Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Res Int ; 2023: 3105251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027044

RESUMO

Glaucoma causes the degeneration of the retinal ganglion cells (RGCs) and their axons, inducing a tissue reshaping that affects both the retina and the optic nerve head. Glaucoma care especially focuses on reducing intraocular pressure, a significant risk factor for progressive damage to the optic nerve. The use of natural treatments, such as herbs, vitamins, and minerals, is becoming increasingly popular today. While plants are a rich source of novel biologically active compounds, only a small percentage of them have been phytochemically examined and evaluated for their medicinal potential. It is necessary for eye care professionals to inform their glaucoma patients about the therapy, protection, and efficacy of commonly used herbal medicines, considering the widespread use of herbal medicines. The purpose of this review is to examine evidence related to the most widely used herbal medicines for the management and treatment of glaucoma, to better understand the potential benefits of these natural compounds as supplementary therapy.


Assuntos
Glaucoma , Animais , Humanos , Glaucoma/tratamento farmacológico , Retina , Células Ganglionares da Retina/fisiologia , Pressão Intraocular , Axônios , Modelos Animais de Doenças , Extratos Vegetais/uso terapêutico
2.
Altern Ther Health Med ; 29(8): 297-301, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632950

RESUMO

Background: The optic nerve fiber layer, composed of ganglion cell axons within the ganglion cell layer, undergoes thickness changes due to diabetic retinopathy. However, the relationship between intraocular pressure (IOP) and optic fiber layer thickness remains unclear. Objective: To investigate the correlation between 24-hour intraocular pressure and optic nerve fiber layer thickness in patients with early diabetic retinopathy. Methods: This retrospective study collected 353 patients with early diabetic retinopathy from January 2019 to December 2021. They were categorized into the retinopathy group (n = 153) and the control group (n = 200). 24-hour IOP and optic fiber layer thickness were assessed, and the correlation between them was analyzed. Results: The observation group exhibited significantly higher 24-hour IOP compared to the control group (16.64 ± 2.58 vs. 15.63 ± 2.52 mmHg, P < .001). Notably, the thickness of upper, lower, nasal, temporal, and average optic nerve fiber layers in the observation group decreased significantly (P < .001). Pearson linear correlation revealed significant negative associations between 24-hour IOP and upper, nasal, temporal, and mean optic nerve fiber layer thickness (R2 = -0.277, -0.399, -0.344, and -0.489, P < .05). The upper, lower, nasal, temporal, and mean optic fiber thickness demonstrated diagnostic value for non-early diabetic retinopathy in type 2 diabetes patients (P < .05), with mean optic fiber thickness displaying the highest diagnostic potential (area under the curve: 0.843, 95% Confidence Interval: 0.803-0.884, P < .001). Conclusions: Thinning of the optic nerve fiber layer in early diabetic retinopathy patients holds predictive value for the condition and exhibits a negative correlation with 24-hour intraocular pressure.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Disco Óptico , Humanos , Retinopatia Diabética/diagnóstico , Disco Óptico/diagnóstico por imagem , Pressão Intraocular , Células Ganglionares da Retina/fisiologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Fibras Nervosas
3.
Elife ; 122023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211984

RESUMO

The developing visual thalamus and cortex extract positional information encoded in the correlated activity of retinal ganglion cells by synaptic plasticity, allowing for the refinement of connectivity. Here, we use a biophysical model of the visual thalamus during the initial visual circuit refinement period to explore the role of synaptic and circuit properties in the regulation of such neural correlations. We find that the NMDA receptor dominance, combined with weak recurrent excitation and inhibition characteristic of this age, prevents the emergence of spike-correlations between thalamocortical neurons on the millisecond timescale. Such precise correlations, which would emerge due to the broad, unrefined connections from the retina to the thalamus, reduce the spatial information contained by thalamic spikes, and therefore we term them 'parasitic' correlations. Our results suggest that developing synapses and circuits evolved mechanisms to compensate for such detrimental parasitic correlations arising from the unrefined and immature circuit.


Assuntos
Retina , Tálamo , Animais , Tálamo/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Mamíferos
4.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154575

RESUMO

The superior colliculus (SC), an evolutionarily conserved midbrain structure in all vertebrates, is the most sophisticated visual center before the emergence of the cerebral cortex. It receives direct inputs from ~30 types of retinal ganglion cells (RGCs), with each encoding a specific visual feature. It remains elusive whether the SC simply inherits retinal features or if additional and potentially de novo processing occurs in the SC. To reveal the neural coding of visual information in the SC, we provide here a detailed protocol to optically record visual responses with two complementary methods in awake mice. One method uses two-photon microscopy to image calcium activity at single-cell resolution without ablating the overlaying cortex, while the other uses wide-field microscopy to image the whole SC of a mutant mouse whose cortex is largely undeveloped. This protocol details these two methods, including animal preparation, viral injection, headplate implantation, plug implantation, data acquisition, and data analysis. The representative results show that the two-photon calcium imaging reveals visually evoked neuronal responses at single-cell resolution, and the wide-field calcium imaging reveals neural activity across the entire SC. By combining these two methods, one can reveal the neural coding in the SC at different scales, and such combination can also be applied to other brain regions.


Assuntos
Cálcio , Colículos Superiores , Camundongos , Animais , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/fisiologia , Células Ganglionares da Retina/fisiologia , Retina , Microscopia
5.
J Neurophysiol ; 129(1): 184-190, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515419

RESUMO

In higher mammals, the thalamic afferents to primary visual cortex cluster according to their responses to increases (ON) or decreases (OFF) in luminance. This feature of thalamocortical wiring is thought to create columnar, ON/OFF domains in V1. We have recently shown that mice also have ON/OFF cortical domains, but the organization of their thalamic afferents remains unknown. Here we measured the visual responses of thalamocortical boutons with two-photon imaging and found that they also cluster in space according to ON/OFF responses. Moreover, fluctuations in the relative density of ON/OFF boutons mirror fluctuations in the relative density of ON/OFF receptive field positions on the visual field. These findings indicate a segregation of ON/OFF signals already present in the thalamic input. We propose that ON/OFF clustering may reflect the spatial distribution of ON/OFF responses in retinal ganglion cell mosaics.NEW & NOTEWORTHY Neurons in primary visual cortex cluster into ON and OFF domains, which have been shown to be linked to the organization of receptive fields and cortical maps. Here we show that in the mouse such clustering is already present in the geniculate input, suggesting that the cortical architecture may be shaped by the representation of ON/OFF signals in the thalamus and the retina.


Assuntos
Córtex Visual Primário , Córtex Visual , Animais , Camundongos , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Tálamo/fisiologia , Células Ganglionares da Retina/fisiologia , Corpos Geniculados/fisiologia , Mamíferos
6.
Neuron ; 111(5): 711-726.e11, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584680

RESUMO

Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.


Assuntos
Corpos Geniculados , Receptor 5-HT1B de Serotonina , Serotonina , Tálamo , Animais , Camundongos , Axônios/fisiologia , Cálcio , Corpos Geniculados/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Células Ganglionares da Retina/fisiologia , Serotonina/metabolismo , Tálamo/fisiologia
7.
J Neurosci ; 42(49): 9158-9179, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36280260

RESUMO

The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.


Assuntos
Ritmo Circadiano , Neurônios GABAérgicos , Luz , Células Ganglionares da Retina , Animais , Feminino , Masculino , Camundongos , Ritmo Circadiano/fisiologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Corpos Geniculados/fisiologia , Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Núcleo Supraquiasmático/metabolismo , Tálamo/metabolismo , Tálamo/fisiologia
8.
J Neurophysiol ; 128(5): 1267-1277, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224192

RESUMO

Brain-derived neurotrophic factor (BDNF) is an important regulator of circuit development, neuronal survival, and plasticity throughout the nervous system. In the visual system, BDNF is produced by retinal ganglion cells (RGCs) and transported along their axons to central targets. Within the dorsolateral geniculate nucleus (dLGN), a key RGC projection target for conscious vision, the BDNF receptor tropomyosin receptor kinase B (TrkB) is present on RGC axon terminals and postsynaptic thalamocortical (TC) relay neuron dendrites. Based on this, the goal of this study was to determine how BDNF modulates the conveyance of signals through the retinogeniculate (RG) pathway of adult mice. Application of BDNF to dLGN brain slices increased TC neuron spiking evoked by optogenetic stimulation of RGC axons. There was a modest contribution to this effect from a BDNF-dependent enhancement of TC neuron intrinsic excitability including increased input resistance and membrane depolarization. BDNF also increased evoked vesicle release from RGC axon terminals, as evidenced by increased amplitude of evoked excitatory postsynaptic currents (EPSCs), which was blocked by inhibition of TrkB or phospholipase C. High-frequency stimulation revealed that BDNF increased synaptic vesicle pool size, release probability, and replenishment rate. There was no effect of BDNF on EPSC amplitude or short-term plasticity of corticothalamic feedback synapses. Thus, BDNF regulates RG synapses by both presynaptic and postsynaptic mechanisms. These findings suggest that BNDF influences the flow of visual information through the retinogeniculate pathway.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and plasticity. In the visual system, BDNF is transported along retinal ganglion cell (RGC) axons to the dorsolateral geniculate nucleus (dLGN), although it is not known how it influences mature dLGN function. Here, BDNF enhanced thalamocortical relay neuron responses to signals arising from RGC axons in the dLGN, pointing toward an important role for BDNF in processing signals en route to the visual cortex.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transmissão Sináptica , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transmissão Sináptica/fisiologia , Corpos Geniculados/fisiologia , Tálamo/fisiologia , Sinapses/fisiologia , Células Ganglionares da Retina/fisiologia
9.
Curr Biol ; 32(14): 3110-3120.e6, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35793680

RESUMO

In the mouse visual system, multiple types of retinal ganglion cells (RGCs) each encode distinct features of the visual space. A clear understanding of how this information is parsed in their downstream target, the dorsal lateral geniculate nucleus (dLGN), remains elusive. Here, we characterized retinogeniculate connectivity in Cart-IRES2-Cre-D and BD-CreER2 mice, which labels subsets of on-off direction-selective ganglion cells (ooDSGCs) tuned to the vertical directions and to only ventral motion, respectively. Our immunohistochemical, electrophysiological, and optogenetic experiments reveal that only a small fraction (<15%) of thalamocortical (TC) neurons in the dLGN receives primary retinal drive from these subtypes of ooDSGCs. The majority of the functionally identifiable ooDSGC inputs in the dLGN are weak and converge together with inputs from other RGC types. Yet our modeling indicates that this mixing is not random: BD-CreER+ ooDSGC inputs converge less frequently with ooDSGCs tuned to the opposite direction than with non-CART-Cre+ RGC types. Taken together, these results indicate that convergence of distinct information lines in dLGN follows specific rules of organization.


Assuntos
Corpos Geniculados , Vias Visuais , Animais , Corpos Geniculados/fisiologia , Camundongos , Retina , Células Ganglionares da Retina/fisiologia , Tálamo , Vias Visuais/fisiologia
10.
Sci Rep ; 11(1): 17573, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475417

RESUMO

Ocular current stimulation (oCS) with weak current intensities (a few mA) has shown positive effects on retinal nerve cells, which indicates that neurodegenerative ocular diseases could be treated with current stimulation of the eye. During oCS, a significant polarity-independent reduction in the characteristic P50 amplitude of a pattern-reversal electroretinogram was found, while no current stimulation effect was found for a full field electroretinogram (ffERG). The ffERG data indicated a trend for a polarity-dependent influence during oCS on the photopic negative response (PhNR) wave, which represents the sum activity of the retinal ganglion cells. Therefore, an ffERG with adjusted parameters for the standardized measurement of the PhNR wave was combined with simultaneous oCS to study the potential effects of direct oCS on cumulative ganglion cell activity. Compared with that measured before oCS, the PhNR amplitude in the cathodal group increased significantly during current stimulation, while in the anodal and sham groups, no effect was visible (α = 0.05, pcathodal = 0.006*). Furthermore, repeated-measures ANOVA revealed a significant difference in PhNR amplitude between the anodal and cathodal groups as well as between the cathodal and sham groups (p* ≤ 0.0167, pcathodal - anodal = 0.002*, pcathodal - sham = 0.011*).


Assuntos
Visão de Cores/fisiologia , Terapia por Estimulação Elétrica/métodos , Células Ganglionares da Retina/fisiologia , Campos Visuais/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
11.
Sci Rep ; 11(1): 5177, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664347

RESUMO

Epiretinal prostheses aim at electrically stimulating the inner most surviving retinal cells-retinal ganglion cells (RGCs)-to restore partial sight to the blind. Recent tests in patients with epiretinal implants have revealed that electrical stimulation of the retina results in the percept of color of the elicited phosphenes, which depends on the frequency of stimulation. This paper presents computational results that are predictive of this finding and further support our understanding of the mechanisms of color encoding in electrical stimulation of retina, which could prove pivotal for the design of advanced retinal prosthetics that elicit both percept and color. This provides, for the first time, a directly applicable "amplitude-frequency" stimulation strategy to "encode color" in future retinal prosthetics through a predictive computational tool to selectively target small bistratified cells, which have been shown to contribute to "blue-yellow" color opponency in the retinal circuitry. The presented results are validated with experimental data reported in the literature and correlated with findings in blind patients with a retinal prosthetic implant collected by our group.


Assuntos
Cegueira/terapia , Neurônios/fisiologia , Retina/fisiopatologia , Células Ganglionares da Retina/fisiologia , Potenciais de Ação/efeitos da radiação , Cegueira/fisiopatologia , Simulação por Computador , Estimulação Elétrica , Terapia por Estimulação Elétrica , Membrana Epirretiniana/patologia , Humanos , Neurônios/patologia , Retina/diagnóstico por imagem , Células Ganglionares da Retina/patologia , Próteses Visuais
12.
Invest Ophthalmol Vis Sci ; 61(13): 37, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252632

RESUMO

Purpose: In RP, photoreceptors degenerate. Retinal prostheses are considered a suitable strategy to restore vision. In animal models of RP, a pathologic rhythmic activity seems to compromise the efficiency of retinal ganglion cell stimulation by an electrical prosthesis. We, therefore, strove to eliminate this pathologic activity. Methods: Electrophysiologic recordings of local field potentials and spike activity of retinal ganglion cells were obtained in vitro from retinae of wild-type and rd10 mice using multielectrode arrays. Retinae were stimulated electrically. Results: The efficiency of electrical stimulation was lower in rd10 retina than in wild-type retina and this was highly correlated with the presence of oscillations in retinal activity. Glycine and GABA, as well as the benzodiazepines diazepam, lorazepam, and flunitrazepam, abolished retinal oscillations and, most important, increased the efficiency of electrical stimulation to values similar to those in wild-type retina. Conclusions: Treatment of patients with these benzodiazepines may offer a way to improve the performance of retinal implants in cases with poor implant proficiency. This study may open the way to a therapy that supports electrical stimulation by prostheses with pharmacologic treatment.


Assuntos
Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Retina/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Retinose Pigmentar/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Benzodiazepinas/farmacologia , Feminino , Glicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Ganglionares da Retina/fisiologia , Ácido gama-Aminobutírico/farmacologia
13.
Annu Rev Vis Sci ; 6: 261-285, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32936733

RESUMO

Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.


Assuntos
Corpos Geniculados/citologia , Células Ganglionares da Retina/fisiologia , Transmissão Sináptica , Tálamo/fisiologia , Animais , Axônios/fisiologia , Corpos Geniculados/fisiologia , Humanos , Camundongos , Células Ganglionares da Retina/citologia , Tálamo/citologia , Vias Visuais/fisiologia
14.
Curr Biol ; 30(20): 3923-3934.e9, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32795442

RESUMO

The brain can flexibly filter out sensory information in a manner that depends on behavioral state. In the visual thalamus and cortex, arousal and locomotion are associated with changes in the magnitude of responses to visual stimuli. Here, we asked whether such modulation of visual responses might already occur at an earlier stage in this visual pathway. We measured neural activity of retinal axons using wide-field and two-photon calcium imaging in awake mouse thalamus across arousal states associated with different pupil sizes. Surprisingly, visual responses to drifting gratings in retinal axonal boutons were robustly modulated by arousal level in a manner that varied across stimulus dimensions and across functionally distinct subsets of boutons. At low and intermediate spatial frequencies, the majority of boutons were suppressed by arousal. In contrast, at high spatial frequencies, boutons tuned to regions of visual space ahead of the mouse showed enhancement of responses. Arousal-related modulation also varied with a bouton's preference for luminance changes and direction or axis of motion, with greater response suppression in boutons tuned to luminance decrements versus increments, and in boutons preferring motion along directions or axes of optic flow. Together, our results suggest that differential modulation of distinct visual information channels by arousal state occurs at very early stages of visual processing, before the information is transmitted to neurons in visual thalamus. Such early filtering may provide an efficient means of optimizing central visual processing and perception across behavioral contexts.


Assuntos
Nível de Alerta/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Ganglionares da Retina/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Axônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Retina/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia
15.
Nutrients ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605122

RESUMO

Flickering light increases metabolic demand in the inner retina. Flicker may exacerbate defective mitochondrial function in glaucoma, which will be reflected in the pattern electroretinogram (PERG), a sensitive test of retinal ganglion cell (RGC) function. We tested whether flicker altered the PERG of DBA/2J (D2) glaucomatous mice and whether vitamin B3-rich diet contributed to the flicker effect. D2 mice fed with either standard chow (control, n = 10) or chow/water enriched with nicotinamide (NAM, 2000 mg/kg per day) (treated, n = 10) were monitored from 3 to 12 months. The PERG was recorded with superimposed flicker (F-PERG) at either 101 Hz (baseline) or 11 Hz (test), and baseline-test amplitude difference (adaptation) evaluated. At endpoint, flat-mounted retinas were immunostained (RBPMS and mito-tracker). F-PERG adaptation was 41% in 3-month-old D2 and decreased with age more in control D2 than in NAM-fed D2 (GEE, p < 0.01). At the endpoint, F-PERG adaptation was 0% in control D2 and 17.5% in NAM-fed D2, together with higher RGC density (2.4×), larger RGC soma size (2×), and greater intensity of mitochondrial staining (3.75×). F-PERG adaptation may provide a non-invasive tool to assess RGC autoregulation in response to increased metabolic demand and test the effect of dietary/pharmacological treatments on optic nerve disorders.


Assuntos
Glaucoma/fisiopatologia , Niacinamida , Células Ganglionares da Retina , Adaptação Fisiológica/efeitos dos fármacos , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Eletrorretinografia , Camundongos , Camundongos Endogâmicos DBA , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Estimulação Luminosa , Retina/efeitos dos fármacos , Retina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/fisiologia
16.
Nat Neurosci ; 23(7): 869-880, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483349

RESUMO

Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC→dpHb→NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.


Assuntos
Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Depressão/fisiopatologia , Luz/efeitos adversos , Vias Visuais/fisiologia , Animais , Depressão/etiologia , Habenula/fisiologia , Habenula/efeitos da radiação , Camundongos , Núcleo Accumbens/fisiologia , Núcleo Accumbens/efeitos da radiação , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Vias Visuais/efeitos da radiação
17.
Invest Ophthalmol Vis Sci ; 61(4): 5, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271885

RESUMO

Purpose: Neurons carry electrical signals and communicate via electrical activities. The therapeutic potential of electrical stimulation (ES) for the nervous system, including the retina, through improvement of cell survival and function has been noted. Here we investigated the neuroprotective and regenerative potential of ES in a mouse model of inherited retinal degeneration. Methods: Rhodopsin-deficient (Rho-/-) mice received one or two sessions of transpalpebral ES or sham treatments for 7 consecutive days. Intraperitoneal injection of 5-ethynyl-2'-deoxyuridine was used to label proliferating cells. Weekly electroretinograms were performed to monitor retinal function. Retinal morphology, photoreceptor survival, and regeneration were evaluated in vivo using immunohistochemistry and genetic fate-mapping techniques. Müller cell (MC) cultures were employed to further define the optimal conditions of ES application. Results: Noninvasive transpalpebral ES in Rho-/- mice improved photoreceptor survival and electroretinography function in vivo. ES also triggered residential retinal progenitor-like cells such as MCs to reenter the cell cycle, possibly producing new photoreceptors, as shown by immunohistochemistry and genetic fate-mapping techniques. ES directly stimulated cell proliferation and the expression of progenitor cell markers in MC cultures, at least partially through bFGF signaling. Conclusions: Our study showed that transpalpebral ES improved photoreceptor survival and retinal function and induced the proliferation, probably photoreceptor regeneration, of MCs; this occurs via stimulation of the bFGF pathways. These results suggest the exciting possibility of applying noninvasive ES as a versatile tool for preventing photoreceptor loss and mobilizing endogenous progenitors for reversing vision loss in patients with photoreceptor degeneration.


Assuntos
Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Células Fotorreceptoras de Vertebrados/citologia , Degeneração Retiniana/terapia , Células Ganglionares da Retina/fisiologia , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Eletrorretinografia , Células Ependimogliais , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Rodopsina/genética
18.
Invest Ophthalmol Vis Sci ; 60(10): 3659-3668, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469406

RESUMO

Purpose: The purpose of this study was to characterize the ability of applied electrical fields (EFs) to direct retinal ganglion cell (RGC) axon growth as well as to assess whether Rho GTPases play a role in translating electrical cues to directional cues. Methods: Full-thickness, early postnatal mouse retina was cultured in electrotaxis chambers and exposed to EFs of varying strengths (50-200 mV/mm). The direction of RGC axon growth was quantified from time-lapsed videos. The rate of axon growth and responsiveness to changes in EF polarity were also assessed. The effect of toxin B, a broad-spectrum inhibitor of Rho GTPase signaling, and Z62954982, a selective inhibitor of Rac1, on EF-directed growth was determined. Results: In the absence of an EF, RGC axons demonstrated indiscriminate directional growth from the explant edge. Retinal cultures exposed to an EF of 100 and 200 mV/mm showed markedly asymmetric growth, with 74.2% and 81.2% of axons oriented toward the cathode, respectively (P < 0.001). RGC axons responded to acute changes in EF polarity by redirecting their growth toward the "new" cathode. This galvanotropic effect was partially neutralized by toxin B and Rac1 inhibitor Z62954982. Conclusions: RGC axons exhibit cathode-directed growth in the presence of an EF. This effect is mediated in part by the Rho GTPase signaling cascade.


Assuntos
Axônios/fisiologia , Terapia por Estimulação Elétrica , Campos Eletromagnéticos , Células Ganglionares da Retina/fisiologia , Animais , Polaridade Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Camundongos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo
20.
Prog Retin Eye Res ; 72: 100767, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31242454

RESUMO

The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.


Assuntos
Colina/fisiologia , Colinérgicos/uso terapêutico , Glaucoma , Fármacos Neuroprotetores/uso terapêutico , Acetilcolina/fisiologia , Colinérgicos/farmacocinética , Citidina Difosfato Colina/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Fármacos Neuroprotetores/farmacocinética , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/fisiologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA