Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 656: 124045, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561134

RESUMO

The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.


Assuntos
Morte Celular Imunogênica , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Animais , Nanopartículas/administração & dosagem , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos
2.
Biomater Sci ; 12(10): 2672-2688, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596867

RESUMO

Breast cancer, a pervasive malignancy affecting women, demands a diverse treatment approach including chemotherapy, radiotherapy, and surgical interventions. However, the effectiveness of doxorubicin (DOX), a cornerstone in breast cancer therapy, is limited when used as a monotherapy, and concerns about cardiotoxicity persist. Ginsenoside Rg3, a classic compound of traditional Chinese medicine found in Panax ginseng C. A. Mey., possesses diverse pharmacological properties, including cardiovascular protection, immune modulation, and anticancer effects. Ginsenoside Rg3 is considered a promising candidate for enhancing cancer treatment when combined with chemotherapy agents. Nevertheless, the intrinsic challenges of Rg3, such as its poor water solubility and low oral bioavailability, necessitate innovative solutions. Herein, we developed Rg3-PLGA@TMVs by encapsulating Rg3 within PLGA nanoparticles (Rg3-PLGA) and coating them with membranes derived from tumor cell-derived microvesicles (TMVs). Rg3-PLGA@TMVs displayed an array of favorable advantages, including controlled release, prolonged storage stability, high drug loading efficiency and a remarkable ability to activate dendritic cells in vitro. This activation is evident through the augmentation of CD86+CD80+ dendritic cells, along with a reduction in phagocytic activity and acid phosphatase levels. When combined with DOX, the synergistic effect of Rg3-PLGA@TMVs significantly inhibits 4T1 tumor growth and fosters the development of antitumor immunity in tumor-bearing mice. Most notably, this delivery system effectively mitigates the toxic side effects of DOX, particularly those affecting the heart. Overall, Rg3-PLGA@TMVs provide a novel strategy to enhance the efficacy of DOX while simultaneously mitigating its associated toxicities and demonstrate promising potential for the combined chemo-immunotherapy of breast cancer.


Assuntos
Doxorrubicina , Ginsenosídeos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Ginsenosídeos/administração & dosagem , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Feminino , Nanopartículas/química , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células Dendríticas/efeitos dos fármacos
3.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38656158

RESUMO

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Assuntos
Nanopartículas , Paratuberculose , Animais , Nanopartículas/química , Paratuberculose/imunologia , Paratuberculose/prevenção & controle , Camundongos , Tretinoína/química , Tretinoína/farmacologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Camundongos Endogâmicos BALB C
4.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38498328

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Assuntos
Neoplasias Colorretais , Fosfatos de Dinucleosídeos , Nanopartículas , Tretinoína , Animais , Feminino , Humanos , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunoterapia/métodos , Nanopartículas em Multicamadas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Tretinoína/administração & dosagem , Tretinoína/farmacologia
5.
J Pharm Sci ; 113(8): 2232-2244, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38492845

RESUMO

Hyperthermia can be integrated with tumor-killing chemotherapy, radiotherapy and immunotherapy to give rise to an anti-tumor response. To this end, a nano-delivery system is built, which can connect hyperthermia and immunotherapy. On this basis, the impact of such a combination on the immune function of dendritic cells (DCs) is explored. The core of this system is the photothermal material gold nanorod (GNR), and its surface is covered with a silica shell. Additionally, it also forms a hollow mesoporous structure using the thermal etching approach, followed by modification of targeted molecule folic acid (FA) on its surface, and eventually forms a hollow mesoporous silica gold nanorod (GNR@void@mSiO2) modified by FA. GNR@void@mSiO2-PEG-FA (GVS-FA) performs well in photothermal properties, drug carriage and release and tumor targeting performance. Furthermore, the thermotherapy of tumor cells through in vitro NIR irradiation can directly kill tumor cells by inhibiting proliferation and inducing apoptosis. GVS-FA loaded with imiquimod (R837) can be used as a adjuvant to enhance the immune function of DCs through hyperthermia.


Assuntos
Células Dendríticas , Ouro , Imunoterapia , Nanotubos , Neoplasias , Terapia Fototérmica , Ouro/química , Nanotubos/química , Imunoterapia/métodos , Terapia Fototérmica/métodos , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Porosidade , Linhagem Celular Tumoral , Terapia Combinada/métodos , Animais , Imiquimode/administração & dosagem , Ácido Fólico/química , Camundongos , Silício/química , Dióxido de Silício/química , Apoptose/efeitos dos fármacos
6.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209237

RESUMO

Dendritic cells are antigen-presenting cells, which identify and process pathogens to subsequently activate specific T lymphocytes. To regulate the immune responses, DCs have to mature by the recognition of TLR ligands, TNFα or IFNγ. These ligands have been used as adjuvants to activate DCs in situ or in vitro, with toxic effects. It has been shown that some molecules affect the immune system, e.g., Masticadienonic acid (MDA) and 3α-hydroxy masticadienoic acid (3α-OH MDA) triterpenes naturally occurring in several medicinal plants, since they activate the nitric oxide synthase in macrophages and induce T lymphocyte proliferation. The DCs maturation induced by MDA or 3a-OH MDA was determined by incubating these cells with MDA or 3α-OH MDA, and their phenotype was afterwards analyzed. The results showed that only 3α-OH MDA was able to induce DCs maturation. When mice with melanoma were inoculated with DCs/3α-OH MDA, a decreased tumor growth rate was observed along with an extended cell death area within tumors compared to mice treated with DCs incubated with MDA. In conclusion, it is proposed that 3α-OH MDA may be an immunostimulant molecule. Conversely, it is proposed that MDA may be a molecule with anti-inflammatory properties.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Imunofenotipagem , Camundongos , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Ethnopharmacol ; 285: 114918, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was unclear. Columbianadin (CBN) was one of the main bioactive compounds of APR, and has many pharmacological effects. But the immunosuppressive effect of CBN on DCs and the potential mechanism needed to be explored. AIM OF THE STUDY: The study was aimed to clarify the immunosuppressive effect of CBN on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced DCs. MATERIALS AND METHODS: Bone marrow-derived DCs were obtained and cultured from C57BL/6 mice in accordance with protocol. The phenotypic study (CD11c, CD40, CD80, CD86 and MHC Ⅱ) were measured by flow cytometry. FITC-dextran were uptaked by DCs and the change of endocytosis activity were mediated by acquired mannose receptor. Transwell chambers were used to detect the migration ability of DCs. Mixed leukocyte reaction (MLR) assay was used to detect the allostimulatory ability of CBN on TNF-α stimulated DCs. The secretion of cytokines and chemokines was measured by ELISA Kit. TLRs gene and MAPKs/NF-κB protein expression were checked by qRT-PCR and Western blot. RESULTS: CBN inhibited the maturation of TNF-α-induced DCs while maintaining phagocytosis capabilities. Additionally, CBN inhibited the migration of TNF-α stimulated DCs, which related to reduce the production of chemokines (MCP-1, MIP-1α). Notably, CBN could suppress the proliferation of CD4+T cells by inhibiting DCs maturation, and decrease the proinflammatory cytokines IL-6 production. Furthermore, CBN inhibited mRNA expression of TLR2, TLR7 and TLR9 in TNF-α-activated DCs. Meanwhile, the phosphorylation of p38, JNK1/2 and NF-κB protein were significantly inhibited in CBN treated DCs. CONCLUSIONS: These findings provided novel insights into the pharmacological activity of CBN. They also indicated that inhibition DCs maturation owning to the immunosuppressive effect of CBN. CBN was expected as a potential immunosuppressant and TLRs/MAPKs/NF-κB pathway may be an important mechanism for CBN's immunosuppressive activity.


Assuntos
Células Alógenas/fisiologia , Movimento Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Linfócitos T/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fagocitose , Fitoterapia , Receptores Toll-Like
8.
J Nutr Biochem ; 100: 108880, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655755

RESUMO

Obesity is associated with the dysregulation of vitamin D metabolism and altered immune responses in bone marrow-derived dendritic cells (BMDCs). Vitamin D can affect the differentiation, maturation, and activation of dendritic cells (DCs) and regulate autophagy via vitamin D receptor signaling. Autophagy was shown to be involved in the functions of DCs. We investigated the effects of dietary vitamin D supplementation and in vitro 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment on autophagy in BMDCs from control diet (CON)-fed lean and high-fat diet (HFD)-induced obese mice. C57BL/6 male mice were fed CON or HFD with 10% or 45% kcal fat, respectively, supplemented with 1,000 or 10,000 IU vitamin D/kg diet (vDC or vDS) for 12 weeks. BMDCs were generated by culturing bone marrow cells from the mice with 20 ng/mL rmGM-CSF and treated with 1 nM 1,25(OH)2D3. Maturation of BMDCs was induced by lipopolysaccharide (50 ng/mL) stimulation. Treatment with 1,25(OH)2D3 inhibited the expression of phenotypes related to DC function (MHC class Ⅱ, CD86, CD80) and production of IL-12p70 by BMDCs from control and obese mice, regardless of dietary vitamin D supplementation. LC3Ⅱ/Ⅰ and VPS34 protein levels increased, and p62 expression decreased, after 1,25(OH)2D3 treatment of the BMDCs in CON-vDC only. Vdr mRNA levels decreased following 1,25(OH)2D3 treatment of BMDCs in the HFD-vDC. In conclusion, autophagy flux was increased by 1,25(OH)2D3 treatment of the BMDCs in CON-vDC but not in the HFD-vDC group. This suggests that the decreased expression of Vdr following 1,25(OH)2D3 treatment might have affected autophagy flux in BMDCs from obese mice.


Assuntos
Autofagia , Calcitriol/farmacologia , Células Dendríticas/fisiologia , Dieta Hiperlipídica , Suplementos Nutricionais , Obesidade/fisiopatologia , Vitamina D/administração & dosagem , Animais , Células da Medula Óssea/citologia , Células Dendríticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitaminas/administração & dosagem
9.
Front Immunol ; 12: 656419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745081

RESUMO

Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.


Assuntos
Antituberculosos/uso terapêutico , Berberina/uso terapêutico , Fatores Imunológicos/uso terapêutico , Isoniazida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Berberina/farmacologia , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Humanos , Fatores Imunológicos/farmacologia , Isoniazida/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Rifampina/farmacologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
10.
Int Immunopharmacol ; 101(Pt A): 108329, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749293

RESUMO

BACKGROUNDS: Berberine (BBR), a compound long used in traditional Chinese medicine, has been reported to have therapeutic effects in treating ulcerative colitis (UC), attributed to its anti-inflammatory properties and restorative potential of tight junctions (TJs). However, the mechanism by which BBR affects intestinal bacteria and immunity is still unclear. METHODS: This study investigated the effects of BBR on intestinal bacteria and the inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Immunohistochemistry (IHC) and electron microscopy were used to detect intestinal TJs. Microflora analysis was used to screen for bacteria regulated by BBR. RESULTS: The results showed that BBR had increased colonic epithelium zonula occludens proteins-1 (ZO-1) and occludin expression and reduced T-helper 17/T regulatory ratio in DSS-induced mice. Mechanically, BBR eliminated DSS-induced intestinal flora disturbances in mice, particularly increased Bacteroides fragilis (B. fragilis) in vivo and in vitro. B. fragilis decreased the interleukin-6 induced by dendritic cells through some heat-resistant component rather than nucleic acids or proteins. CONCLUSIONS: Overall, these data suggest that BBR had a moderating effect on DSS-induced colitis. This compound may regulate intestinal immune cell differentiation by affecting the growth of B. fragilis, providing new insights into the potential application of BBR in UC.


Assuntos
Anti-Inflamatórios/farmacologia , Bacteroides fragilis/efeitos dos fármacos , Berberina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colite/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Bacteroides fragilis/crescimento & desenvolvimento , Berberina/uso terapêutico , Colite/induzido quimicamente , Colite Ulcerativa/patologia , Colo/ultraestrutura , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/ultraestrutura
11.
Front Immunol ; 12: 732992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675923

RESUMO

Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
12.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502035

RESUMO

Although fucoidan, a well-studied seaweed-extracted polysaccharide, has shown immune stimulatory effects that elicit anticancer immunity, mucosal adjuvant effects via intranasal administration have not been studied. In this study, the effect of Ecklonia cava-extracted fucoidan (ECF) on the induction of anti-cancer immunity in the lung was examined by intranasal administration. In C57BL/6 and BALB/c mice, intranasal administration of ECF promoted the activation of dendritic cells (DCs), natural killer (NK) cells, and T cells in the mediastinal lymph node (mLN). The ECF-induced NK and T cell activation was mediated by DCs. In addition, intranasal injection with ECF enhanced the anti-PD-L1 antibody-mediated anti-cancer activities against B16 melanoma and CT-26 carcinoma tumor growth in the lungs, which were required cytotoxic T lymphocytes and NK cells. Thus, these data demonstrated that ECF functioned as a mucosal adjuvant that enhanced the immunotherapeutic effect of immune checkpoint inhibitors against metastatic lung cancer.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Laminaria/química , Neoplasias Pulmonares/tratamento farmacológico , Polissacarídeos/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Administração Intranasal , Animais , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Combinação de Medicamentos , Feminino , Inibidores de Checkpoint Imunológico/administração & dosagem , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Extratos Vegetais , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia
13.
J Mater Chem B ; 9(36): 7435-7446, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551058

RESUMO

Cancer vaccines based on DNA encoding oncogenes have shown great potential in preclinical studies. However, the efficacy of DNA vaccines is limited by their weak immunogenicity because of low cellular internalisation and insufficient activation of dendritic cells (DCs). Calcium phosphate (CP) nanoparticles (NPs) are biodegradable vehicles with low toxicity and high loading capacity of DNA but suffer from stability issues. Here we employed adenosine triphosphate (ATP) as a dual functional agent, i.e. stabiliser for CP and immunological adjuvant, and applied the ATP-modified CP (ACP) NPs to the DNA vaccine. ACP NP-enhanced cellular uptake and improved transfection efficiency of DNA vaccine, and further showed the ability to activate DCs that are critical for them to prime T cells in cancer immunotherapy. As a result, a higher level of antigen-specific antibody with stronger tumour growth inhibition was achieved in mice immunised with the ACP-DNA vaccine. Overall, this one-step synthesised ACP NPs are an efficient nano-delivery system and nano-adjuvant for cancer DNA vaccines.


Assuntos
Trifosfato de Adenosina/química , Adjuvantes Imunológicos/química , Fosfatos de Cálcio/química , Nanopartículas/química , Vacinas de DNA/química , Animais , Reações Antígeno-Anticorpo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Transplante Homólogo , Vacinação , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia
14.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473049

RESUMO

Plasmacytoid dendritic cells (pDCs) constitute a rare type of immune cell with multifaceted functions, but their potential use as a cell-based immunotherapy is challenged by the scarce cell numbers that can be extracted from blood. Here, we systematically investigate culture parameters for generating pDCs from hematopoietic stem and progenitor cells (HSPCs). Using optimized conditions combined with implementation of HSPC pre-expansion, we generate an average of 465 million HSPC-derived pDCs (HSPC-pDCs) starting from 100,000 cord blood-derived HSPCs. Furthermore, we demonstrate that such protocol allows HSPC-pDC generation from whole-blood HSPCs, and these cells display a pDC phenotype and function. Using GMP-compliant medium, we observe a remarkable loss of TLR7/9 responses, which is rescued by ascorbic acid supplementation. Ascorbic acid induces transcriptional signatures associated with pDC-specific innate immune pathways, suggesting an undescribed role of ascorbic acid for pDC functionality. This constitutes the first protocol for generating pDCs from whole blood and lays the foundation for investigating HSPC-pDCs for cell-based immunotherapy.


Assuntos
Ácido Ascórbico/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas , Células-Tronco Hematopoéticas , Células Cultivadas , Meios de Cultura/química , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Imunoterapia
15.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361596

RESUMO

The bitter melon, Momordica charantia L., was once an important food and medicinal herb. Various studies have focused on the potential treatment of stomach disease with M. charantia and on its anti-diabetic properties. However, very little is known about the specific compounds responsible for its anti-inflammatory activities. In addition, the in vitro inhibitory effect of M. charantia on pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs) has not been reported. Phytochemical investigation of M. charantia fruit led to the isolation of 15 compounds (1-15). Their chemical structures were elucidated spectroscopically (one- and two-dimensional nuclear magnetic resonance) and with electrospray ionization mass spectrometry. The anti-inflammatory effects of the isolated compounds were evaluated by measuring the production of the pro-inflammatory cytokines interleukin IL-6, IL-12 p40, and tumor necrosis factor α (TNF-α) in LPS-stimulated BMDCs. The cucurbitanes were potent inhibitors of the cytokines TNF-α, IL-6, and IL-12 p40, indicating promising anti-inflammatory effects. Based on these studies and in silico simulations, we determined that the ligand likely docked in the receptors. These results suggest that cucurbitanes from M. charantia are potential candidates for treating inflammatory diseases.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Frutas/química , Momordica charantia/química , Triterpenos/farmacologia , Animais , Células Cultivadas , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Nat Commun ; 12(1): 4741, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362923

RESUMO

Biologic therapies have transformed the management of psoriasis, but clinical outcome is variable leaving an unmet clinical need for predictive biomarkers of response. Here we perform in-depth immunomonitoring of blood immune cells of 67 patients with psoriasis, before and during therapy with the anti-TNF drug adalimumab, to identify immune mediators of clinical response and evaluate their predictive value. Enhanced NF-κBp65 phosphorylation, induced by TNF and LPS in type-2 dendritic cells (DC) before therapy, significantly correlates with lack of clinical response after 12 weeks of treatment. The heightened NF-κB activation is linked to increased DC maturation in vitro and frequency of IL-17+ T cells in the blood of non-responders before therapy. Moreover, lesional skin of non-responders contains higher numbers of dermal DC expressing the maturation marker CD83 and producing IL-23, and increased numbers of IL-17+ T cells. Finally, we identify and clinically validate LPS-induced NF-κBp65 phosphorylation before therapy as a predictive biomarker of non-response to adalimumab, with 100% sensitivity and 90.1% specificity in an independent cohort. Our study uncovers important molecular and cellular mediators underpinning adalimumab mechanisms of action in psoriasis and we propose a blood biomarker for predicting clinical outcome.


Assuntos
Adalimumab/uso terapêutico , Células Dendríticas/metabolismo , NF-kappa B/metabolismo , Psoríase/imunologia , Transdução de Sinais , Antígeno B7-H1 , Terapia Biológica , Biomarcadores/sangue , Células Dendríticas/efeitos dos fármacos , Humanos , Interleucina-17 , Lipopolissacarídeos/efeitos adversos , Linfócitos , Fosforilação , Sensibilidade e Especificidade , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
17.
ACS Appl Mater Interfaces ; 13(31): 36824-36838, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314148

RESUMO

Although immuno-oncotherapy in clinic has gained great success, the immunosuppressive tumor microenvironment (TME) existing in the "cold" tumor with insufficient and exhausted lymphocytes may result in a lower-than-expected therapeutic efficiency. Therefore, a properly designed synergistic strategy that can effectively turn the "cold" tumor to "hot" should be considered to improve the therapeutic effects of immuno-oncotherapy. Herein, TME-responsive penetrating nanogels (NGs) were developed, which can improve the delivery and penetration of the co-loaded resiquimod (R848) and green tea catechin (EGCG) in tumors by a nano-sized controlled releasing system of the soluble cyclodextrin-drug inclusion complex. Consequently, the NGs effectively promoted the maturation of dendritic cells, stimulated the cytotoxic T lymphocytes (CTLs), and decreased the PD-L1 expression in tumors. The combination of NGs with the OX40 agonist (αOX40) further synergistically enhanced the activation and infiltration of CTLs into the deep tumor and inhibited the suppression effects from the regulatory T cells (Tregs). As a result, an increased ratio of active CTLs to Tregs in tumors (20.66-fold) was achieved with a 91.56% tumor suppression effect, indicating a successful switch of "cold" tumors to "hot" for an immunologically beneficial TME with significantly improved anti-tumor immune therapeutics. This strategy could be tailored to other immuno-oncotherapeutic approaches to solve the urgent efficiency concerns of the checkpoint-based treatment in clinic.


Assuntos
Antineoplásicos/uso terapêutico , Catequina/uso terapêutico , Portadores de Fármacos/química , Imidazóis/uso terapêutico , Nanogéis/química , Neoplasias/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antígeno B7-H1/metabolismo , Catequina/química , Catequina/farmacocinética , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Ácido Hialurônico/análogos & derivados , Imidazóis/química , Imidazóis/farmacocinética , Imunomodulação , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
18.
J Ethnopharmacol ; 277: 114256, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062250

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal polysaccharides have exhibited great immune-enhancing potential. Adjuvants are a key tool for developing efficacious vaccines. In our previous study, a water-soluble polysaccharide extracted from wild Cistanche deserticola Y.C. Ma showed potent immunostimulatory activity. AIM OF STUDY: In this study, the immune profiles and efficacy of aqueous extracts of cultivated Cistanche deserticola Y.C. Ma (AECCD) on ICR mice against ovalbumin (OVA) were investigated. In vitro experiments, the possible DC activation mechanism by AECCD was evaluated. MATERIALS AND METHODS: AECCD were extracted using hot water after which the crude polysaccharides were precipitated by ethanol. Mice were firstly immunized subcutaneously with OVA (10 µg per mouse) alone or OVA (10 µg per mouse) respectively containing different dose of AECCD (200, 400 and 800 µg per mouse) on Days 1 and 14 and the magnitude and kinetics of antibodies and cell-mediated responses were then assessed. RESULTS: AECCD elicited vigorous and long-term IgG responses with mixed Th1/Th2 responses and up-regulated levels of Th-associated cytokines (CD4+IL-4, CD4+IFN-γ and CD8+IFN-γ). Moreover, AECCD induced the strong cellular immune response characterized by increased splenocyte proliferation as well as the activated T cell response. Notably, AECCD significantly enhanced the maturation of dendritic cells (DCs) and inhibited Tregs. In vitro experiments, Preliminary tests indicated that AECCD induced DC activation by promoting phenotypic maturation, cytokine section and allostimulatory activity. Toll-like receptor 4 (TLR4) was an essential receptor for DCs to directly bind AECCD. The inhibitors of NF-κB decreased the expression levels of CD40, CD80, CD86 and MHC-II and the production of IFN-γ, TNF-α and IL-6 through DCs. CONCLUSIONS: Finally, these findings suggested that AECCD could elicit potent and durable antigen specific immune responses through DC activation, which was involved in the regulation of maturation markers and cytokine expression via TLR4-related NF-κB pathway. The study indicates that AECCD is a potential immunomodulator.


Assuntos
Adjuvantes Imunológicos/farmacologia , Cistanche/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/isolamento & purificação , Animais , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Relação Dose-Resposta a Droga , Feminino , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ovalbumina , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Polissacarídeos/isolamento & purificação
19.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916909

RESUMO

Oxyresveratrol, a stilbene extracted from the plant Artocarpus lakoocha Roxb., has been reported to provide a considerable anti-inflammatory activity. Since the mechanisms of this therapeutic action have been poorly clarified, we investigated whether oxyresveratrol affects the release of the pro-inflammatory cytokines IL-12, IL-6, and TNF-α by human dendritic cells (DCs). We found that oxyresveratrol did not elicit per se the release of these cytokines, but inhibited their secretion induced upon DC stimulation with R848 (Resiquimod), a well-known immune cell activator engaging receptors recognizing RNA viruses. We then investigated whether the inclusion of oxyresveratrol into nanoparticles promoting its ingestion by DCs could favor its effects on cytokine release. For this purpose we synthesized and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on DCs. We found that bare PLGA nanoparticles did not affect cytokine secretion by resting DCs, but increased IL-12, IL-6, and TNF-α secretion by R848-stimulated DCs, an event known as "priming effect". We then loaded PLGA nanoparticles with oxyresveratrol and we observed that oxyresveratrol-bearing particles did not stimulate the cytokine release by resting DCs and inhibited the PLGA-dependent enhancement of IL-12, IL-6, and TNF-α secretion by R848-stimulated DCs. The results herein reported indicate that oxyresveratrol suppresses the cytokine production by activated DCs, thus representing a good anti-inflammatory and immune-suppressive agent. Moreover, its inclusion into PLGA nanoparticles mitigates the pro-inflammatory effects due to cooperation between nanoparticles and R848 in cytokine release. Therefore, oxyresveratrol can be able to contrast the synergistic effects of nanoparticles with microorganisms that could be present in the patient tissues, therefore overcoming a condition unfavorable to the use of some nanoparticles in biological systems.


Assuntos
Anti-Inflamatórios/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Imidazóis/efeitos adversos , Mediadores da Inflamação/metabolismo , Extratos Vegetais/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Estilbenos/administração & dosagem , Anti-Inflamatórios/química , Citocinas/metabolismo , Células Dendríticas/imunologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Humanos , Nanopartículas/química , Extratos Vegetais/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estilbenos/química
20.
Med Sci Monit ; 27: e929004, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33684094

RESUMO

BACKGROUND Selenium and peroxynitrite are known to support the growth and activity of immune cells, including T cells, B cells and macrophages. However, the role of these factors in the immune function of human immature dendritic cells (imDCs) is not clear. MATERIAL AND METHODS Monocytes from a mixture of blood samples were isolated using Ficoll density gradient centrifugation and purified with immunomagnetic beads before being induced into imDCs. Cells then either received no treatment (control group), or treatment with sodium selenite (Na2SeO3, Se), 3-morpholinosydnonimine (SIN1, which decomposes into peroxynitrite), or Se+SIN1. Cell viability, migration, and antiphagocytic abilities, oxidative stress, and protein expression of extracellular signal-regulated kinases (ERK) and MMP2 were assessed using a CCK8 assay, cell counter and flow cytometry, microplate spectrophotometer, and Western blot analysis, respectively. RESULTS Viability of imDCs was unaffected by 0.1 µmol/L of Na2SeO3, although 1 mmol/L of SIN1 decreased it significantly (P<0.05). Chemotactic migration and antiphagocytic abilities were inhibited and enhanced, respectively, by treatment with Na2SeO3 and SIN1 (P<0.05). Activities of superoxide dismutase and glutathione peroxidase were increased by Na2SeO3 and Se+SIN1 (P<0.001). Glutathione content decreased with exposure to Na2SeO3 and SIN1 (P<0.05), but increased after treatment with Se+SIN1 (P<0.05). Levels of reactive oxygen species only increased with SIN1 treatment (P<0.05). Treatment with Na2SeO3, SIN1 and Se+SIN1 increased ERK phosphorylation and decreased MMP2 protein expression (P<0.05). CONCLUSIONS Selenium and peroxynitrite can influence immune function in imDCs by regulating levels of reactive oxygen species or glutathione to activate ERK and promote antigen phagocytosis, as well as by decreasing MMP2 expression to inhibit chemotactic migration.


Assuntos
Células Dendríticas/efeitos dos fármacos , Ácido Peroxinitroso/farmacologia , Selênio/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/imunologia , Fagocitose/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Selênio/imunologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA