Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Sci ; 330: 111667, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36858208

RESUMO

Male and female gametophyte development processes are essential steps in the life cycles of all land plants. Here, we characterized a gene, FviBAG6-A, screened from the Fragaria viridis (2 n = 2x=14) pollen cDNA library and physically interacted with S-RNase. Ubiquitinated of Sa-RNase might be determined by the interaction of FviBAG6-A in the ubiquitin-proteasome system during fertilization. We found that overexpression of FviBAG6-A in Arabidopsis caused shorter silique length, and decreased silique number. Moreover, overexpression of FviBAG6-A in Fragaria vesca (2 n = 2x=14) led to a greatly reduced seed number, with nearly 80% of the seeds aborted. Analyses of paraffin sections and reactive oxygen species (ROS) content revealed that the majority of severe pollen defects were likely due to the early degradation of the tapetum and middle layer as a result of ROS accumulation and abnormal development of the uninucleate megaspore mother. Moreover, the FviBAG6-A interact with the E3 ligase SIZ1 and contribute to the SUMOylation of FviBAG6-A , which may be induced by the high level of ROS content, further promoting gametophyte abortion in strawberry transgenic lines. This study characterized the FviBAG6-A and reveals its novel function in gametophyte development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Proteínas de Arabidopsis/metabolismo , Fragaria/genética , Fragaria/metabolismo , Células Germinativas Vegetais/metabolismo , Diploide , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Pólen/genética , Pólen/metabolismo , Ribonucleases/metabolismo , Ligases/genética , Proteínas Nucleares/metabolismo , Chaperonas Moleculares/genética
2.
Plant J ; 114(2): 325-337, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752686

RESUMO

The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Células Germinativas Vegetais/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pólen , Reprodução , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo
3.
PLoS One ; 16(5): e0251305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983990

RESUMO

Self-compatibility has become the primary objective of most prune (Prunus domestica) breeding programs in order to avoid the problems related to the gametophytic self-incompatibility (GSI) system present in this crop. GSI is typically under the control of a specific locus., known as the S-locus., which contains at least two genes. The first gene encodes glycoproteins with RNase activity in the pistils., and the second is an SFB gene expressed in the pollen. There is limited information on genetics of SI/SC in prune and in comparison., with other Prunus species, cloning., sequencing and discovery of different S-alleles is very scarce. Clear information about S-alleles can be used for molecular identification and characterization of the S-haplotypes. We determined the S-alleles of 36 cultivars and selections using primers that revealed 17 new alleles. In addition, our study describes for the first time the association and design of a molecular marker for self-compatibility in P. domestica. Our phylogenetic tree showed that the S-alleles are spread across the phylogeny, suggesting that like previous alleles detected in the Rosaceae., they were of trans-specific origin. We provide for the first time 3D models for the P. domestica SI RNase alleles as well as in other Prunus species, including P. salicina (Japanese plum), P. avium (cherry), P. armeniaca (apricot), P. cerasifera and P. spinosa.


Assuntos
Prunus domestica/genética , Autoincompatibilidade em Angiospermas/genética , Agricultura/métodos , Alelos , Sequência de Aminoácidos/genética , Genes de Plantas/genética , Células Germinativas Vegetais/metabolismo , Haplótipos/genética , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Ribonucleases/ultraestrutura
4.
Plant J ; 105(6): 1600-1614, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340171

RESUMO

In eukaryotes, coat protein complex II (COPII) vesicles mediate anterograde traffic from the endoplasmic reticulum to the Golgi apparatus. Compared to yeasts, plants have multiple COPII coat proteins; however, the functional diversity among them is less well understood. SEC31A and SEC31B are outer coat proteins found in COPII vesicles in Arabidopsis. In this study, we explored the function of SEC31A and compared it with that of SEC31B from various perspectives. SEC31A was widely expressed, but at a significantly lower level than SEC31B. SEC31A-mCherry and SEC31B-GFP exhibited a high co-localization rate in pollen, but a lower rate in growing pollen tubes. The sec31a single mutant exhibited normal growth. SEC31A expression driven by the SEC31B promoter rescued the pollen abortion and infertility observed in sec31b. A sec31asec31b double mutant was unavailable due to lethality of the sec31asec31b gametophyte. Transmission electron microscopy revealed that one quarter of male gametogenesis was arrested at the uninuclear microspore stage, while confocal laser scanning microscopy showed that 1/4 female gametophyte development was suspended at the functional megaspore stage in sec31a-1/+sec31b-3/+ plants. Our study highlights the essential role of SEC31A/B in gametogenesis and their interchangeable functions in pollen development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Gametogênese Vegetal , Pólen/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Fertilidade , Genes de Plantas/fisiologia , Células Germinativas Vegetais/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia
5.
Plant Physiol ; 180(4): 2142-2151, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31227618

RESUMO

Small nuclear RNAs (snRNAs) play essential roles in spliceosome assembly and splicing. Most snRNAs are transcribed by the DNA-dependent RNA polymerase II (Pol II) and require 3'-end endonucleolytic cleavage. We have previously shown that the Arabidopsis (Arabidopsis thaliana) Defective in snRNA Processing 1 (DSP1) complex, composed of at least five subunits, is responsible for snRNA 3' maturation and is essential for plant development. Yet it remains unclear how DSP1 complex subunits act together to process snRNAs. Here, we show that DSP4, a member of the metallo-ß-lactamase family, physically interacts with DSP1 through its ß-Casp domain. Null dsp4-1 mutants have pleiotropic developmental defects, including impaired pollen development and reduced pre-snRNA transcription and 3' maturation, resembling the phenotype of the dsp1-1 mutant. Interestingly, dsp1-1 dsp4-1 double mutants exhibit complete male sterility and reduced pre-snRNA transcription and 3'-end maturation, unlike dsp1-1 or dsp4-1 In addition, Pol II occupancy at snRNA loci is lower in dsp1-1 dsp4-1 than in either single mutant. We also detected miscleaved pre-snRNAs in dsp1-1 dsp4-1, but not in dsp1-1 or dsp4-1 Taken together, these data reveal that DSP1 and DSP4 function is essential for pollen development, and that the two cooperatively promote pre-snRNA transcription and 3'-end processing efficiency and accuracy.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , RNA Nuclear Pequeno/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fosfatases de Especificidade Dupla/genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Mutação/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Ligação Proteica , RNA Nuclear Pequeno/genética
6.
J Sci Food Agric ; 99(11): 5073-5082, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30980532

RESUMO

BACKGROUND: Pomegranate fruit is an excellent source of bioactive polyphenolics, known to contribute significantly to human health. India is the largest producer of pomegranate in the world and produces the finest quality fruit with highly desirable consumer traits such as soft seeds, low acidity, and attractive fruit and aril color. Knowledge of the extent of variation in key metabolites (sugars, organic acids, phenolics, and anthocyanins) is key to selecting superior genotypes for germplasm improvement. Relevant information with respect to Indian genotypes is scarce. The present study therefore aims to evaluate quantitatively important metabolites in some cultivars and elite germplasm of pomegranate in India. RESULTS: Identification and quantification of primary and secondary metabolites such as sugars, organic acids, vitamin C, polyphenolics, and anthocyanins were conducted using a liquid chromatography - mass spectrometry (LC-MS) platform. Fructose and citric acid were the predominant sugar and organic acid, respectively. Wild genotypes had significantly higher concentrations of organic acids, antioxidant activity, and phenolics, namely punicalagin, ellagic acid, sinapic, and ferulic acid. CONCLUSION: Cyanidin and delphinidin derivatives of anthocyanins were more abundant in red aril commercial genotypes. Results suggest that wild-sour accessions represent a rich source of polyphenolics that can be utilized in future breeding programs to breed healthier varieties, food supplements, and pharmaceutical products. © 2019 Society of Chemical Industry.


Assuntos
Células Germinativas Vegetais/classificação , Lythraceae/química , Lythraceae/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Cromatografia Líquida de Alta Pressão , Cor , Frutas/química , Frutas/classificação , Frutas/genética , Frutas/metabolismo , Genótipo , Células Germinativas Vegetais/metabolismo , Índia , Lythraceae/classificação , Lythraceae/genética , Espectrometria de Massas , Polifenóis/análise , Polifenóis/metabolismo , Metabolismo Secundário , Sementes/química , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Açúcares/análise , Açúcares/metabolismo
7.
Planta ; 247(2): 393-404, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29027584

RESUMO

MAIN CONCLUSION: Unlike most plant cell walls, the five consecutive walls laid down during spermatogenesis in the model fern Ceratopteris contain sparse cellulose, lack pectin and are enriched with callose and hemicelluloses. Seed-free plants like bryophytes and pteridophytes produce swimming male gametes for sexual reproduction. During spermatogenesis, unique walls are formed that are essential to the appropriate development and maturation of the motile gametes. Other than the detection of callose and general wall polysaccharides in scattered groups, little is known about the sequence of wall formation and the composition of these walls during sperm cell differentiation in plants that produce swimming sperm. Using histochemistry and immunogold localizations, we examined the distribution of callose, cellulose, mannan and xylan-containing hemicelluloses, and homogalacturonan (HG) pectins in the special walls deposited during spermatogenesis in Ceratopteris. Five walls are produced in sequence and each has a unique fate. The first wall (W1) contains callose and sparse xylan-containing hemicelluloses. Wall two (W2) is thin and composed of cellulose crosslinked by xylan-containing hemicelluloses. The third wall (W3) is thick and composed entirely of callose, and the fourth wall (W4) is built of cellulose heavily crosslinked by galactoxyloglucan hemicelluloses. Wall five (W5) is an arabinogalactan protein (AGP)-rich matrix in which the gamete changes shape and multiple flagella elongate. We detected no esterified or unesterified HG pectins in any of the walls laid down during spermatogenesis. To consider evolutionary modifications in cell walls associated with motile gametes, comparisons are presented with male gametophyte and spermatogenous cell walls across plant groups.


Assuntos
Gleiquênias/química , Glucanos/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Gleiquênias/metabolismo , Gleiquênias/ultraestrutura , Células Germinativas Vegetais/química , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/ultraestrutura , Pectinas/metabolismo
8.
Methods Mol Biol ; 1669: 3-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936645

RESUMO

In this introductory chapter, we describe male germline development in plants taking Arabidopsis thaliana as a reference species. We first describe the transition from sporophytic to germline development, then microsporogenesis including meiosis, followed by male gametophyte development prior to pollination, and finally the progamic phase culminating in double fertilization, which leads to the formation of the embryo and the endosperm. For detailed information on some of these processes or on the molecular underpinning of certain fate transitions, we refer the reader to recent reviews. An important but often neglected aspect of male gametophyte development is the formation of the unique pollen cell wall. In contrast to that of other plant cells, the pollen cell wall is composed of two principal layers, the intine and exine. While the intine, the inner pecto-cellulosic cell wall layer, is biochemically and structurally similar to a "classical" plant cell wall, the exine is a unique composite with sporopollenin as its main component. Biosynthesis of the cell wall is remarkably similar between the spores of mosses and ferns, and pollen of seed plants, although slight differences exist, even between closely related species (reviewed in Wallace et al., AoB Plants 2011:plr027, 2011). In the latter sections of this chapter, we will present a brief overview of cell wall development in Arabidopsis pollen, where this aspect has been intensively studied.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Gametogênese Vegetal/genética , Gametogênese Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/fisiologia , Pólen/genética , Pólen/metabolismo , Pólen/fisiologia
9.
Methods Mol Biol ; 1669: 117-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936655

RESUMO

The arabinogalactan proteins (AGPs) are highly glycosylated proteins, ubiquitous in plants that have been linked to numerous aspects of sexual reproduction in several plant species, including the monoecious tree species Quercus suber. AGPs are found in cell membranes and cell walls of all types of tissues, including reproductive cells and organs. Pectins are cell wall components that also have been shown to change in composition and quantity during the maturations of the male and female gametophyte in cork oak. These findings were only possible to reveal, due to the histological study of AGP and pectins epitopes by immunolabeling. The immunofluorescence microscopy technique uses antibodies linked to fluorophores and relies on the specificity of the antibody binding to its antigen, labeling the epitope with a fluorescent dye.In the method presented here, we explore the immunolocalization technique performed in male and female flowers of Quercus suber, using London Resin (LR-White) as the embedding medium, after vacuum fixation with formaldehyde/glutaraldehyde. An extensive description of all the aspects of this technique is provided, from the plant material developmental stages selection to the critical analysis of results performed, continuously supported by troubleshooting recommendations.


Assuntos
Pectinas/metabolismo , Quercus/metabolismo , Flores/metabolismo , Células Germinativas Vegetais/metabolismo , Microscopia de Fluorescência , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo
10.
Sci Rep ; 7(1): 10309, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871157

RESUMO

Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.


Assuntos
Arabidopsis/fisiologia , Carboidratos Epimerases/metabolismo , Células Germinativas Vegetais/metabolismo , Manose/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Deficiência de Ácido Ascórbico/metabolismo , Senescência Celular , Genes de Plantas , Germinação , Mutação , Fenótipo , Pólen , Tubo Polínico/metabolismo
11.
Int J Mol Sci ; 18(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635622

RESUMO

Genes essential for gametophyte development and fertilization have been identified and studied in detail; however, genes that fine-tune these processes are largely unknown. Here, we characterized an unknown Arabidopsis gene, GTP-BINDING PROTEIN RELATED1 (GPR1). GPR1 is specifically expressed in ovule, pollen, and pollen tube. Enhanced green fluorescent protein-tagged GPR1 localizes to both nucleus and cytoplasm, and it also presents in punctate and ring-like structures. gpr1 mutants exhibit no defect in gametogenesis and seed setting, except that their pollen grains are pale in color. Scanning electron microscopy analyses revealed a normal patterned but thinner exine on gpr1 pollen surface. This may explain why gpr1 pollen grains are pale. We next examined whether GPR1 mutation affects post gametogenesis processes including pollen germination, pollen tube growth, and ovule senescence. We found that gpr1 pollen grains germinated earlier, and their pollen tubes elongated faster. Emasculation assay revealed that unfertilized gpr1 pistil expressed the senescence marker PBFN1:GUS (GUS: a reporter gene that encodes ß-glucuronidase) one-day earlier than the wild type pistil. Consistently, ovules and pollen grains of gpr1 mutants showed lower viability than those of the wild type at 4 to 5 days post anthesis. Together, these data suggest that GPR1 functions as a negative regulator of pollen germination, pollen tube growth, and gametophyte senescence to fine-tune the fertilization process.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Senescência Celular , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/metabolismo , Germinação , Mutação , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo
12.
Plant Physiol ; 174(1): 258-275, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28270625

RESUMO

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Células Germinativas Vegetais/metabolismo , Mitocôndrias/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Coproporfirinogênio Oxidase/genética , Coproporfirinogênios/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
13.
BMC Genomics ; 17: 359, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27183979

RESUMO

BACKGROUND: Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. RESULTS: The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self-pollinated versus cross-pollinated tissues at 24 h post-pollination. CONCLUSIONS: The present study reports the transcriptome of styles after cross- and self-pollination in tea and offers novel insights into the molecular mechanism behind SI in C. sinensis. We believe that this RNA-seq dataset will be useful for improvement in C. sinensis as well as other plants in the Theaceae family.


Assuntos
Camellia sinensis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/metabolismo , Transcriptoma , Sequência de Aminoácidos , Camellia sinensis/classificação , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Reprodutibilidade dos Testes
14.
Plant Physiol Biochem ; 97: 255-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26492133

RESUMO

In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs.


Assuntos
Dianthus/citologia , Dianthus/genética , Diploide , Células Germinativas Vegetais/citologia , Estresse Fisiológico/genética , Temperatura , Cromossomos de Plantas/genética , Clonagem Molecular , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Células Germinativas Vegetais/metabolismo , Especificidade de Órgãos/genética , Filogenia , Pólen/citologia , Pólen/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(43): 13378-83, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26466609

RESUMO

An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5' UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Comunicação Celular/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Pólen/fisiologia , Arabidopsis/citologia , Clonagem Molecular , Primers do DNA/genética , Células Germinativas Vegetais/metabolismo , Plasmídeos/genética , Transporte Proteico/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
16.
Mol Biol Evol ; 30(11): 2475-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23997108

RESUMO

Selection on the gametophyte can be a major force shaping plant genomes as 7-11% of genes are expressed only in that phase and 60% of genes are expressed in both the gametophytic and sporophytic phases. The efficacy of selection on gametophytic tissues is likely to be influenced by sexual selection acting on male and female functions of hermaphroditic plants. Moreover, the haploid nature of the gametophytic phase allows selection to be efficient in removing recessive deleterious mutations and fixing recessive beneficial mutations. To assess the importance of gametophytic selection, we compared the strength of purifying selection and extent of positive selection on gametophyte- and sporophyte-specific genes in the highly outcrossing plant Capsella grandiflora. We found that pollen-exclusive genes had a larger fraction of sites under strong purifying selection, a greater proportion of adaptive substitutions, and faster protein evolution compared with seedling-exclusive genes. In contrast, sperm cell-exclusive genes had a smaller fraction of sites under strong purifying selection, a lower proportion of adaptive substitutions, and slower protein evolution compared with seedling-exclusive genes. Observations of strong selection acting on pollen-expressed genes are likely explained by sexual selection resulting from pollen competition aided by the haploid nature of that tissue. The relaxation of selection in sperm might be due to the reduced influence of intrasexual competition, but reduced gene expression may also be playing an important role.


Assuntos
Capsella/genética , Genes de Plantas , Pólen/genética , Seleção Genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aptidão Genética , Genoma de Planta , Células Germinativas Vegetais/metabolismo , Haploidia , Especificidade de Órgãos , Óvulo Vegetal , Polimorfismo de Nucleotídeo Único
17.
PLoS One ; 8(7): e69578, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936051

RESUMO

In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms.


Assuntos
Células Germinativas Vegetais/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Pólen/genética , Plântula/genética , Sementes/genética , Arabidopsis/genética , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Fertilização , Células Germinativas Vegetais/citologia , Anotação de Sequência Molecular , Mutação , Pólen/citologia , Proteômica , Plântula/citologia , Sementes/citologia , Análise de Célula Única
18.
Plant Cell ; 23(12): 4298-317, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22158466

RESUMO

The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Trifosfato de Adenosina/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fracionamento Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Loci Gênicos , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/metabolismo , Histonas/genética , Histonas/metabolismo , Immunoblotting , Mitomicina/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Deleção de Sequência , Transdução de Sinais , Transgenes
19.
Plant Signal Behav ; 6(9): 1259-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22019633

RESUMO

Glutathione is an important antioxidant and redox buffer in plants. Despite its crucial roles in plant metabolism and defense in the sporophyte, its roles in the gametophyte are largely unexplored. Recently, we demonstrated that glutathione synthesis is essential for pollen germination in vitro. In this study, we extend these results and focus on the subcellular distribution of glutathione in pollen grains and compare it to the situation in the sporophyte. Glutathione was equally distributed within mitochondria, plastids, nuclei and the cytosol in the gametophyte -- in contrast to youngest fully developed leaves and root tips of the sporophyte, where glutathione was highest in the mitochondria, followed by nuclei, cytosol, peroxisomes and plastids in decreasing concentration. Glutathione was not detected in vacuoles. We can conclude that glutathione synthesis is essential for pollen germination in vitro and that the subcellular distribution of glutathione in the gametophyte differs significantly from the sporophyte.


Assuntos
Arabidopsis/metabolismo , Células Germinativas Vegetais/metabolismo , Glutationa/metabolismo , Arabidopsis/fisiologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Células Germinativas Vegetais/fisiologia , Mitocôndrias/metabolismo , Plastídeos/metabolismo , Pólen/metabolismo , Pólen/fisiologia , Vacúolos/metabolismo
20.
Plant Cell Physiol ; 52(10): 1832-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21893514

RESUMO

In plant cells, boron (B) occurs predominantly as a borate ester associated with rhamnogalacturonan II (RG-II), but the function of this B-RG-II complex has yet to be investigated. 3-Deoxy-D-manno-2-octulosonic acid (KDO) is a specific component monosaccharide of RG-II. Mutant plants defective in KDO biosynthesis are expected to have altered RG-II structure, and would be useful for studying the physiological function of the B-RG-II complex. Here, we characterized Arabidopsis CTP:KDO cytidylyltransferase (CMP-KDO synthetase; CKS), the enzyme activating KDO as a nucleotide sugar prior to its incorporation into RG-II. Our analyses localized the Arabidopsis CKS protein to mitochondria. The Arabidopsis CKS gene occurs as a single-copy gene in the genome, and we could not obtain cks null mutants from T-DNA insertion lines. Analysis using +/cks heterozygotes in the quartet1 background demonstrated that the cks mutation rendered pollen infertile through the inhibition of pollen tube elongation. These results suggest that KDO is an indispensable component of RG-II, and that the complete B-RG-II complex is essential for the cell wall integrity of rapidly growing tissues.


Assuntos
Arabidopsis/enzimologia , Nucleotidiltransferases/metabolismo , Pectinas/biossíntese , Açúcares Ácidos/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Segregação de Cromossomos/genética , DNA de Plantas/genética , Genótipo , Células Germinativas Vegetais/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional/genética , Mutação/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/ultraestrutura , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Transporte Proteico , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA