Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16130, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695092

RESUMO

Abnormal antioxidative capabilities were observed in the pathogenesis of steroid-induced osteoporosis (SIOP). Ferroptosis is a recently discovered type of cell death that is characterized by the overproduction of ROS in response to GPX4 and system Xc- downregulation, which is mediated by an Fe2+ fenton reaction. However, investigations focusing on the relationship between ferroptosis and steroid-induced bone disease remain limited. In the present study, high-dose dexamethasone was used to establish a mouse SIOP model, and extracellular vesicles extracted from bone marrow-derived endothelial progenitor cells (EPC-EVs) alleviated the pathological changes in SIOP via microtomography (micro-CT), with elevations in bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), and trabecular connectivity density (Conn-D) and decreases in trabecular separation (Tb.sp) and the structure model index (SMI). Histopathological analysis, such as haematoxylin and eosin (HE) and Masson staining, showed that EPC-EVs treatment increased the volume and density of the trabecular bone and bone marrow. RNA sequencing (RNA-seq) and bioinformatics analysis revealed subcellular biological alterations upon steroid and EPC-EVs treatment. Compared with the control, high-dose dexamethasone downregulated GPX4 and system XC-, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based gene set enrichment analysis suggested that the ferroptotic pathway was activated. In contrast, combination treatment with EPC-EVs partly reversed the KEGG-mapped changes in the ferroptotic pathway at both the gene and mRNA expression levels. In addition, alterations in ferroptotic marker expression, such as SLC3A2, SLC7A11, and GPX4, were further confirmed by RNA-seq. EPC-EVs were able to reverse dexamethasone treatment-induced alterations in cysteine and several oxidative injury markers, such as malondialdehyde (MDA), glutathione (GSH), and glutathione disulphide (GSSG) (as detected by ELISA). In conclusion, EPC-EVs prevented mouse glucocorticoid-induced osteoporosis by suppressing the ferroptotic pathway in osteoblasts, which may provide a basis for novel therapies for SIOP in humans.


Assuntos
Dexametasona/efeitos adversos , Células Progenitoras Endoteliais/química , Vesículas Extracelulares/química , Ferroptose , Osteoporose/prevenção & controle , Animais , Densidade Óssea , Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Malondialdeído/metabolismo , Camundongos , Osteoblastos/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoporose/etiologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
2.
Clin Sci (Lond) ; 133(14): 1629-1644, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31315970

RESUMO

Background: Our previous studies observed that administration of exosomes from endothelial progenitor cells (EPC) facilitated vascular repair in the rat model of balloon injury. However, the molecular events underlying this process remain elusive. Here, we aim to interrogate the key miRNAs within EPC-derived exosomes (EPC-exosomes) responsible for the activation of endothelial cell (EC) repair. Methods: The efficacy of EPC-exosomes in re-endothelialization was examined by Evans Blue dye and histological examination in the rat model of balloon-induced carotid artery injury. The effects of EPC-exosomes on human vascular EC (HUVEC) were also studied by evaluating the effects on growth, migratory and tube formation. To dissect the underlying mechanism, RNA-sequencing assays were performed to determine miRNA abundance in exosomes and mRNA profiles in exosome-treated HUVECs. Meanwhile, in vitro loss of function assays identified an exosomal miRNA and its target gene in EC, which engaged in EPC-exosomes-induced EC repair. Results: Administration of EPC-exosomes potentiated re-endothelialization in the early phase after endothelial damage in the rat carotid artery. The uptake of exogenous EPC-exosomes intensified HUVEC in proliferation rate, migration and tube-forming ability. Integrative analyses of miRNA-mRNA interactions revealed that miR-21-5p was highly enriched in EPC-exosomes and specifically suppressed the expression of an angiogenesis inhibitor Thrombospondin-1 (THBS1) in the recipient EC. The following functional studies demonstrated a fundamental role of miR-21-5p in the pro-angiogenic activities of EPC-exosomes. Conclusions: The present work highlights a critical event for the regulation of EC behavior by EPC-exosomes, which EPC-exosomes may deliver miR-21-5p and inhibit THBS1 expression to promote EC repair.


Assuntos
Terapia Biológica , Lesões das Artérias Carótidas/fisiopatologia , Lesões das Artérias Carótidas/terapia , Células Progenitoras Endoteliais/química , Exossomos/química , Células Endoteliais da Veia Umbilical Humana/citologia , MicroRNAs/metabolismo , Trombospondina 1/genética , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Trombospondina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA