Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445085

RESUMO

Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13-15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/-) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/- retinas. Immunohistochemistry revealed that aged Opa1+/- RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/- RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.


Assuntos
Atrofia Óptica Autossômica Dominante/terapia , Fototerapia , Proteína Desglicase DJ-1/análise , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/efeitos da radiação , Animais , Modelos Animais de Doenças , Luz , Camundongos , Neuroproteção/efeitos da radiação , Atrofia Óptica Autossômica Dominante/patologia , Degeneração Retiniana , Células Ganglionares da Retina/citologia , Regulação para Cima/efeitos da radiação
2.
Mol Vis ; 26: 691-704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088173

RESUMO

Purpose: The present study aimed to determine whether the administration of Acer palmatum thumb. leaf extract (KIOM-2015E) protects against the degeneration of rat retinal ganglion cells after ischemia/reperfusion (I/R) induced by midbrain cerebral artery occlusion (MCAO). Methods: Sprague-Dawley rats were subjected to 90 min of MCAO, which produces transient ischemia in both the retina and brain due to the use of an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. This was followed by reperfusion under anesthesia with isoflurane. The day after surgery, the eyes were treated three times (eye drop) or one time (oral administration) daily with KIOM-2015E for five days. Retinal histology was assessed in flat mounts and vertical sections to determine the effect of KIOM-2015E on I/R injury. Results: A significant loss of brain-specific homeobox/POU domain protein 3A (Brn3a) and neuron-specific class III beta-tubulin (Tuj-1) fluorescence and a marked increase in glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) expression were observed after five days in the PBS-treated MCAO group compared to the sham-operated control group. However, KIOM-2015E treatment reduced (1) MCAO-induced upregulation of GFAP and GS, (2) retinal ganglion cell loss, (3) nerve fiber degeneration, and (4) the number of TUNEL-positive cells. KIOM-2015E application also increased staining for parvalbumin (a marker of horizontal cell associated calcium-binding protein and amacrine cells) and recoverin (a marker of photoreceptor expression) in rats subjected to MCAO-induced retinal damage. Conclusions: Our findings indicated that KIOM-2015E treatment exerted protective effects against retinal damage following MCAO injury and that this extract may aid in the development of novel therapeutic strategies for retinal diseases, such as glaucoma and age-related macular disease.


Assuntos
Acer/metabolismo , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/metabolismo , Degeneração Retiniana/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Acer/química , Animais , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Masculino , Fibras Nervosas/patologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/mortalidade , Degeneração Retiniana/complicações , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/patologia , Fator de Transcrição Brn-3B/metabolismo , Tubulina (Proteína)/metabolismo , Regulação para Cima
3.
Annu Rev Vis Sci ; 6: 261-285, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32936733

RESUMO

Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.


Assuntos
Corpos Geniculados/citologia , Células Ganglionares da Retina/fisiologia , Transmissão Sináptica , Tálamo/fisiologia , Animais , Axônios/fisiologia , Corpos Geniculados/fisiologia , Humanos , Camundongos , Células Ganglionares da Retina/citologia , Tálamo/citologia , Vias Visuais/fisiologia
4.
Sci Rep ; 10(1): 11828, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678240

RESUMO

Glaucoma is a group of progressive optic neuropathies that share common biological and clinical characteristics including irreversible changes to the optic nerve and visual field loss caused by the death of retinal ganglion cells (RGCs). The loss of RGCs manifests as characteristic cupping or optic nerve degeneration, resulting in visual field loss in patients with Glaucoma. Published studies on in vitro RGC differentiation from stem cells utilized classical RGC signaling pathways mimicking retinal development in vivo. Although many strategies allowed for the generation of RGCs, increased variability between experiments and lower yield hampered the cross comparison between individual lines and between experiments. To address this critical need, we developed a reproducible chemically defined in vitro methodology for generating retinal progenitor cell (RPC) populations from iPSCs, that are efficiently directed towards RGC lineage. Using this method, we reproducibly differentiated iPSCs into RGCs with greater than 80% purity, without any genetic modifications. We used small molecules and peptide modulators to inhibit BMP, TGF-ß (SMAD), and canonical Wnt pathways that reduced variability between iPSC lines and yielded functional and mature iPSC-RGCs. Using CD90.2 antibody and Magnetic Activated Cell Sorter (MACS) technique, we successfully purified Thy-1 positive RGCs with nearly 95% purity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Proteínas Smad/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Neurogênese , Retina/citologia , Transdução de Sinais
5.
Methods Mol Biol ; 2143: 63-82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524473

RESUMO

A network of intersecting molecular pathways interacts to initiate and execute axon destruction. Maximum protection against axon degeneration likely requires more than manipulation of a single target. Here, we describe the process of designing a high-throughput arrayed screening assay for the identification of key factors responsible for axon destruction and/or protection. First, we go over some existing screens in the literature, then discuss the planning, tracking, analysis, and statistics around such a screening experiment. Prioritization of perturbations may allow laboratories to cost-effectively explore the process of screening. We also present the pairing of a combinatorial drug screen with a machine learning algorithm, predicting how to best modulate neurodegenerative and neuroprotective components.


Assuntos
Axônios/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Degeneração Neural/fisiopatologia , Animais , Axotomia , Sistemas CRISPR-Cas , Técnicas de Química Combinatória , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Tentilhões/embriologia , Ensaios de Triagem em Larga Escala/instrumentação , Processamento de Imagem Assistida por Computador , Fenótipo , Controle de Qualidade , Interferência de RNA , Células Ganglionares da Retina/citologia , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
6.
Life Sci ; 243: 117303, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31953158

RESUMO

Glaucoma, a neurodegenerative disorder is characterized by damage of ganglion cells of retina and also its axons. The manner of progression of disease and retinal ganglion cells death in glaucoma still remains unknown and hence many mechanisms are put forward to understand the disease. Clinical developments have suggested that in every single patient decreasing intraocular pressure (IOP) is not the solution to prevent glaucoma which suggests on the fact that there are other risk factors affecting the disease. The demand for substitute unconventional treatments gives rise to the need to understand the biologically based tactics (bio-tactics) for stopping the progression of disease. Pragmatic findings of past years have supported novelty of inventive molecules with hallmark of neuroprotection in gene therapy. On the other hand, transformation of the latest drugs to clinic has not been of much fruitful substantially for the reason that it lacked dependability while measuring in vivo retinal injury. This as a consequence thwarted the high quality healing possibility of neuroprotectants whether administered single-handedly or given complimentary with other IOP reducing agents. Advancement in research is crucial to grasp the underlying mechanisms concerned with glaucoma and apply it in clinical field to develop neuroprotective agents. In this context, the present review is to bring forth an update on up to date progress in the domain of neuroprotection of retinal ganglion cells for treating glaucoma.


Assuntos
Glaucoma/terapia , Neuroproteção , Células Ganglionares da Retina/citologia , Animais , Terapia Genética , Glaucoma/fisiopatologia , Ácido Glutâmico/fisiologia , Humanos , Pressão Intraocular , Fármacos Neuroprotetores/uso terapêutico
7.
Oxid Med Cell Longev ; 2019: 8407206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379990

RESUMO

PURPOSE: Oxidative stress induced by reduced blood circulation is a critical pathological damage to retinal ganglion cells (RGCs) in glaucoma. We previously showed that green tea extract (GTE) and its catechin constituents alleviate sodium iodate-induced retinal degeneration in rats. Here, we investigated the therapeutic effect of GTE on ischemia-induced RGC degeneration in rats. METHODS: RGC degeneration was induced by ischemic reperfusion in adult Fischer F344 rats. Green tea extract (Theaphenon E) was intragastrically administered 4 times within 48 hours after ischemia. RGC survival, pupillary light reflex, expressions of cell apoptosis, oxidative stress, and inflammation-related proteins were studied. RESULTS: Ischemic reperfusion significantly induced apoptotic RGCs, RGC loss, and larger constricted pupil area compared to the untreated normal rats. Expressions of activated caspase-3 and caspase-8, Sod2, and inflammation-related proteins as well as p38 phosphorylation were significantly upregulated in the ischemia-injured rats. Compared to the saline-fed ischemic rats, significantly higher number of surviving RGCs, less apoptotic RGCs, and smaller constricted pupil area were observed in the GTE-fed ischemic rats. GTE also reduced the increased protein expressions caused by ischemic injury but enhanced the Jak phosphorylation in the retina. Notably, green tea extract did not affect the survival of RGCs in the uninjured normal rats. CONCLUSIONS: In summary, GTE offers neuroprotection to RGCs under ischemic challenge, suggesting a potential therapeutic strategy for glaucoma and optic neuropathies.


Assuntos
Extratos Vegetais/química , Substâncias Protetoras/uso terapêutico , Degeneração Retiniana/prevenção & controle , Chá/química , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Endogâmicos F344 , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Chá/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Med Food ; 22(8): 771-778, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31268403

RESUMO

Hypoxia-induced oxidative stress and disturbed microvascular circulation are both associated with pathogenesis of glaucoma. Ginkgo biloba extract (GBE) has been reported to have positive pharmacological effects on oxidative stress and impaired vascular circulation. This study aimed to investigate the neuroprotective effect of GBE against hypoxic injury to retinal ganglion cells (RGCs) both in vitro and in vivo. The rat RGC line was used, and oxidative stress was induced by hydrogen peroxide (H2O2) in vitro. EGb 761, a standardized GBE, or vehicle was applied to RGCs. Hypoxic optic nerve injury in vivo was induced by clamping the optic nerve of rats with a "microserrefine clip" with an applicator, which was applied without crushing the optic nerve. This method is different from "optic nerve crush model" and does not involve elevation of intraocular pressure, and may serve as a possible normal tension glaucoma animal model. EGb 761 at various concentrations or vehicle was administered intraperitoneally. RGC density was measured to estimate the survival both in vitro and in vivo. The survival of RGCs was significantly (P < .001) higher upon treatment with 1 or 5 µg/mL of EGb 761 compared with vehicle after oxidative stress in vitro. RGC density upon treatment with EGb 761 of 100 mg/kg (1465.6 ± 175 cells/mm2) or 250 mg/kg (1307.6 ± 213 cells/mm2) was significantly higher (P < .01, P < .05, respectively) than that obtained with vehicle (876.3 ± 136 cells/mm2) in vivo. Our results suggest that GBE has neuroprotective effect on RGCs against hypoxic injury both in vitro and in vivo.


Assuntos
Hipóxia/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Traumatismos do Nervo Óptico/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ginkgo biloba , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Pressão Intraocular/efeitos dos fármacos , Masculino , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia
9.
Tissue Eng Part B Rev ; 25(5): 412-428, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31088331

RESUMO

Glaucoma is a major eye disease characterized by a progressive loss of retinal ganglion cells (RGCs). Biomechanical forces as a result of hydrostatic pressure and strain play a role in this disease. Decreasing intraocular pressure is the only available therapy so far, but is not always effective and does not prevent blindness in many cases. There is a need for drugs that protect RGCs from dying in glaucoma; to develop these, we need valid glaucoma and drug screening models. Since in vivo models are unsuitable for screening purposes, we focus on in vitro and ex vivo models in this review. Many groups have studied pressure and strain model systems to mimic glaucoma, to investigate the molecular and cellular events leading to mechanically induced RGC death. Therefore, the focus of this review is on the different mechanical model systems used to mimic the biomechanical forces in glaucoma. Most models use either cell or tissue strain, or fluid- or gas-controlled hydrostatic pressure application and apply it to the relevant cell types such as trabecular meshwork cells, optic nerve head astrocytes, and RGCs, but also to entire eyes. New model systems are warranted to study concepts and test experimental compounds for the development of new drugs to protect vision in glaucoma patients. Impact Statement The outcome of currently developed models to investigate mechanically induced retinal ganglion cell death by applying different mechanical strains varies widely. This suggests that a robust glaucoma model has not been developed yet. However, a comprehensive overview of current developments is not available. In this review, we have therefore assessed what has been done before and summarized the available knowledge in the field, which can be used to develop improved models for glaucoma research.


Assuntos
Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Glaucoma/patologia , Humanos , Pressão Intraocular , Células Ganglionares da Retina/citologia
10.
Cell Transplant ; 28(5): 607-618, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30838886

RESUMO

The rat partial optic nerve transection (PONT) model has been used for studying secondary degeneration of retinal ganglion cells (RGCs) in recent years. In this study, we carried out PONT of the temporal side of rat optic nerves, whereas PONT was carried out of the superior side in the previous publication. We found that this surgery is better and easier than the previous method and can produce a repeatable and reliable model. We detected significant changes in the polarization of microglia/macrophages and the level of autophagy in optic nerves after PONT. We also used this model to detect the effects of the polysaccharides extracted from Lycium barbarum (LBP) on the survival of RGCs and the changes in the polarization of microglia/macrophages and the level of autophagy after PONT. We find that LBP can delay secondary degeneration of RGCs after temporal injury of optic nerves, promote the M2 polarization of microglia/macrophages, and down-regulate the level of autophagy after PONT. In conclusion, we find that the polarization of microglia/macrophages and the autophagy level change after PONT; LBP treatment delays secondary degeneration of RGCs; and the polarization of microglia/macrophages and the level of autophagy are also altered after LBP treatment.


Assuntos
Autofagia/efeitos dos fármacos , Lycium , Traumatismos do Nervo Óptico/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Lycium/química , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Microglia/efeitos dos fármacos , Microglia/patologia , Traumatismos do Nervo Óptico/patologia , Extratos Vegetais/química , Polissacarídeos/química , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia
11.
J Neurosci ; 38(19): 4531-4542, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29661964

RESUMO

Receptive field properties of individual visual neurons are dictated by the precise patterns of synaptic connections they receive, including the arrangement of inputs in visual space and features such as polarity (On vs Off). The inputs from the retina to the lateral geniculate nucleus (LGN) in the mouse undergo significant refinement during development. However, it is unknown how this refinement corresponds to the establishment of functional visual response properties. Here we conducted in vivo and in vitro recordings in the mouse LGN, beginning just after natural eye opening, to determine how receptive fields develop as excitatory and feedforward inhibitory retinal afferents refine. Experiments used both male and female subjects. For in vivo assessment of receptive fields, we performed multisite extracellular recordings in awake mice. Spatial receptive fields at eye-opening were >2 times larger than in adulthood, and decreased in size over the subsequent week. This topographic refinement was accompanied by other spatial changes, such as a decrease in spot size preference and an increase in surround suppression. Notably, the degree of specificity in terms of On/Off and sustained/transient responses appeared to be established already at eye opening and did not change. We performed in vitro recordings of the synaptic responses evoked by optic tract stimulation across the same time period. These recordings revealed a pairing of decreased excitatory and increased feedforward inhibitory convergence, providing a potential mechanism to explain the spatial receptive field refinement.SIGNIFICANCE STATEMENT The development of precise patterns of retinogeniculate connectivity has been a powerful model system for understanding the mechanisms underlying the activity-dependent refinement of sensory systems. Here we link the maturation of spatial receptive field properties in the lateral geniculate nucleus (LGN) to the remodeling of retinal and inhibitory feedforward convergence onto LGN neurons. These findings should thus provide a starting point for testing the cell type-specific plasticity mechanisms that lead to refinement of different excitatory and inhibitory inputs, and for determining the effect of these mechanisms on the establishment of mature receptive fields in the LGN.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/fisiologia , Inibição Neural/fisiologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Envelhecimento/fisiologia , Animais , Espaço Extracelular/fisiologia , Feminino , Masculino , Camundongos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Aferentes/fisiologia , Trato Óptico/citologia , Trato Óptico/fisiologia , Estimulação Luminosa , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia
12.
J Agric Food Chem ; 66(3): 637-644, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29278909

RESUMO

The aim of the study was to test the neuroprotective effect of hydroxytyrosol (HT) on experimental diabetic retinopathy. Animals were divided in four groups: (1) control nondiabetic rats, (2) streptozotocin-diabetic rats (DR), (3) DR treated with 1 mg/kg/day p.o. HT, and (4) DR treated with 5 mg/kg/day p.o. HT. Treatment with HT was started 7 days before inducing diabetes and was maintained for 2 months. In the DR group, total area occupied by extracellular matrix was increased, area occupied by retinal cells was decreased; both returned to near-control values in DR rats treated with HT. The number of retinal ganglion cells in DR was significantly lower (44%) than in the control group, and this decrease was smaller after HT treatment (34% and 9.1%). Linear regression analysis showed that prostacyclin, platelet aggregation, peroxynitrites, and the dose of 5 mg/kg/day HT significantly influenced retinal ganglion cell count. In conclusion, HT exerted a neuroprotective effect on diabetic retinopathy, and this effect correlated significantly with changes in some cardiovascular biomarkers.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/complicações , Retinopatia Diabética/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/administração & dosagem , Animais , Biomarcadores/sangue , Sistema Cardiovascular/metabolismo , Retinopatia Diabética/sangue , Retinopatia Diabética/etiologia , Retinopatia Diabética/fisiopatologia , Humanos , Olea/química , Álcool Feniletílico/administração & dosagem , Álcool Feniletílico/química , Extratos Vegetais/química , Agregação Plaquetária/efeitos dos fármacos , Ratos , Ratos Wistar , Retina/efeitos dos fármacos , Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos
13.
Sci Rep ; 7(1): 16757, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196712

RESUMO

We recently established a novel method for generating functional human retinal ganglion cells (RGCs) from human induced pluripotent cells (hiPSCs). Here, we confirmed that RGCs can also be generated from human embryonic stem cells (hESCs). We investigated the usefulness of human RGCs with long axons for assessing the effects of chemical agents, such as the neurotrophic factor, nerve growth factor (NGF), and the chemorepellent factors, semaphorin 3 A (SEMA3A) and SLIT1. The effects of direct and local administration of each agent on axonal projection were evaluated by immunohistochemistry, real-time polymerase chain reaction (PCR), and real-time imaging, in which the filopodia of the growth cone served as an excellent marker. A locally sustained agent system showed that the axons elongate towards NGF, but were repelled by SEMA3A and SLIT1. Focally transplanted beads that released SLIT1 bent the pathfinding of axons, imitating normal retinal development. Our innovative system for assessing the effects of chemical compounds using human RGCs may facilitate development of novel drugs for the examination, prophylaxis, and treatment of diseases. It may also be useful for observing the physiology of the optic nerve in vitro, which might lead to significant progress in the science of human RGCs.


Assuntos
Axônios/efeitos dos fármacos , Axônios/metabolismo , Fatores de Crescimento Neural/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Diferenciação Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias Humanas , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Ganglionares da Retina/citologia , Células-Tronco/citologia , Imagem com Lapso de Tempo
14.
Sci Rep ; 7(1): 6885, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761134

RESUMO

We found that hesperidin, a plant-derived bioflavonoid, may be a candidate agent for neuroprotective treatment in the retina, after screening 41 materials for anti-oxidative properties in a primary retinal cell culture under oxidative stress. We found that the intravitreal injection of hesperidin in mice prevented reductions in markers of the retinal ganglion cells (RGCs) and RGC death after N-methyl-D-aspartate (NMDA)-induced excitotoxicity. Hesperidin treatment also reduced calpain activation, reactive oxygen species generation and TNF-α gene expression. Finally, hesperidin treatment improved electrophysiological function, measured with visual evoked potential, and visual function, measured with optomotry. Thus, we found that hesperidin suppressed a number of cytotoxic factors associated with NMDA-induced cell death signaling, such as oxidative stress, over-activation of calpain, and inflammation, thereby protecting the RGCs in mice. Therefore, hesperidin may have potential as a therapeutic supplement for protecting the retina against the damage associated with excitotoxic injury, such as occurs in glaucoma and diabetic retinopathy.


Assuntos
Calpaína/metabolismo , Hesperidina/administração & dosagem , N-Metilaspartato/efeitos adversos , Fármacos Neuroprotetores/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Células Ganglionares da Retina/citologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Potenciais Evocados Visuais/efeitos dos fármacos , Hesperidina/farmacologia , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética
15.
Sci Rep ; 7: 42682, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209965

RESUMO

Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells.


Assuntos
Estimulação Elétrica/métodos , Potenciais Evocados Visuais/fisiologia , Células Ganglionares da Retina/fisiologia , Córtex Visual/fisiologia , Próteses Visuais , Animais , Gatos , Terapia por Estimulação Elétrica , Eletrodos Implantados , Feminino , Humanos , Masculino , Camundongos , Implantação de Prótese/métodos , Células Ganglionares da Retina/citologia , Técnicas Estereotáxicas , Visão Ocular/fisiologia , Córtex Visual/citologia
16.
Oncotarget ; 7(45): 72503-72517, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27756890

RESUMO

Chronic neuro-inflammation is involved in the death of retinal ganglion cells (RGCs) in glaucoma. The aim of this study is to determine whether wogonin can suppress inflammatory responses and rescue RGCs death after optic nerve crush (ONC), an ideal animal model of glaucoma. Wogonin was administered intraperitoneally 10 min after establishment of ONC model. In this study, wogonin treatment reduced RGCs loss and inhibited RGCs apoptosis demonstrated by the increased Brn3a labeling RGCs at day 14 and the decreased cleaved caspase-3 expression at day 7 after ONC, respectively. In ONC model, number of GFAP-positive glial cells and iba1-positive microglial cells were increased, combined of the elevated level of pro-inflammatory cytokines released in retina at day 7. However, most of these responses were inhibited after wogonin treatment. The level of TLR4 expression, NF-κB-P65 nucleus location and NF-κB-P65 phosphorylation were increased in retina at day 1 after ONC, which was significantly reduced after wogonin treatment. These results demonstrated that wogonin protected RGCs survival and suppressed neuro-inflammation in retina after ONC by inhibiting TLR4-NF-κB pathways. We conclude that wogonin could be a possible strategy for the treatment of glaucoma.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Inflamação Neurogênica/prevenção & controle , Nervo Óptico/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , NF-kappa B/metabolismo , Compressão Nervosa , Inflamação Neurogênica/metabolismo , Inflamação Neurogênica/patologia , Nervo Óptico/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Receptor 4 Toll-Like/metabolismo
17.
Biomaterials ; 101: 165-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294536

RESUMO

Magnetically softened iron oxide (MSIO) nanofluid, PEGylated (Mn0.5Zn0.5)Fe2O4, was successfully developed for local induction of heat shock proteins (HSPs) 72 in retinal ganglion cells (RGCs) for ocular neuroprotection. The MSIO nanofluid showed significantly enhanced alternating current (AC) magnetic heat induction characteristics including exceptionally high SLP (Specific Loss Power, > 2000 W/g). This phenomenon was resulted from the dramatically improved AC magnetic softness of MSIO caused by the magnetically tailored Mn(2+) and Zn(2+) distributions in Fe3O4. In addition, the MSIO nanofluid with ultra-thin surface coating layer thickness and high monodispersity allowed for a higher cellular uptake up to a 52.5% with RGCs and enhancing "relaxation power" for higher AC heating capability. The RGCs cultured with MSIO nanofluid successfully induced HSPs 72 by magnetic nanofluid hyperthermia (MNFH). Moreover, it was interestingly observed that systematic control of "AC magnetically-induced heating up rate" reaching to a constant heating temperature of HSPs 72 induction allowed to achieve maximized induction efficiency at the slowest AC heating up rate during MNFH. In addition to in-vitro experimental verification, the studies of MSIO infusion behavior using animal models and a newly designed magnetic coil system demonstrated that the MSIO has promising biotechnical feasibility for thermally-induced HSPs agents in future glaucoma clinics.


Assuntos
Glaucoma/terapia , Proteínas de Choque Térmico/metabolismo , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neuroproteção , Células Ganglionares da Retina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Glaucoma/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia
18.
Exp Eye Res ; 148: 90-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27264241

RESUMO

Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Análise de Variância , Animais , Axônios/metabolismo , Contagem de Células , Sobrevivência Celular , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Compressão Nervosa , Regeneração Nervosa/fisiologia , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/citologia
19.
J Agric Food Chem ; 64(7): 1528-39, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26832452

RESUMO

Increased apoptosis of retinal ganglion cells (RGCs) contributes to the gradual loss of retinal neurons at the early phase of diabetic retinopathy (DR). There is an urgent need to search for drugs with neuroprotective effects against apoptosis of RGCs for the early treatment of DR. This study aimed to investigate the neuroprotective effects of saponins extracted from Panax notoginseng, a traditional Chinese medicine, on apoptosis of RGCs stimulated by palmitate, a metabolic factor for the development of diabetes and its complications, and to explore the potential molecular mechanism. We showed that crude saponins of P. notoginseng (CSPN) inhibited the increased apoptosis and loss of postsynaptic protein PSD-95 by palmitate in staurosporine-differentiated RGC-5 cells. Moreover, CSPN suppressed palmitate-induced reactive oxygen species generation and endoplasmic reticulum stress-associated eIF2α/ATF4/CHOP and caspase 12 pathways. Thus, our findings address the potential therapeutic significance of CSPN for the early stage of DR.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Palmitatos/efeitos adversos , Panax notoginseng/química , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Saponinas/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Associadas SAP90-PSD95 , Estaurosporina/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-26635537

RESUMO

A fundamental question in vision neuroscience is how parallel processing of Retinal Ganglion Cell (RGC) signals is integrated at the level of the visual thalamus. It is well-known that parallel ON-OFF pathways generate output signals from the retina that are conveyed to the dorsal lateral geniculate nucleus (dLGN). However, it is unclear how these signals distribute onto thalamic cells and how these two pathways interact. Here, by electrophysiological recordings and c-Fos expression analysis, we characterized the effects of pharmacological manipulations of the retinal circuit aimed at inducing either a selective activation of a single pathway, OFF RGCs [intravitreal L-(+)-2-Amino-4-phosphonobutyric, L-AP4] or an unregulated activity of all classes of RGCs (intravitreal 4-Aminopyridine, 4-AP). In in vivo experiments, the analysis of c-Fos expression in the dLGN showed that these two manipulations recruited active cells from the same area, the lateral edge of the dLGN. Despite this similarity, the unregulated co-activation of both ON and OFF pathways by 4-AP yielded a much stronger recruitment of GABAergic interneurons in the dLGN when compared to L-AP4 pure OFF activation. The increased activation of an inhibitory thalamic network by a high level of unregulated discharge of ON and OFF RGCs might suggest that cross-inhibitory pathways between opposing visual channels are presumably replicated at multiple levels in the visual pathway, thus increasing the filtering ability for non-informative or noisy visual signals.


Assuntos
Neurônios GABAérgicos/fisiologia , Células Ganglionares da Retina/fisiologia , Tálamo/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , 4-Aminopiridina/farmacologia , Potenciais de Ação , Aminobutiratos/farmacologia , Animais , Potenciais Evocados Visuais , Agonistas de Aminoácidos Excitatórios/farmacologia , Interneurônios/fisiologia , Masculino , Modelos Neurológicos , Método de Monte Carlo , Estimulação Luminosa , Bloqueadores dos Canais de Potássio/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Processamento de Sinais Assistido por Computador , Técnicas de Cultura de Tecidos , Vias Visuais/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA