Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Med ; 77(3): 464-475, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884159

RESUMO

Tubulointerstitial fibrosis is a common pathological change in end-stage renal disease. However, limited treatment methods are developed, and unexplained potential mechanisms of renal diseases are urgent problems to be solved. In the present research, we first elucidated the role of podocarpusflavone (POD), a biflavone compound, in unilateral ureteral obstruction (UUO) in rodent model which is characterized by inflammation and fibrosis. The changes in histology and immunohistochemistry were observed that POD exerted renoprotective effects by retarding the infiltration of macrophage and aberrant deposition of ɑ-SMA, Col1a1, and fibronectin. Consistent with in vivo assay, POD treatment also ameliorated the process of fibrosis in TGF-ß1-stimulated renal tubular epithelial cells and inflammation in LPS-induced RAW264.7 cells in vitro. In terms of mechanism, our results showed that treatment with POD inhibited the aggravated activation of Fyn in the UUO group, and weakened the level of phosphorylation of Stat3 which indicated that POD may alleviate the process of fibrosis by the Fyn/Stat3 signaling pathway. Furthermore, the gain of function assay by lentivirus-mediated exogenous forced expression of Fyn abrogated the therapeutic effect of the POD on renal fibrosis and inflammation. Collectively, it can be concluded that POD exerted a protective effect on renal fibrosis by mediating Fyn/Stat3 signaling pathway.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Fibrose , Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Proteínas Proto-Oncogênicas c-fyn/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Animais
2.
Chem Biodivers ; 19(7): e202200415, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35608872

RESUMO

Two new germacranolides, carpelipine C (1) and carpelipine D (2), together with four known ones (3-6), were isolated from Carpesium lipskyi Winkl. flowers, a folk Tibetan herbal medicine with antipyretic-analgesic and anti-inflammatory effects. The chemical structures of new structure were illuminated by diversified spectroscopic and X-ray crystallographic analyses. Compounds 1 and 3 dramatically suppressed the synthesis of NO and decreased pre-inflammatory protein expression of iNOS and COX-2 in LPS-induced RAW264.7 cells. Furthermore, it was revealed that NF-κB/MAPK signaling pathway were involved in the anti-inflammatory process of 1 and 3, and their effects on reducing oxidative stress by activating Nrf2/HO-1 pathway were also measured. This article indicated that the traditional use of C. lipskyi to treat inflammatory diseases has a certain rationality.


Assuntos
Asteraceae , Sesquiterpenos de Germacrano , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Asteraceae/química , Flores/química , Flores/metabolismo , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/farmacologia , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/metabolismo , Sesquiterpenos de Germacrano/química , Sesquiterpenos de Germacrano/farmacologia
3.
J Nat Med ; 75(2): 381-392, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33484417

RESUMO

The methanolic extract of the leaves of artichoke (Cynara scolymus L.) was found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Among the constituents of the extract, six sesquiterpene lactones (cynaropicrin, grosheimin, 11ß,13-dihydrocynaropicrin, 3ß-hydroxy-8α-[(S)-3-hydroxy-2-methylpropionyloxy]guaia-4(15),10(14),11(13)-trien-1α,5α,6ßH-12,6-olide, 3ß-hydroxy-8α-[2-methoxymethyl-2-propenoyloxy]guaia-4(15),10(14),11(13)-trien-1α,5α,6ßH-12,6-olide, and deacylcynaropicrin) inhibited NO production and/or inducible nitric oxide synthase (iNOS) induction. The acyl group having an α,ß-unsaturated carbonyl group at the 8-position and the α-methylene-γ-butyrolactone moiety were important for the strong inhibitory activity. Our results suggested that these sesquiterpene lactones inhibited the LPS-induced iNOS expression via the suppression of the JAK-STAT signaling pathway in addition to the κNF-κB signaling pathway. With regard to the target molecules of the sesquiterpene lactones, high-affinity proteins of cynaropicrin were purified from the cell extract. ATP/ADP translocase 2 and tubulin were identified and suggested to be involved in the cytotoxic effects of cynaropicrin, although the target molecules for the inhibition of iNOS expression were not clarified.


Assuntos
Cynara scolymus/química , Lactonas/química , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/química , Células RAW 264.7/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Lactonas/farmacologia , Lactonas/uso terapêutico , Camundongos , Sesquiterpenos/farmacologia
4.
Phytother Res ; 35(3): 1559-1571, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33098234

RESUMO

Acute lung injury (ALI) involves series of inflammatory pathologies and cause high morbidity. Salviplenoid A (SA) was a new sesquiterpenoid from the traditional inflammatory herb Salvia plebeia. In our previous study, SA exhibited antiinflammatory activity in RAW264.7 cells. However, the extensive effects of SA in human cells and in vivo and the active mechanisms are unclear. Thus, in this study, we sought to access its effects in vitro and in vivo and to investigate its mechanisms. SA was proved to inhibit the induction of proinflammatory cytokines in human cell types, including pulmonary epithelial cells and endothetial cells. It also depressed monocyte adhesion. Moreover, SA potently attenuated the acute lung inflammation in the LPS-induced mouse model shown by down-regulation of proinflammatory mediators, inhibition of polymorphonuclear neutrophil infiltration, and alleviation of related symptoms like alveolar congestion and mucus secretion. Further evaluation confirmed that SA regulated NF-κB pathway by inhibiting the IκB-α phosphorylation. And it markedly mediated Nrf2/HO-1 pathway by activating the Nrf2/HO-1 expression and promoting Nrf2 nuclear translocation. Therefore, SA could attenuate acute lung inflammation via suppressing NF-κB and activating Nrf2, which provide a theoretical basis for the potential application of SA in clinic.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7/metabolismo , Salvia/química , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Transdução de Sinais
5.
Mar Drugs ; 18(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171870

RESUMO

In this study, Spirulina maxima derived pectin nanoparticles (SmPNPs) were synthesized and multiple biological effects were investigated using in vitro and in vivo models. SmPNPs were not toxic to Raw 264.7 cells and zebrafish embryos up to 1 mg/mL and 200 µg/mL, respectively. SmPNPs upregulated Il 10, Cat, Sod 2, Def 1, Def 2, and Muc 1 in Raw 264.7 cells and tlr2, tlr4b, tlr5b, il1ß, tnfα, cxcl8a, cxcl18b, ccl34a.4, ccl34b.4, muc5.1, muc5.2, muc5.3, hamp, cstd, hsp70, cat, and sod1 in the larvae and adult zebrafish, suggesting immunomodulatory activity. Exposure of larvae to SmPNPs followed by challenge with pathogenic bacterium Aeromonas hydrophila resulted a two-fold reduction of reactive oxygen species, indicating reduced oxidative stress compared to that in the control group. The cumulative percent survival of larvae exposed to SmPNPs (50 µg/mL) and adults fed diet supplemented with SmPNPs (4%) was 53.3% and 76.7%, respectively. Topical application of SmPNPs on adult zebrafish showed a higher wound healing percentage (48.9%) compared to that in the vehicle treated group (38.8%). Upregulated wound healing markers (tgfß1, timp2b, mmp9, tnfα, il1ß,ccl34a.4, and ccl34b.4), enhanced wound closure, and restored pigmentation indicated wound healing properties of SmPNPs. Overall, results uncover the multiple bioactivities of SmPNPs, which could be a promising biocompatible candidate for broad range of aquatic and human therapies.


Assuntos
Fatores Imunológicos/farmacologia , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Células RAW 264.7/efeitos dos fármacos , Spirulina/metabolismo , Cicatrização/efeitos dos fármacos , Peixe-Zebra , Aeromonas hydrophila/patogenicidade , Animais , Regulação da Expressão Gênica , Fatores Imunológicos/isolamento & purificação , Camundongos , Pectinas/isolamento & purificação , Células RAW 264.7/imunologia , Células RAW 264.7/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
J Nat Med ; 73(1): 331-337, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30392168

RESUMO

Bone-forming osteoblasts are differentiated from mesenchymal stem cells and dysregulation of this differentiation can lead to osteoporosis. Meanwhile, bone-resorbing osteoclasts are both differentiated and multinucleated from hematopoietic precursor cells of monocyte and/or macrophage lineage. Bone resorption inhibitors such as bisphosphonates and estrogen are used to treat osteoporosis. However, the adverse effects of the long-term use of these medicines are of concern, and so the development of new therapies to ameliorate osteoporosis is desirable. Therefore, in the present study, we screened 22 plant extracts and found that nine methanolic extracts of plants promote the differentiation of MC3T3-E1 cells to osteoblasts. These nine extracts were then evaluated for their inhibitory activity on osteoclast differentiation in RAW264.7 mouse macrophage cells. Of the nine extracts, Daucus carota, Vitis spp., Sasa veitchii, Euptelea polyandra, and Sesamum indicum exhibited pro-osteoblastic and anti-osteoclastic activity with low cytotoxicity, suggesting their potential effectiveness against osteoporosis.


Assuntos
Medicina Herbária/métodos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Células RAW 264.7/metabolismo , Animais , Camundongos , Osteoporose/patologia , Extratos Vegetais/farmacologia
7.
J Nat Med ; 73(1): 124-130, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30324332

RESUMO

A compound library, which consists of 75 natural ß-carboline-type or canthinone-type alkaloids from Simaroubaceae plants and their chemical synthetic analogues, was screened for the anti-inflammatory activity by inhibition of the overproduction of inflammatory mediator nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. Six compounds, namely, benzalharman (23), kumujian (27), 1-ethyl-1,2,3,4-tetrahydro-ß-carboline-3-carboxylic acid (37), 1-acetophenone-1,2,3,4-tetrahydro-ß-carboline-3-carboxylic acid (42), cathin-6-one (46), and 9-methoxy-cathin-6-one (57), exhibited significant inhibitory activity on the overproduction of NO with good dose dependency. Further investigation demonstrated that all of the six compounds down-regulated the high expression of inducible nitric oxide synthase (iNOS) protein. Among them, two canthinone-type alkaloids (46 and 57) potently down-regulated cyclooxygenase-2 (COX-2) protein expression in a dose-dependent manner and also inhibited the overproduction of inflammatory mediator prostaglandin E2 (PGE2). However, the ß-carboline-type alkaloids (23, 27, 37, and 42) exhibited no obvious inhibition on the overproduction of PGE2 and the expression of COX-2 protein. The results suggested that ß-carboline-type alkaloids and canthinone-type alkaloids may exert an anti-inflammatory effect through different mechanism.


Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Carbolinas/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7/metabolismo , Alcaloides/farmacologia , Animais , Carbolinas/farmacologia , Ciclo-Oxigenase 2/efeitos dos fármacos , Humanos , Camundongos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos
8.
Sci Rep ; 8(1): 13841, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218035

RESUMO

RAW 264.7 cells and HUVECs were compared to evaluate the effects of dialyzed coffee extract (DCE) and artificial coffee (AC). Immunoprecipitation high performance liquid chromatography (IP-HPLC) showed DCE-2.5- (equivalent to 2.5 cups of coffee a day) and DCE-5-induced protein expression that was beneficial to human health, i.e., they led to significant increases in proliferation-, immunity-, cellular protection-, antioxidant signaling-, and osteogenesis-related proteins but decreases in inflammation-, NFkB signaling-, cellular apoptosis-, and oncogenic signaling-related proteins in RAW 264.7 cells, and slight decreases in angiogenesis-related proteins in HUVECs. These protein expression changes were less frequently observed for DCE-10 treatment, while AC treatment induced very different changes in protein expression. We suggest that the favorable cellular effects of DCE were derived from minor coffee elements that were absent in AC, and that the reduced effects of DCE-10 compared with those of DCE-2.5 or DCE-5 might have been caused by greater adverse reactions to caffeine and chlorogenic acid in DCE-10 than DCE-2.5 or DCE-5. IP-HPLC results suggested that minor coffee elements in DCE might play beneficial roles in the global protein expression of proliferation-, immunity-, anti-inflammation-, cell protection-, antioxidant-, anti-apoptosis-, anti-oncogenesis-, and osteogenesis-related proteins in RAW 264.7 cells and enhance anti-angiogenic signaling in HUVECs.


Assuntos
Cafeína/farmacologia , Café/química , Café/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoprecipitação , Inflamação , Camundongos , Extratos Vegetais/farmacologia , Células RAW 264.7/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Phytother Res ; 32(3): 452-458, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29226489

RESUMO

Safe and efficient therapeutic agents for bone diseases are required in natural sources. We previously found that edible seaweed-derived polysaccharide porphyran exhibited anti-inflammatory effects through the down regulation of nuclear factor-κB. The aim of this study was to investigate the availability of porphyran as a therapeutic agent for bone diseases. The effects of porphyran on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells were examined. Porphyran suppressed RANKL-induced osteoclast formation in a concentration-dependent manner (6.25-50 µg/ml) without any cytotoxic effects. Furthermore, real-time polymerase chain reaction analyses indicated that porphyran at 50 µg/ml significantly attenuated the RANKL-induced increase in the mRNA levels of osteoclastogenesis-related marker genes such as nuclear factor of activated T cells, tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9 in RAW264.7 cells. To our knowledge, this is the first report showing that edible-seaweed-derived polysaccharide porphyran can suppress RANKL-induced osteoclastogenesis. Our results suggest that porphyran can be used as a safe therapeutic agent to improve osteoclast-related pathological conditions.


Assuntos
Osteoclastos/metabolismo , Ligante RANK/uso terapêutico , Células RAW 264.7/metabolismo , Sefarose/análogos & derivados , Animais , Diferenciação Celular , Camundongos , Ligante RANK/farmacologia , Sefarose/farmacologia , Sefarose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA