificiais , Proteínas , Termodinâmica
2.
Eur J Pharm Biopharm ; 169: 1-11, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461213

RESUMO

Abundant existence of extracellular matrix biological hydrogels in solid tumors precludes most therapeutics to arrive at intracellular target sites, which is probably one of the threatened reasons of pancreatic ductal adenocarcinoma (PDAC) for public health. In this study, we designed a rod-shaped protocell nanoparticle loading with doxorubicin hydrochloride (Dox) and indocyanine green (ICG), denoted as Dox/ICG-RsPNs, for enhanced chemo-photothermal PDAC treatment. The enhanced therapeutic efficacy was achieved by successively enhancing penetration across matrix hydrogels, endocytosis, increasing local temperature under laser irradiation and hyperthermia-triggered Dox release to nucleus. We found that RsPNs with rod shape could easily penetrate across matrix hydrogel, exerting excellent tumor accumulation. Then RsPNs was internalized effectively by BxPC-3 cells via a caveolin-mediated endocytosis pathway. In addition, ICG endowed the Dox/ICG-RsPNs with photothermal effect and the photothermal conversion efficiency was calculated for 16.2%. Under irradiation, a great number of Dox transported to the nucleus via hyperthermia-induced release. Furthermore, we found that the relative tumor volume of Dox/ICG-RsPNs was merely 1.37 under irradiation at the end of pharmacodynamic studies, which was significantly lower than that of other groups. These findings will provide a promise on the rational design of drug delivery system for effective chemo-photothermal combination therapy to treat PDAC.


Assuntos
Doxorrubicina/farmacologia , Tratamento Farmacológico/métodos , Hipertermia Induzida/métodos , Verde de Indocianina/farmacologia , Terapia Fototérmica/métodos , Animais , Antibióticos Antineoplásicos/farmacologia , Células Artificiais , Disponibilidade Biológica , Linhagem Celular Tumoral , Corantes/farmacologia , Matriz Extracelular , Humanos , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Neoplasias Pancreáticas , Resultado do Tratamento , Neoplasias Pancreáticas
3.
Nat Commun ; 11(1): 958, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075974

RESUMO

The structural integrity of living plant cells heavily relies on the plant cell wall containing a nanofibrous cellulose skeleton. Hence, if synthetic plant cells consist of such a cell wall, they would allow for manipulation into more complex synthetic plant structures. Herein, we have overcome the fundamental difficulties associated with assembling lipid vesicles with cellulosic nanofibers (CNFs). We prepare plantosomes with an outer shell of CNF and pectin, and beneath this, a thin layer of lipids (oleic acid and phospholipids) that surrounds a water core. By exploiting the phase behavior of the lipids, regulated by pH and Mg2+ ions, we form vesicle-crowded interiors that change the outer dimension of the plantosomes, mimicking the expansion in real plant cells during, e.g., growth. The internal pressure enables growth of lipid tubules through the plantosome cell wall, which paves the way to the development of hierarchical plant structures and advanced synthetic plant cell mimics.


Assuntos
Células Artificiais/metabolismo , Materiais Biomiméticos/metabolismo , Parede Celular/metabolismo , Células Vegetais/metabolismo , Células Artificiais/citologia , Materiais Biomiméticos/química , Cápsulas/química , Cápsulas/metabolismo , Parede Celular/química , Parede Celular/ultraestrutura , Celulose/química , Microfluídica , Nanofibras/química , Ácido Oleico/química , Pectinas/química
4.
Science ; 366(6465): 569-570, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672880
5.
Small ; 15(42): e1902636, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468667

RESUMO

Although photothermal therapy (PTT) is preclinically applied in solid tumor treatment, incomplete tumor removal of PTT and heat endurance of tumor cells induces significant tumor relapse after treatment, therefore lowering the therapeutic efficiency of PTT. Herein, a programmable therapeutic strategy that integrates photothermal therapeutic agents (PTAs), DNAzymes, and artificial engineered natural killer (A-NK) cells for immunotherapy of hepatocellular carcinoma (HCC) is designed. The novel PTAs, termed as Mn-CONASHs, with 2D structure are synthesized by the coordination of tetrahydroxyanthraquinone and Mn2+ ions. By further adsorbing polyetherimide/DNAzymes on the surface, the DNAzymes@Mn-CONASHs exhibit excellent light-to-heat conversion ability, tumor microenvironment enhanced T1 -MRI guiding ability, and antiheat endurance ability. Furthermore, the artificial engineered NK cells with HCC specific targeting TLS11a-aptamer decoration are constructed for specifically eliminating any possible residual tumor cells after PTT, to systematically enhance the therapeutic efficacy of PTT and avoid tumor relapse. Taken together, the potential of A-NK cells combined with antiheat endurance as a powerful strategy for immuno-enhancing photothermal therapy efficiency of solid tumors is highlighted, and the current strategy might provide promising prospects for cancer therapy.


Assuntos
Células Artificiais , Carcinoma Hepatocelular/terapia , Engenharia Celular , Hipertermia Induzida , Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/terapia , Fototerapia , Carcinoma Hepatocelular/diagnóstico por imagem , DNA Catalítico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Manganês/química , Nanopartículas/ultraestrutura , Espectrometria de Fluorescência , Microambiente Tumoral
6.
Angew Chem Int Ed Engl ; 58(19): 6333-6337, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30861271

RESUMO

Collective behaviour in mixed populations of synthetic protocells is an unexplored area of bottom-up synthetic biology. The dynamics of a model protocell community is exploited to modulate the function and higher-order behaviour of mixed populations of bioinorganic protocells in response to a process of artificial phagocytosis. Enzyme-loaded silica colloidosomes are spontaneously engulfed by magnetic Pickering emulsion (MPE) droplets containing complementary enzyme substrates to initiate a range of processes within the host/guest protocells. Specifically, catalase, lipase, or alkaline phosphatase-filled colloidosomes are used to trigger phagocytosis-induced buoyancy, membrane reconstruction, or hydrogelation, respectively, within the MPE droplets. The results highlight the potential for exploiting surface-contact interactions between different membrane-bounded droplets to transfer and co-locate discrete chemical packages (artificial organelles) in communities of synthetic protocells.


Assuntos
Células Artificiais/metabolismo , Modelos Biológicos , Fagocitose , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipase/metabolismo , Trioleína/metabolismo
7.
Exp Biol Med (Maywood) ; 244(4): 283-293, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30205721

RESUMO

IMPACT STATEMENT: The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel "chrononanomedicines."


Assuntos
Sistemas de Liberação de Medicamentos , Retroalimentação , Nanomedicina , Células Artificiais/citologia , Biocatálise , Cronoterapia
8.
Adv Mater ; 30(52): e1805038, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30378187

RESUMO

Adenosine triphosphate (ATP) is the most important immediate energy source for driving intracellular biochemical reactions in nearly all life forms. Controllable generation of ATP in life is still an unrealized goal. Here, thylakoid fragments are recombined with lipid molecules to synthesize a synthetic/biological hybrid proteoliposome, named highly efficient life-support intracellular opto-driven system (HELIOS) for the generation of ATP. With red light irradiation, HELIOS can improve the intracellular ATP concentration to 1.38-2.45 times in various cell lines. Moreover, it is noticed that HELIOS-mediated ATP generation can comprehensively promote cell functions such as protein synthesis and insulin secretion. At organ and individual levels, it is also proved that HELIOS can rescue a mouse heart from myocardial infarction and sustain life of fasting zebrafish Danio rerio models. The photo-powered artificial organelle can deepen our understanding of metabolism and enable the development of optical therapy that targets intracellular energy supply.


Assuntos
Trifosfato de Adenosina , Células Artificiais , Infarto do Miocárdio/terapia , Fototerapia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Células Artificiais/química , Células Artificiais/efeitos da radiação , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Jejum/metabolismo , Glucose/deficiência , Espaço Intracelular/metabolismo , Luz , Camundongos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Processos Fotoquímicos , Ratos Sprague-Dawley , Peixe-Zebra
9.
Life Sci Soc Policy ; 14(1): 10, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29761363

RESUMO

Metaphors allow us to come to terms with abstract and complex information, by comparing it to something which is structured, familiar and concrete. Although modern science is "iconoclastic", as Gaston Bachelard phrases it (i.e. bent on replacing living entities by symbolic data: e.g. biochemical and mathematical symbols and codes), scientists are at the same time prolific producers of metaphoric images themselves. Synthetic biology is an outstanding example of a technoscientific discourse replete with metaphors, including textual metaphors such as the "Morse code" of life, the "barcode" of life and the "book" of life. This paper focuses on a different type of metaphor, however, namely on the archetypal metaphor of the mandala as a symbol of restored unity and wholeness. Notably, mandala images emerge in textual materials (papers, posters, PowerPoints, etc.) related to one of the new "frontiers" of contemporary technoscience, namely the building of a synthetic cell: a laboratory artefact that functions like a cell and is even able to replicate itself. The mandala symbol suggests that, after living systems have been successfully reduced to the elementary building blocks and barcodes of life, the time has now come to put these fragments together again. We can only claim to understand life, synthetic cell experts argue, if we are able to technically reproduce a fully functioning cell. This holistic turn towards the cell as a meaningful whole (a total work of techno-art) also requires convergence at the "subject pole": the building of a synthetic cell as a practice of the self, representing a turn towards integration, of multiple perspectives and various forms of expertise.


Assuntos
Células Artificiais , Pesquisa Biomédica/ética , Pesquisa Biomédica/métodos , Biologia Sintética/ética , Biologia Sintética/métodos , Humanos
10.
Proc Natl Acad Sci U S A ; 114(28): 7228-7233, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652345

RESUMO

Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.


Assuntos
Citoesqueleto/metabolismo , DNA/química , Lipídeos/química , Lipossomos/química , Células Artificiais , Sistemas de Liberação de Medicamentos , Ácidos Graxos Monoinsaturados/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Pressão Osmótica , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Rodaminas/química , Estresse Mecânico , Fatores de Tempo
11.
ACS Appl Mater Interfaces ; 9(19): 15907-15921, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28117959

RESUMO

Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles. In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly active artificial organelles have been reported to date and they all consist of single-compartment carriers. However, it is noted that biological organelles consist of multicompartment architectures where enzymatic reactions are executed within distinct subcompartments. Compartmentalization allows for multiple processes to take place in close vicinity and in a parallel manner without the risk of interference or degradation. Here, we report on a subcompartmentalized and intracellularly active carrier, a crucial step for advancing artificial organelles. In particular, we develop and characterize a novel capsosome system, which consists of multiple liposomes and fluorescent gold nanoclusters embedded within a polymer carrier capsule. We subsequently demonstrate that encapsulated enzymes preserve their activity intracellularly, allowing for controlled enzymatic cascade reaction within a host cell.


Assuntos
Células Artificiais , Cápsulas , Ouro , Lipossomos , Polímeros
12.
Adv Mater ; 29(11)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112838

RESUMO

A new biomimetic nanoreactor design is presented based on cancer cell membrane material in combination with porous silicon nanoparticles. This cellular nanoreactor features a biocompartment enclosed by a cell membrane and readily integrated with cells and supplementing the cellular functions under oxidative stress. The study demonstrates the impact of the nanoreactors on improving cellular functions with a potential to serve as artificial organelles.


Assuntos
Biomimética , Células Artificiais , Materiais Biomiméticos , Membrana Celular , Nanopartículas , Organelas
13.
Curr Opin Chem Biol ; 22: 1-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24952153

RESUMO

This review discusses recent advances in the design and construction of protocell models based on the self-assembly or microphase separation of non-lipid building blocks. We focus on strategies involving partially hydrophobic inorganic nanoparticles (colloidosomes), protein-polymer globular nano-conjugates (proteinosomes), amphiphilic block copolymers (polymersomes), and stoichiometric mixtures of oppositely charged biomolecules and polyelectrolytes (coacervates). Developments in the engineering of membrane functionality to produce synthetic protocells with gated responses and control over multi-step reactions are described. New routes to protocells comprising molecularly crowded, cytoskeletal-like hydrogel interiors, as well as to the construction of hybrid protocell models are also highlighted. Together, these strategies enable a wide range of biomolecular and synthetic components to be encapsulated, regulated and processed within the micro-compartmentalized volume, and suggest that the development of non-lipid micro-ensembles offers an approach that is complementary to protocell models based on phospholipid or fatty acid vesicles.


Assuntos
Células Artificiais/química , Células Artificiais/citologia , Nanopartículas/química , Polímeros/química , Proteínas/química , Dióxido de Silício/química , Células Artificiais/metabolismo , Células Artificiais/ultraestrutura , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Polímeros/metabolismo , Proteínas/metabolismo , Dióxido de Silício/metabolismo , Biologia Sintética/métodos
14.
Orig Life Evol Biosph ; 44(4): 345-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25743765

RESUMO

This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that "the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process.


Assuntos
Células Artificiais/química , Ácidos Graxos/química , Lipossomos/química , Origem da Vida , Petróleo/metabolismo , Água/química , Células Artificiais/metabolismo , Cátions Monovalentes , Ácidos Graxos/metabolismo , Fontes Hidrotermais , Troca Iônica , Transporte de Íons , Lipossomos/metabolismo , Modelos Químicos , Osmose , Estereoisomerismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA