Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncoimmunology ; 12(1): 2219164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325437

RESUMO

During solid tumor progression, the tumor microenvironment (TME) evolves into a highly immunosuppressive milieu. Key players in the immunosuppressive environment are regulatory myeloid cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), which are recruited and activated via tumor-secreted cytokines such as colony-stimulating factor 1 (CSF-1). Therefore, the depletion of tumor-secreted cytokines is a leading anticancer strategy. Here, we found that CSF-1 secretion by melanoma cells is decreased following treatment with Cannabis extracts. Cannabigerol (CBG) was identified as the bioactive cannabinoid responsible for the effects. Conditioned media from cells treated with pure CBG or the high-CBG extract reduced the expansion and macrophage transition of the monocytic-MDSC subpopulation. Treated MO-MDSCs also expressed lower levels of iNOS, leading to restored CD8+ T-cell activation. Tumor-bearing mice treated with CBG presented reduced tumor progression, lower TAM frequencies and reduced TAM/M1 ratio. A combination of CBG and αPD-L1 was more effective in reducing tumor progression, enhancing survival and increasing the infiltration of activated cytotoxic T-cells than each treatment separately. We show a novel mechanism for CBG in modulating the TME and enhancing immune checkpoint blockade therapy, underlining its promising therapeutic potential for the treatment of a variety of tumors with elevated CSF-1 expression.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Melanoma , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Células Mieloides/metabolismo , Melanoma/tratamento farmacológico , Citocinas/metabolismo , Microambiente Tumoral
3.
Phytomedicine ; 96: 153902, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026520

RESUMO

BACKGROUND: Allergic asthma is one of the leading respiratory diseases with complex pathology. Attributes of vitexin, a trihydroxyflavone, has been studied to alleviate Th2 cytokines response in allergic asthma. However, its efficacy and underlying mechanism in mitigating allergic asthma particularly mediated by oxi-inflammatory stress, autophagy and apoptosis, yet to be delineated. PURPOSE: Present study aimed to decipher efficacy and governing molecular mechanism of vitexin in mitigating allergic asthma particularly mediated by vicious loop of oxi-inflammatory stress, autophagy and apoptosis. METHODS: To ascertain this, OVA-LPS induced mice model was used and protective attributes of vitexin for different mediators, pathological facets and sensing pathways of allergic asthma were evaluated. RESULTS: Vitexin treatment remarkably inhibited OVA-LPS induced inflammatory cell infiltration, mast cell activation, alveolar collapse, congestion, fibrosis in lung architecture. These results were accompanied by suppression of immune cells hyperactivation, mucus secretion, goblet cell proliferation, persistent inflammation which were affirmed by alleviation in levels of IgE, Th1/Th2/Th17, IL-4/IFN-γ, chemokines, endopeptidases (MMP-1, MMP-13), oxidative effectors with concomitant increase in IL-15, IL-10, MMP-9 and MMP-3. Additionally, noticeable decline in p-connexin 43, p-c-Fos, TGF-ß, Smad2/3/4, Caspase9/3, LC3A/B expression and upregulation in beclin-1, p62 co-localization and Bcl2/Bax indicate reversal of lung vascular permeability, mast cell degranulation, fibrosis, apoptosis, autophagosome impairment. Subsequent allergic inflammatory cascades analysis revealed p-NF-κB, p-PI3K, p-Akt, p-p38, p-Stat3, GATA3 upregulation and p-PTEN downregulation in sensitized mice, which were decisively counteracted by vitexin. In silico studies signified target specificity of vitexin with these proteins. Suppression in myeloid cells activation and enhancements of Tregs demonstrated immunomodulatory potential of vitexin in allergic airways. CONCLUSION: Collectively, to our knowledge, this is the first report that confers vitexin meditated multi-faceted protective attribute in mitigation of allergic asthma that could be linked to its suppressive effects on vicious cycle of pathological process particularly regulated via oxi-inflammation, autophagy and apoptosis. Thus, signify vitexin as safe therapeutic strategy.


Assuntos
Asma , Animais , Apigenina , Asma/tratamento farmacológico , Autofagia , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Homeostase , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/metabolismo , Ovalbumina , Oxirredução
4.
Front Cell Infect Microbiol ; 11: 737364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513737

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous myeloid cells that expand in pathologic conditions as cancer, trauma, and infection. Although characterization of MDSCs is continuously revisited, the best feature is their suppressor activity. There are many markers for MDSC identification, it is distinctive that they express inducible nitric oxide synthase (iNOS) and arginase 1, which can mediate immune suppression. MDSCs can have a medullary origin as a result of emergency myelopoiesis, but also can have an extramedullary origin. Early studies on Trypanosoma cruzi infection showed severe immunosuppression, and several mechanisms involving parasite antigens and host cell mediators were described as inhibition of IL-2 and IL-2R. Another mechanism of immunosuppression involving tumor necrosis factor/interferon γ-dependent nitric oxide production by inducible nitric oxide synthase was also described. Moreover, other studies showed that nitric oxide was produced by CD11b+ Gr-1+ MDSCs in the spleen, and later iNOS and arginase 1 expressed in CD11b+Ly6C+Ly6Glo monocytic MDSC were found in spleen and heart of T. cruzi infected mice that suppressed T cell proliferation. Uncontrolled expansion of monocytic MDSCs leads to L-arginine depletion which hinders nitric oxide production leading to death. Supplement of L-arginine partially reverts L-arginine depletion and survival, suggesting that L-arginine could be administered along with anti-parasitical drugs. On the other hand, pharmacological inhibition of MDSCs leads to death in mice, suggesting that some expansion of MDSCs is needed for an efficient immune response. The role of signaling molecules mediating immune suppression as reactive oxygen species, reactive nitrogen species, as well as prostaglandin E2, characteristics of MDSCs, in T. cruzi infection is not fully understood. We review and discuss the role of these reactive species mediators produced by MDSCs. Finally, we discuss the latest results that link the SLAMF1 immune receptor with reactive oxygen species. Interaction of the parasite with the SLAMF1 modulates parasite virulence through myeloid cell infectivity and reactive oxygen species production. We discuss the possible strategies for targeting MDSCs and SLAMF1 receptor in acute Trypanosoma cruzi infection in mice, to evaluate a possible translational application in human acute infections.


Assuntos
Doença de Chagas , Células Supressoras Mieloides , Trypanosoma cruzi , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Trypanosoma cruzi/metabolismo
5.
Cancer Res ; 81(19): 5047-5059, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301764

RESUMO

Immune cells regulate tumor growth by mirroring their function as tissue repair organizers in normal tissues. To understand the different facets of immune-tumor collaboration through genetics, spatial transcriptomics, and immunologic manipulation with noninvasive, longitudinal imaging, we generated a penetrant double oncogene-driven autochthonous model of neuroblastoma. Spatial transcriptomic analysis showed that CD4+ and myeloid populations colocalized within the tumor parenchyma, while CD8+ T cells and B cells were peripherally dispersed. Depletion of CD4+ T cells or CCR2+ macrophages, but not B cells, CD8+ T cells, or natural killer (NK) cells, prevented tumor formation. Tumor CD4+ T cells displayed unconventional phenotypes and were clonotypically diverse and antigen independent. Within the myeloid fraction, tumor growth required myeloid cells expressing arginase-1. Overall, these results demonstrate how arginine-metabolizing myeloid cells conspire with pathogenic CD4+ T cells to create permissive conditions for tumor formation, suggesting that these protumorigenic pathways could be disabled by targeting myeloid arginine metabolism. SIGNIFICANCE: A new model of human neuroblastoma provides ways to track tumor formation and expansion in living animals, allowing identification of CD4+ T-cell and macrophage functions required for oncogenesis.


Assuntos
Arginase/genética , Linfócitos T CD4-Positivos/metabolismo , Suscetibilidade a Doenças , Células Mieloides/metabolismo , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Animais , Arginase/metabolismo , Biomarcadores , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neuroblastoma/patologia , Oncogenes , Análise de Célula Única , Transcriptoma
6.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34174187

RESUMO

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Assuntos
Epigenômica , Imunidade/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Análise de Célula Única , Transcrição Gênica , Vacinação , Adolescente , Adulto , Antibacterianos/farmacologia , Antígenos CD34/metabolismo , Antivirais/farmacologia , Reprogramação Celular , Cromatina/metabolismo , Citocinas/biossíntese , Combinação de Medicamentos , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Imunidade Inata/genética , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Interferon Tipo I/metabolismo , Masculino , Células Mieloides/metabolismo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Receptores Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcriptoma/genética , Adulto Jovem , alfa-Tocoferol/farmacologia
7.
Nutrients ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924384

RESUMO

Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.


Assuntos
Flavonoides/farmacologia , Mel , Fatores Imunológicos/farmacologia , Neoplasias/terapia , Polifenóis/farmacologia , Animais , Apiterapia/métodos , Quimioterapia Adjuvante/métodos , Modelos Animais de Doenças , Flavonoides/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Mediadores da Inflamação/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Polifenóis/uso terapêutico
8.
Nat Chem Biol ; 17(3): 326-334, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33199915

RESUMO

Secreted polypeptides are a fundamental axis of intercellular and endocrine communication. However, a global understanding of the composition and dynamics of cellular secretomes in intact mammalian organisms has been lacking. Here, we introduce a proximity biotinylation strategy that enables labeling, detection and enrichment of secreted polypeptides in a cell type-selective manner in mice. We generate a proteomic atlas of hepatocyte, myocyte, pericyte and myeloid cell secretomes by direct purification of biotinylated secreted proteins from blood plasma. Our secretome dataset validates known cell type-protein pairs, reveals secreted polypeptides that distinguish between cell types and identifies new cellular sources for classical plasma proteins. Lastly, we uncover a dynamic and previously undescribed nutrient-dependent reprogramming of the hepatocyte secretome characterized by the increased unconventional secretion of the cytosolic enzyme betaine-homocysteine S-methyltransferase (BHMT). This secretome profiling strategy enables dynamic and cell type-specific dissection of the plasma proteome and the secreted polypeptides that mediate intercellular signaling.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Biotina/química , Proteínas Sanguíneas/genética , Hepatócitos/metabolismo , Proteoma/genética , Coloração e Rotulagem/métodos , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Biotina/administração & dosagem , Biotinilação , Proteínas Sanguíneas/metabolismo , Expressão Gênica , Células HEK293 , Hepatócitos/citologia , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Células Musculares/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Especificidade de Órgãos , Pericitos/citologia , Pericitos/metabolismo , Proteoma/metabolismo , Proteômica/métodos
9.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375664

RESUMO

Hypericum is a widely present plant, and extracts of its leaves, flowers, and aerial elements have been employed for many years as therapeutic cures for depression, skin wounds, and respiratory and inflammatory disorders. Hypericum also displays an ample variety of other biological actions, such as hypotensive, analgesic, anti-infective, anti-oxidant, and spasmolytic abilities. However, recent investigations highlighted that this species could be advantageous for the cure of other pathological situations, such as trigeminal neuralgia, as well as in the treatment of cancer. This review focuses on the in vitro and in vivo antitumor effects of St. John's Wort (Hypericum perforatum), its derivatives, and other Hypericum species in hematologic malignancies. Hypericum induces apoptosis in both myeloid and lymphoid cells. Other Hypericum targets include matrix metalloproteinase-2, vascular endothelial growth factor, and matrix metalloproteinase-9, which are mediators of cell migration and angiogenesis. Hypericum also downregulates the expression of proteins that are involved in the resistance of leukemia cells to chemotherapeutic agents. Finally, Hypericum and its derivatives appear to have photodynamic effects and are candidates for applications in tumor photodynamic therapy. Although the in vitro studies appear promising, controlled in vivo studies are necessary before we can hypothesize the introduction of Hypericum and its derivatives into clinical practice for the treatment of hematologic malignancies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Hypericum/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/patologia , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Extratos Vegetais/química , Relação Estrutura-Atividade
10.
J Neuroinflammation ; 17(1): 368, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267881

RESUMO

BACKGROUND: The carotid bodies and baroreceptors are sensors capable of detecting various physiological parameters that signal to the brain via the afferent carotid sinus nerve for physiological adjustment by efferent pathways. Because receptors for inflammatory mediators are expressed by these sensors, we and others have hypothesised they could detect changes in pro-inflammatory cytokine blood levels and eventually trigger an anti-inflammatory reflex. METHODS: To test this hypothesis, we surgically isolated the carotid sinus nerve and implanted an electrode, which could deliver an electrical stimulation package prior and following a lipopolysaccharide injection. Subsequently, 90 min later, blood was extracted, and cytokine levels were analysed. RESULTS: Here, we found that carotid sinus nerve electrical stimulation inhibited lipopolysaccharide-induced tumour necrosis factor production in both anaesthetised and non-anaesthetised conscious mice. The anti-inflammatory effect of carotid sinus nerve electrical stimulation was so potent that it protected conscious mice from endotoxaemic shock-induced death. In contrast to the mechanisms underlying the well-described vagal anti-inflammatory reflex, this phenomenon does not depend on signalling through the autonomic nervous system. Rather, the inhibition of lipopolysaccharide-induced tumour necrosis factor production by carotid sinus nerve electrical stimulation is abolished by surgical removal of the adrenal glands, by treatment with the glucocorticoid receptor antagonist mifepristone or by genetic inactivation of the glucocorticoid gene in myeloid cells. Further, carotid sinus nerve electrical stimulation increases the spontaneous discharge activity of the hypothalamic paraventricular nucleus leading to enhanced production of corticosterone. CONCLUSION: Carotid sinus nerve electrostimulation attenuates inflammation and protects against lipopolysaccharide-induced endotoxaemic shock via increased corticosterone acting on the glucocorticoid receptor of myeloid immune cells. These results provide a rationale for the use of carotid sinus nerve electrostimulation as a therapeutic approach for immune-mediated inflammatory diseases.


Assuntos
Seio Carotídeo/fisiologia , Inflamação/metabolismo , Células Mieloides/metabolismo , Neuroimunomodulação/fisiologia , Animais , Seio Carotídeo/inervação , Estimulação Elétrica , Feminino , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Receptores de Glucocorticoides
11.
Front Immunol ; 11: 1590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793228

RESUMO

Immune checkpoint inhibitors are becoming standard treatments in several cancer types, profoundly changing the prognosis of a fraction of patients. Currently, many efforts are being made to predict responders and to understand how to overcome resistance in non-responders. Given the crucial role of myeloid cells as modulators of T effector cell function in tumors, it is essential to understand their impact on the clinical outcome of immune checkpoint blockade and on the mechanisms of immune evasion. In this review we focus on the existing clinical evidence of the relation between the presence of myeloid cell subsets and the response to anti-PD(L)1 and anti-CTLA-4 treatment. We highlight how circulating and tumor-infiltrating myeloid populations can be used as predictive biomarkers for immune checkpoint inhibitors in different human cancers, both at baseline and on treatment. Moreover, we propose to follow the dynamics of myeloid cells during immunotherapy as pharmacodynamic biomarkers. Finally, we provide an overview of the current strategies tested in the clinic that use myeloid cell targeting together with immune checkpoint blockade with the aim of uncovering the most promising approaches for effective combinations.


Assuntos
Biomarcadores , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Checkpoint Imunológico/metabolismo , Células Mieloides/metabolismo , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Alvo Molecular , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Resultado do Tratamento
12.
Sci Rep ; 10(1): 9972, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561763

RESUMO

Disturbed activation of autophagy is implicated in the pathogenesis of inflammatory bowel disease. Accordingly, several autophagy-related genes have been identified as Crohn's disease susceptibility genes. We screened the autophagy activators from a library including 3,922 natural extracts using a high-throughput assay system. The extracts identified as autophagy activators were administered to mice with 2% dextran sodium sulfate (DSS). Among the autophagy inducers, Sanguisorba officinalis L. (SO) suppressed DSS-induced colitis. To identify the mechanism by which SO ameliorates colitis, epithelial cell and innate myeloid cells-specific Atg7-deficient mice (Villin-cre; Atg7f/f and LysM-cre; Atg7f/f mice, respectively) were analyzed. SO-mediated inhibition of colitis was observed in Villin-cre; Atg7f/f mice. However, SO and a mixture of its components including catechin acid, ellagic acid, gallic acid, and ziyuglycoside II (Mix4) did not suppressed colitis in LysM-cre; Atg7f/f mice. In large intestinal macrophages (Mφ) of Atg7f/f mice, SO and Mix4 upregulated the expression of marker genes of anti-inflammatory Mφ including Arg1, Cd206, and Relma. However, these alterations were not induced in LysM-cre; Atg7f/f mice. These findings indicate that SO and its active components ameliorate DSS-induced colitis by providing intestinal Mφ with anti-inflammatory profiles via promotion of Atg7-dependent autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Intestinos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sanguisorba/química , Animais , Colite/metabolismo , Colite/prevenção & controle , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/prevenção & controle , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Medicina Herbária/métodos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/prevenção & controle , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Fitoterapia/métodos , Preparações de Plantas/farmacologia , Plantas Medicinais/química
13.
Cell Chem Biol ; 27(1): 94-104.e5, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31902676

RESUMO

Immune-checkpoint blockers can promote sustained clinical responses in a subset of cancer patients. Recent research has shown that a subpopulation of tumor-infiltrating dendritic cells functions as gatekeepers, sensitizing tumors to anti-PD-1 treatment via production of interleukin-12 (IL-12). Hypothesizing that myeloid cell-targeted nanomaterials could be used to deliver small-molecule IL-12 inducers, we performed high-content image-based screening to identify the most efficacious small-molecule compounds. Using one lead candidate, LCL161, we created a myeloid-targeted nanoformulation that induced IL-12 production in intratumoral myeloid cells in vivo, slowed tumor growth as a monotherapy, and had no significant systemic toxicity. These results pave the way for developing combination immunotherapeutics by harnessing IL-12 production for immunostimulation.


Assuntos
Alcinos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/terapia , Imunoterapia , Células Mieloides/efeitos dos fármacos , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tiazóis/farmacologia , Alcinos/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Dendríticas , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Interleucina-12/biossíntese , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Nanopartículas/química , Oligopeptídeos/química , Bibliotecas de Moléculas Pequenas/química , Tiazóis/química
14.
Cell Rep ; 28(9): 2386-2396.e5, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461653

RESUMO

It is known that lethal viruses profoundly manipulate host metabolism, but how the metabolism alternation affects the immediate host antiviral immunity remains elusive. Here, we report that the O-GlcNAcylation of mitochondrial antiviral-signaling protein (MAVS), a key mediator of interferon signaling, is a critical regulation to activate the host innate immunity against RNA viruses. We show that O-GlcNAcylation depletion in myeloid cells renders the host more susceptible to virus infection both in vitro and in vivo. Mechanistically, we demonstrate that MAVS O-GlcNAcylation is required for virus-induced MAVS K63-linked ubiquitination, thereby facilitating IRF3 activation and IFNß production. We further demonstrate that D-glucosamine, a commonly used dietary supplement, effectively protects mice against a range of lethal RNA viruses, including human influenza virus. Our study highlights a critical role of O-GlcNAcylation in regulating host antiviral immunity and validates D-glucosamine as a potential therapeutic for virus infections.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Infecções por Orthomyxoviridae/imunologia , Processamento de Proteína Pós-Traducional , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Chlorocebus aethiops , Feminino , Glucosamina/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Células Mieloides/metabolismo , Células Mieloides/virologia , Transdução de Sinais , Células Vero
15.
J Cell Mol Med ; 23(8): 5303-5316, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140723

RESUMO

Myeloid differentiation 1 (MD-1) is a secreted protein that regulates the immune response of B cell through interacting with radioprotective 105 (RP105). Disrupted immune response may contribute to the development of cardiac diseases, while the roles of MD-1 remain elusive. Our studies aimed to explore the functions and molecular mechanisms of MD-1 in obesity-induced cardiomyopathy. H9C2 myocardial cells were treated with free fatty acid (FFA) containing palmitic acid and oleic acid to challenge high-fat stimulation and adenoviruses harbouring human MD-1 coding sequences or shRNA for MD-1 overexpression or knockdown in vitro. MD-1 overexpression or knockdown transgenic mice were generated to assess the effects of MD-1 on high-fat diet (HD) induced cardiomyopathy in vivo. Our results showed that MD-1 was down-regulated in H9C2 cells exposed to FFA stimulation for 48 hours and in obesity mice induced by HD for 20 weeks. Both in vivo and in vitro, silencing of MD-1 accelerated myocardial function injury induced by HD stimulation through increased cardiac hypertrophy and fibrosis, while overexpression of MD-1 alleviated the effects of HD by inhibiting the process of cardiac remodelling. Moreover, the MAPK and NF-κB pathways were overactivated in MD-1 deficient mice and H9C2 cells after high-fat treatment. Inhibition of MAPK and NF-κB pathways played a cardioprotective role against the adverse effects of MD-1 silencing on high-fat stimulation induced pathological remodelling. In conclusion, MD-1 protected myocardial function against high-fat stimulation induced cardiac pathological remodelling through negative regulation for MAPK/NF-κB signalling pathways, providing feasible strategies for obesity cardiomyopathy.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Células Mieloides/metabolismo , Miócitos Cardíacos/metabolismo , Extratos Vegetais/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomiopatias/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Fibrose/metabolismo , Camundongos , Miocárdio/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Ratos , Transdução de Sinais/fisiologia
16.
Nat Metab ; 1(3): 314-320, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-32694719

RESUMO

Tissue-resident myeloid cells initiate local inflammation in response to infectious or injurious stimuli. Sixteen years ago, macrophages in the adipose tissue (ATMs) were shown to undergo a form of activation in response to diet-induced obesity, thus leading to the conclusion that these macrophages sense a type of pro-inflammatory injury. ATMs are now known to be central to adipose tissue development, plasticity, maintenance and function. Indeed, their involvement in obesity may represent hijacking of these functions. More recently, microglia, 'CNS macrophages', have been shown to accumulate and undergo activation in response to dietary excess in the mediobasal hypothalamus (MBH), and early studies have implicated these cells as injury-responsive mediators of hypothalamic dysfunction. However, microglia are amazingly diverse cells now known to have moment-to-moment sensory functions and to communicate with neighbouring neurons to maintain and shape brain circuitry. Here, we build on this view, detailing our rapidly evolving understanding of microglial heterogeneity in the MBH and their roles as nutrient and environmental sensors. We propose that microglia, instead of simply responding to diet-induced damage, act as critical metabolic regulators that may coordinate a complex cellular network in the MBH. Understanding their roles in hypothalamic development and function should reveal unexpected mechanistic information relevant to important diseases such as obesity.


Assuntos
Hipotálamo/fisiologia , Microglia/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta , Metabolismo Energético , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo
17.
Biochem Biophys Res Commun ; 508(1): 123-129, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471862

RESUMO

Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.


Assuntos
Hipotálamo/metabolismo , Células Mieloides/metabolismo , Neurogranina/metabolismo , Sirtuína 1/deficiência , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Sinalização do Cálcio , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Expressão Gênica , Inflamação/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/metabolismo , Sirtuína 1/genética , Núcleo Hipotalâmico Ventromedial/metabolismo
18.
Molecules ; 23(5)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751596

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative condition that currently has no known cure. The principles of the expanding field of network medicine (NM) have recently been applied to AD research. The main principle of NM proposes that diseases are much more complicated than one mutation in one gene, and incorporate different genes, connections between genes, and pathways that may include multiple diseases to create full scale disease networks. AD research findings as a result of the application of NM principles have suggested that functional network connectivity, myelination, myeloid cells, and genes and pathways may play an integral role in AD progression, and may be integral to the search for a cure. Different aspects of the AD pathology could be potential targets for drug therapy to slow down or stop the disease from advancing, but more research is needed to reach definitive conclusions. Additionally, the holistic approaches of network pharmacology in traditional Chinese medicine (TCM) research may be viable options for the AD treatment, and may lead to an effective cure for AD in the future.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Biomarcadores , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica , Humanos , Bainha de Mielina/metabolismo , Células Mieloides/metabolismo , Transdução de Sinais
19.
Clin Cancer Res ; 24(5): 1138-1151, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301830

RESUMO

Purpose: Agonist antibodies targeting the T-cell costimulatory receptor 4-1BB (CD137) are among the most effective immunotherapeutic agents across preclinical cancer models. In the clinic, however, development of these agents has been hampered by dose-limiting liver toxicity. Lack of knowledge of the mechanisms underlying this toxicity has limited the potential to separate 4-1BB agonist-driven tumor immunity from hepatotoxicity.Experimental Design: The capacity of 4-1BB agonist antibodies to induce liver toxicity was investigated in immunocompetent mice, with or without coadministration of checkpoint blockade, via (i) measurement of serum transaminase levels, (ii) imaging of liver immune infiltrates, and (iii) qualitative and quantitative assessment of liver myeloid and T cells via flow cytometry. Knockout mice were used to clarify the contribution of specific cell subsets, cytokines, and chemokines.Results: We find that activation of 4-1BB on liver myeloid cells is essential to initiate hepatitis. Once activated, these cells produce interleukin-27 that is required for liver toxicity. CD8 T cells infiltrate the liver in response to this myeloid activation and mediate tissue damage, triggering transaminase elevation. FoxP3+ regulatory T cells limit liver damage, and their removal dramatically exacerbates 4-1BB agonist-induced hepatitis. Coadministration of CTLA-4 blockade ameliorates transaminase elevation, whereas PD-1 blockade exacerbates it. Loss of the chemokine receptor CCR2 blocks 4-1BB agonist hepatitis without diminishing tumor-specific immunity against B16 melanoma.Conclusions: 4-1BB agonist antibodies trigger hepatitis via activation and expansion of interleukin-27-producing liver Kupffer cells and monocytes. Coadministration of CTLA-4 and/or CCR2 blockade may minimize hepatitis, but yield equal or greater antitumor immunity. Clin Cancer Res; 24(5); 1138-51. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Interleucinas/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Animais , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral/transplante , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucinas/imunologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
20.
J Nutr Biochem ; 50: 38-45, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29031241

RESUMO

Pectin, a water-soluble dietary fiber, has been found to improve survival in endotoxin shock. However, the underlying mechanism by which pectin exerts its protective effect against endotoxin shock remains unknown. Apart from its prebiotic effects, it has been suggested that pectin directly affects immune cells to regulate inflammatory responses. In this study, we investigated the direct effect of pectin in murine model of endotoxin shock. Citrus pectin solution was administered to male C57BL/6 mice for 10 days. Thereafter, hypothermia was induced in the mice with intraperitoneal injection of lipopolysaccharide (LPS). The pectin-treated mice showed attenuation of both the decrease in rectal temperature and increase in serum IL-6 level as compared to vehicle control mice. Simultaneously, the pectin-treated mice showed reduced levels of inflammatory cytokine mRNA in Peyer's patches and mesenteric lymph nodes, but not in the spleen. Peyer's patch cells from the pectin-treated mice were sorted and their levels of IL-6 production on LPS stimulation were measured. The results of ex vivo analysis indicated that IL-6 secretion from CD11c+ cells was suppressed by oral administration of pectin. Furthermore, IL-6 secretion from Toll-like receptor (TLR)-activated RAW264.7 cells was suppressed by pretreatment with pectin in vitro. This suppression was observed even with degraded pectin pretreatment but not with polygalacturonic acid, as the principal constituent of the pectin backbone. Taken together, these results suggest that pectin intake suppresses TLR-induced inflammatory cytokine expression in Peyer's patch myeloid cells, presumably through inhibition of TLR signaling by the pectin side chains.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Pectinas/uso terapêutico , Nódulos Linfáticos Agregados/metabolismo , Prebióticos , Choque Séptico/prevenção & controle , Transdução de Sinais , Receptores Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Antígeno CD11c/metabolismo , Sobrevivência Celular , Citrus/química , Regulação da Expressão Gênica , Interleucina-6/sangue , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/metabolismo , Pectinas/metabolismo , Nódulos Linfáticos Agregados/imunologia , Células RAW 264.7 , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA