Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088826

RESUMO

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários , Linfócitos T CD4-Positivos , Calotropis , Ouro , Látex , Leishmania donovani , Macrófagos , Ayurveda , Células Th1 , Arsênio , Combinação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacologia , Látex/administração & dosagem , Látex/farmacologia , Chumbo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Antígenos de Protozoários/imunologia , Células Th1/imunologia , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C
2.
J Immunol Res ; 2022: 2619781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178457

RESUMO

Hepatocellular carcinoma (HCC) is an often-fatal malignant tumor with high lethality. Despite advances and significant efficacy in monotherapy, cancer therapy continues to pose several challenges. Novel combination regimens are an emerging strategy for anti-HCC and have demonstrated to be effective. Here, we propose a potential combination for HCC treatment named arsenic trioxide cooperate cryptotanshinone (ACCS). A remarkable synergistic therapeutic effect has been achieved compared with drugs alone in both in vivo and in vitro experiments. Mechanism study indicated that ACCS exerts its therapeutic actions by regulating macrophage-related immunity and glycolysis. ACCS potentiates the polarization of M1 macrophages and elevates the proportion of M1/M2 to remodel tumor immunity. Further molecular mechanism study revealed that ACCS intensifies the glucose utilization and glycolysis in the macrophage by increasing the phosphorylation of AMPK to activating the AMPK singling pathway. In conclusion, ACCS is a highly potential combination regimen for HCC treatment. The therapeutic potential of ACCS as a candidate option for anticancer drugs in restoring the balance of immunity and metabolism deserves further investigation.


Assuntos
Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Macrófagos/metabolismo , Fenantrenos/uso terapêutico , Animais , Diferenciação Celular , Citocinas/metabolismo , Combinação de Medicamentos , Sinergismo Farmacológico , Glicólise , Humanos , Imunidade Inata , Imunomodulação , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia
3.
J Immunol ; 208(5): 1115-1127, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165166

RESUMO

Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/imunologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Células Th17/imunologia , Animais , Artrite Reumatoide/patologia , Benzodiazepinonas/farmacologia , Diferenciação Celular/imunologia , Células Cultivadas , Humanos , Memória Imunológica/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Receptores Nucleares Órfãos , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2X4/genética , Proteínas com Domínio T/biossíntese , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia
4.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044832

RESUMO

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Canadá , Linhagem Celular , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Glicoproteína da Espícula de Coronavírus/genética , Células Th1/imunologia
5.
J Reprod Immunol ; 149: 103469, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979369

RESUMO

Autoimmune thyroiditis (AIT), one of the most common autoimmune diseases among women of reproductive age, is closely associated with reproductive failure and other obstetric complications. However, effective clinical strategies for the management of pregnant women with AIT are limited. It has been shown that Prunella vulgaris (PV), a traditional herbal medicine, can ameliorate AIT and other common thyroid disorders. Therefore, using an experimental autoimmune thyroiditis (EAT) rat model, we investigated the potential effects of PV on AIT-related pregnancy outcomes. According to the administered dose of PV, EAT rats were randomly divided into the untreated EAT and PV-treated EAT groups. We found that thyroid peroxidase antibody and thyroglobulin antibody serum levels and the inflammatory infiltration of the thyroid were reduced in all PV-treated groups. Increased splenic Tgfb1 mRNA levels and Treg cell proportions were associated with decreased Th1/Th17 cell proportions, and Ifng mRNA levels were reduced in rats that received low and medium doses of PV. Moreover, in the low-dose PV group, fetal development retardation and placental injuries were reversed. Overall, our findings indicated that PV could alleviate AIT and improve pregnancy outcomes in EAT rats by downregulating Th1/Th17 immune responses and inducing Treg cell proliferation.


Assuntos
Medicina Herbária/métodos , Extratos Vegetais/uso terapêutico , Complicações na Gravidez/terapia , Células Th1/imunologia , Células Th17/imunologia , Tireoidite Autoimune/terapia , Animais , Autoanticorpos/sangue , Modelos Animais de Doenças , Feminino , Humanos , Iodeto Peroxidase/imunologia , Ativação Linfocitária , Gravidez , Resultado da Gravidez , Prunella/imunologia , Ratos , Ratos Sprague-Dawley , Tireoglobulina/imunologia , Fator de Crescimento Transformador beta/metabolismo
6.
Biochem Pharmacol ; 197: 114918, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063441

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease characterized by multifocal perivascular infiltration of immune cells in the central nervous system (CNS). Cordycepin (3'-deoxyadenosine), an adenosine analogue initially extracted from the fungus Cordyceps militarisa, is one of the candidates that has multiple actions. We investigated that cordycepin attenuated the activation of LPS-induced mouse bone marrow-derived dendritic cells (BMDCs) and human monocyte-derived dendritic cells (MoDCs) through the inhibition of the AKT, ERK, NFκB, and ROS pathways and impaired the migration of BMDCs through the downregulation of adhesion molecules and chemokine receptors in vitro. In experimental autoimmune encephalomyelitis (EAE) model, preventive treatment with cordycepin decreased the expression of trafficking factors in the CNS, inhibited the secretion of inflammatory cytokines (IFN-γ, IL-6, TNF-α, and IL-17), and attenuated disease symptoms. A chemokine array indicated that cordycepin treatment reversed the high levels of CCL6, PARRES2, IL-16, CXCL10, and CCL12 in the brain and spinal cord of EAE mice, consistent with the RNA-seq data. Moreover, cordycepin suppressed the release of neuroinflammatory cytokines by activated microglial cells, macrophages, Th17 cells, Tc1 cells, and Th1 cells in vitro. Furthermore, cordycepin treatment exerted therapeutic effects on attenuating the disease severity in the early disease onset stage and late disease progression stage. Our study suggests that cordycepin treatment may not only prevent the occurrence of MS by inhibiting DC activation and migration but also potentially ameliorates the progression of MS by reducing neuroinflammation, which may provide insights into the development of new approaches for the treatment of MS.


Assuntos
Desoxiadenosinas/uso terapêutico , Encefalomielite Autoimune Experimental/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Células Cultivadas , Desoxiadenosinas/farmacologia , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , Células RAW 264.7 , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
7.
Biomed Pharmacother ; 145: 112366, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34776306

RESUMO

BACKGROUND: Mycoplasma pneumoniae is a leading cause of community-acquired respiratory infections. Infantile Feire Kechuan Oral Solution (IFKOS) is effective for treatment of M. pneumoniae infection. The aim of this study was to explore the potential mechanism of IFKOS against M. pneumoniae infection in basal epithelial human lung adenocarcinoma A549 cells. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effects of IFKOS on the viability of A549 cells infected with M. pneumoniae. Optical microscopy was used to observe cell morphology and a Muse cell analyzer was used to assess apoptosis and the cell cycle phase. Enzyme-linked immunosorbent assays were employed to assess the expression levels of interleukin (IL)-4, IL-6, IL-8, IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-α, and IFN-γ. RESULTS: Under certain conditions, M. pneumoniae infection reduced the viability and inhibited the proliferation of A549 cells, promoted early apoptosis, and arrested cells in the G0/G1 phase, thus shortening the S and G2/M phases (all p < 0.05). M. pneumoniae also upregulated expression of IL-8 and TNF-α and downregulated that of IL-6 (p < 0.05), which switched the immune balance of Th1/Th2 to Th1 cells. IFKOS (5.531 mg/mL) improved the viability and proliferation of M. pneumoniae-infected A549 cells, mitigated early apoptosis, and reversed cell cycle arrest in the G0/G1 phase, thereby extending the S and G2/M phases (all, p < 0.05). IFKOS downregulated expression of IL-8 and TNF-α and upregulated that of IL-6 (p < 0.01), thereby reversing the immune imbalance of Th1/Th2. Secretion of IL-4, IL-17, IFN-α, and IFN-γ was not observed. CONCLUSION: IFKOS played a protective role in the regulation of cell viability, apoptosis, the cell cycle, and Th1/Th2 immune imbalance induced by M. pneumoniae infection and conveyed an anti-inflammatory effect in A549 cells.


Assuntos
Antibacterianos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Mycoplasma pneumoniae/efeitos dos fármacos , Pneumonia por Mycoplasma/tratamento farmacológico , Células A549 , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pneumonia por Mycoplasma/imunologia , Pneumonia por Mycoplasma/microbiologia , Células Th1/imunologia , Células Th2/imunologia
8.
Drug Des Devel Ther ; 15: 4559-4574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764638

RESUMO

BACKGROUND: Prunella vulgaris L. (PV) has been used to treat autoimmune thyroiditis (AIT), but the underlying mechanism remains unknown. The present study was designed to evaluate the effect of PV on AIT and explore the role of high-mobility group box-1 (HMGB1) signaling in PV-mediated effects in vivo and in vitro. METHODS: In the present study, bioactive components of PV were identified using UPLC-ESI-MS. The protective effects and potential mechanisms critical for the anti-inflammatory and immunomodulatory effects of PV in AIT were investigated in a rat model of thyroglobulin-induced experimental autoimmune thyroiditis (EAT) and in lipopolysaccharide (LPS)-induced thyroid follicular cells (TFCs). RESULTS: The main bioactive compound identified in PV was rosmarinic acid. The thyroid volume, thyroiditis inflammation score and serum thyroglobulin antibody levels of EAT rats were attenuated by PV treatment (P<0.01). In addition, PV significantly reduced the elevated levels of the proinflammatory cytokines TNF-α, IL-6, IL-1ß and monocyte chemoattractant protein-1 (MCP-1) both in vivo (P<0.01) and in vitro (P<0.05). PV downregulated HMGB1 mRNA and protein expression, reduced HMGB1 secretion, and inhibited TLR9 signaling pathways (TLR9 and MyD88) in PV-treated EAT rats and TFCs. Moreover, PV reversed the increases in the numbers of splenic Th1, Th2, and Th17 cells. Finally, our results acquired following administration of ethyl pyruvate, an HMGB1 inhibitor, to splenocytes cultured in vitro supported the hypothesis that the HMGB1/TLR9 pathway is involved in the PV-mediated reductions in Th1, Th2 and Th17 cells. CONCLUSION: PV decreased the activity of the TLR9/MyD88 pathway and proinflammatory cytokines through HMGB1. In addition, we are the first to show that PV attenuated the HMGB1-induced increases in Th1, Th2 and Th17 cells in AIT models. These findings provide new evidence for the potential therapeutic value of PV as a treatment for AIT and other autoimmune diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Prunella/química , Tireoidite Autoimune/tratamento farmacológico , Animais , Anti-Inflamatórios/isolamento & purificação , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteína HMGB1/metabolismo , Lipopolissacarídeos , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Tireoidite Autoimune/imunologia , Receptor Toll-Like 9/metabolismo
9.
Biomolecules ; 11(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680134

RESUMO

Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in breast cancer cells. Little is known about its effects on the tumor immune microenvironment. We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFß; p = 0.049), whereas in Cht+I2 tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ gene promoter (by increasing its unmethylated form) and silences TGFß in Cht+I2. In conclusion, our data showed that I2 supplements induce the activation of the immune response and that when combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in these responses are being analyzed, but preliminary data suggest that methylation/demethylation mechanisms could also participate.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator de Transcrição GATA3/genética , Interferon gama/genética , Iodo/administração & dosagem , Fator de Crescimento Transformador beta1/genética , Adulto , Idoso , Inibidores da Angiogênese/administração & dosagem , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunidade/genética , Iodo/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , México , Pessoa de Meia-Idade , RNA-Seq , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
J Immunol Res ; 2021: 9483433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485538

RESUMO

Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Withania/química , Vitanolídeos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Próstata/efeitos dos fármacos , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Vitanolídeos/uso terapêutico
11.
Cell Immunol ; 368: 104421, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34385001

RESUMO

Epigallocatechin-3 gallate (EGCG) is a polyphenolic component of tea and has potential curative effects in patients with autoimmune diseases. Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS). It remains unknown whether EGCG can regulate macrophage subtypes in MS. Here we evaluated the effects of EGCG in experimental autoimmune encephalomyelitis (EAE), MS mouse model. We found that EGCG treatment reduced EAE severity and macrophage inflammation in the CNS. Moreover, EAE severity was well correlated with the ratio of M1 to M2 macrophages, and EGCG treatment suppressed M1 macrophage-mediated inflammation in spleen. In vitro experiments showed that EGCG inhibited M1 macrophage polarization, but promoted M2 macrophage polarization. These effects were likely to be related to the inhibition of nuclear factor-κB signaling and glycolysis in macrophages by EGCG in macrophages. Overall, these findings provided important insights into the mechanisms through which EGCG may mediate MS.


Assuntos
Catequina/análogos & derivados , Encefalomielite Autoimune Experimental/terapia , Macrófagos/metabolismo , Esclerose Múltipla/terapia , Fármacos Neuroprotetores/uso terapêutico , Animais , Catequina/uso terapêutico , Diferenciação Celular , Citocinas/metabolismo , Glicólise , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Chá , Células Th1/imunologia , Células Th2/imunologia
12.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343498

RESUMO

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Assuntos
Antioxidantes/farmacologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Selênio/farmacologia , Selenoproteína W/metabolismo , Células Th1/citologia , Diferenciação Celular/imunologia , Polaridade Celular , Colo/imunologia , Colo/patologia , Glicina Hidroximetiltransferase/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Células Th1/imunologia , Ubiquitina-Proteína Ligases/metabolismo
13.
Aging (Albany NY) ; 13(14): 18423-18441, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315133

RESUMO

We investigated the mechanisms underlying the therapeutic effects of Yiqi Jiemin decoction (YJD), a traditional Chinese medicine (TCM), in the ovalbumin (OVA)-induced allergic rhinitis (AR) model in guinea pigs. YJD significantly decreased infiltration of mast cells and eosinophils into the nasal mucosa of AR model guinea pigs. YJD also increased expression of TGF-ß in the nasal mucosa, restored the balance of Th1/Th2 immune cell responses, and decreased serum levels of various pro-inflammatory mediators, including histamine (HA), neuropeptide Y (NPY), acetylcholine (ACH), norepinephrine and immunoglobulin E (IgE). Metabolic analyses using liquid chromatography coupled with high-resolution mass spectrometry revealed that YJD improved cellular metabolism in AR model guinea pigs and increased serum levels of glycocholic acid while decreasing levels 1-palmitoyl lysophosphatidic acid. RNA-sequencing analysis identified BPIFB2 as a potential diagnostic biomarker and therapeutic target for AR. Functional enrichment analyses showed that YJD significantly inhibited cytokine secretion pathways in AR model guinea pigs. These findings demonstrate that YJD protects against OVA-induced AR in guinea pigs by suppressing inflammation in the nasal mucosa, restoring Th1/Th2 balance, and improving cellular metabolism.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Rinite Alérgica/prevenção & controle , Células Th1/efeitos dos fármacos , Equilíbrio Th1-Th2/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Biomarcadores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eosinófilos/metabolismo , Cobaias , Histamina/metabolismo , Imunoglobulina E/sangue , Mastócitos/metabolismo , Camundongos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Ovalbumina , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/genética , Rinite Alérgica/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
14.
J Med Microbiol ; 70(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34115583

RESUMO

Introduction. Leishmaniasis is a neglected tropical and subtropical disease caused by over 20 protozoan species.Hypothesis. Treatment of this complex disease with traditional synthetic drugs is a major challenge worldwide. Natural constituents are unique candidates for future therapeutic development.Aim. This study aimed to assess the in vivo anti-leishmanial effect of the Gossypium hirsutum extract, and its fractions compared to the standard drug (Glucantime, MA) in a murine model and explore the mechanism of action.Methodology. Footpads of BALB/c mice were infected with stationary phase promastigotes and treated topically and intraperitoneally with G. hirsutum extract, its fractions, or Glucantime, 4 weeks post-infection. The extract and fractions were prepared using the Soxhlet apparatus with chloroform followed by the column procedure.Results. The crude extract significantly decreased the footpad parasite load and lesion size compared to the untreated control group (P<0.05), as revealed by dilution assay, quantitative real-time PCR, and histopathological analyses. The primary mode of action involved an immunomodulatory role towards the Th1 response in the up-regulation of IFN-γ and IL-12 and the suppression of IL-10 gene expression profiling against cutaneous leishmaniasis caused by Leishmania major.Conclusion. This finding suggests that the extract possesses multiple combinatory effects of diverse bioactive phytochemical compositions that exert its mechanisms of action through agonistic-synergistic interactions. The topical extract formulation could be a suitable and unique candidate for future investigation and pharmacological development. Further studies are crucial to evaluate the therapeutic potentials of the extract alone and in combination with conventional drugs using clinical settings.


Assuntos
Antiprotozoários/uso terapêutico , Gossypium , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Administração Tópica , Animais , Antiprotozoários/farmacologia , Feminino , Injeções Intraperitoneais , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-10/genética , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Leishmania major/fisiologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/fisiopatologia , Linfonodos/patologia , Antimoniato de Meglumina/administração & dosagem , Antimoniato de Meglumina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Baço/parasitologia , Baço/patologia , Células Th1/imunologia , Transcriptoma
15.
Front Immunol ; 12: 637809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108960

RESUMO

Iron plays an important role in host-pathogen interactions, in being an essential element for both pathogen and host metabolism, but also by impacting immune cell differentiation and anti-microbial effector pathways. Iron has been implicated to affect the differentiation of T lymphocytes during inflammation, however, so far the underlying mechanism remained elusive. In order to study the role of iron in T cell differentiation we here investigated how dietary iron supplementation affects T cell function and outcome in a model of chronic infection with the intracellular bacterium Salmonella enterica serovar typhimurium (S. Typhimurium). Iron loading prior to infection fostered bacterial burden and, unexpectedly, reduced differentiation of CD4+ T helper cells type 1 (Th1) and expression of interferon-gamma (IFNγ), a key cytokine to control infections with intracellular pathogens. This effect could be traced back to iron-mediated induction of the negative immune checkpoint regulator T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), expressed on the surface of this T cell subset. In vitro experiments demonstrated that iron supplementation specifically upregulated mRNA and protein expression of TIM-3 in naïve Th cells in a dose-depdendent manner and hindered priming of those T cells towards Th1 differentiation. Importantly, administration of TIM-3 blocking antibodies to iron-loaded mice infected with S. Typhimurium virtually restored Th1 cell differentiation and significantly improved bacterial control. Our data uncover a novel mechanism by which iron modulates CD4+ cell differentiation and functionality and hence impacts infection control with intracellular pathogens. Specifically, iron inhibits the differentiation of naive CD4+ T cells to protective IFNγ producing Th1 lymphocytes via stimulation of TIM-3 expression. Finally, TIM-3 may serve as a novel drug target for the treatment of chronic infections with intracellular pathogens, specifically in iron loading diseases.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Ferro/metabolismo , Salmonella typhi/fisiologia , Células Th1/imunologia , Febre Tifoide/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Suplementos Nutricionais , Modelos Animais de Doenças , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Regulação para Cima
16.
Int Immunopharmacol ; 97: 107811, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091117

RESUMO

Multiple sclerosis (MS) is a neurodegenerative and demyelinating autoimmune disease mediated by autoreactive T cells that affects the central nervous system (CNS). Electroacupuncture (EA) has emerged as an alternative or supplemental treatment for MS, but the mechanism by which EA may alleviate MS symptoms is unresolved. Here, we examined the effects of EA at the Zusanli (ST36) acupoint on mice with experimental autoimmune encephalomyelitis (EAE), the predominant animal model of MS. The effects of EA on EAE emergence, inflammatory cell levels, proinflammatory cytokines, and spinal cord pathology were examined. EA treatment attenuated the EAE clinical score and associated spinal cord demyelination, while reducing the presence of proinflammatory cytokines in mononuclear cells (MNCs), downregulating microRNA (miR)-155, and upregulating the opioid peptide precursor proopiomelanocortin (POMC) in the CNS. Experiments in which cultured neurons were transfected with a miR-155 mimic or a miR-155 inhibitor further showed that the direct modulation of miR-155 levels could regulate POMC levels in neurons. In conclusion, the alleviation of EAE by EA is characterized by reduced proportions of Th1/Th17 cells and increased proportions of Th2 cells, POMC upregulation, and miR-155 downregulation, while miR-155 itself can suppress POMC expression. These results, support the hypothesis that the effects of EA on EAE may involve the downregulation of miR-155.


Assuntos
Eletroacupuntura , Encefalomielite Autoimune Experimental/terapia , MicroRNAs/metabolismo , Esclerose Múltipla/terapia , Animais , Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Esclerose Múltipla/imunologia , Pró-Opiomelanocortina/genética , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Regulação para Cima/imunologia
17.
Eur J Pharmacol ; 904: 174193, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015316

RESUMO

Coronavirus (SARS-CoV-2) is spreading rapidly in the world and is still taking a heavy toll. Studies show that cytokine storms and imbalances in T-helper (Th)1/Th2 play a significant role in most acute cases of the disease. A number of medications have been suggested to treat or control the disease but have been discontinued due to their side effects. Melatonin, as an intrinsic molecule, possesses pharmacological anti-inflammatory and antioxidant properties that decreases in concentration with age; as a result, older people are more prone to various diseases. In this study, patients who were hospitalized with a diagnosis of coronavirus disease 2019 (COVID-19) were given a melatonin adjuvant (9 mg daily, orally) for fourteen days. In order to measure markers of Th1 and Th2 inflammatory cytokines (such as interleukin (IL)-2, IL-4, and interferon (IFN)-γ) as well as the expression of Th1 and Th2 regulatory genes (signal transducer and activator of transcription (STAT)4, STAT6, GATA binding protein 3 (GATA3), and T-box expressed in T cell (T-bet)), blood samples were taken from patients at the beginning and end of the treatment. Adjuvant therapy with melatonin controlled and reduced inflammatory cytokines in patients with COVID-19. Melatonin also controlled and modulated the dysregulated genes that regulate the humoral and cellular immune systems mediated by Th1 and Th2. In this study, it was shown for the first time that melatonin can be used as a medicinal adjuvant with anti-inflammatory mechanism to reduce and control inflammatory cytokines by regulating the expression of Th1 and Th2 regulatory genes in patients with COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Citocinas/sangue , Melatonina , Transdução de Sinais , Células Th1 , Células Th2 , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/imunologia , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Feminino , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Irã (Geográfico)/epidemiologia , Masculino , Melatonina/administração & dosagem , Melatonina/imunologia , Pessoa de Meia-Idade , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Resultado do Tratamento
18.
J Immunol ; 206(9): 2233-2245, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33879579

RESUMO

Induction of lung mucosal immune responses is highly desirable for vaccines against respiratory infections. We recently showed that monocyte-derived dendritic cells (moDCs) are responsible for lung IgA induction. However, the dendritic cell subset inducing lung memory TH cells is unknown. In this study, using conditional knockout mice and adoptive cell transfer, we found that moDCs are essential for lung mucosal responses but are dispensable for systemic vaccine responses. Next, we showed that mucosal adjuvant cyclic di-GMP differentiated lung moDCs into Bcl6+ mature moDCs promoting lung memory TH cells, but they are dispensable for lung IgA production. Mechanistically, soluble TNF mediates the induction of lung Bcl6+ moDCs. Our study reveals the functional heterogeneity of lung moDCs during vaccination and paves the way for an moDC-targeting vaccine strategy to enhance immune responses on lung mucosa.


Assuntos
GMP Cíclico/análogos & derivados , Pulmão/imunologia , Monócitos/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos , Animais , Diferenciação Celular/imunologia , GMP Cíclico/imunologia , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia
19.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924467

RESUMO

Kurarinone is a flavanone, extracted from Sophora flavescens Aiton, with multiple biological effects. Here, we determine the therapeutic potential of kurarinone and elucidate the interplay between kurarinone and the autoimmune disease rheumatoid arthritis (RA). Arthritis was recapitulated by induction of bovine collagen II (CII) in DBA/1 mice as a collagen-induced arthritis (CIA) model. After the establishment of the CIA, kurarinone was given orally from day 21 to 42 (100 mg/kg/day) followed by determination of the severity based on a symptom scoring scale and with histopathology. Levels of cytokines, anti-CII antibodies, and the proliferation and lineages of T cells from the draining lymph nodes were measured using ELISA and flow cytometry, respectively. The expressional changes, including STAT1, STAT3, Nrf2, KEAP-1, and heme oxygenase-1 (HO-1) changes in the paw tissues, were evaluated by Western blot assay. Oxidative stress featured with malondiadehyde (MDA) and hydrogen peroxide (H2O2) activities in paw tissues were also evaluated. Results showed that kurarinone treatment reduced arthritis severity of CIA mice, as well as their levels of proinflammatory cytokines, TNF-α, IL-6, IFN-γ, and IL-17A, in the serum and paw tissues. T cell proliferation was also reduced by kurarinone even under the stimulation of CII and anti-CD3 antibody. In addition, kurarinone reduced STAT1 and STAT3 phosphorylation and the proportions of Th1 and Th17 cells in lymph nodes. Moreover, kurarinone suppressed the production of MDA and H2O2. All while promoting enzymatic activities of key antioxidant enzymes, SOD and GSH-Px. In the paw tissues, upregulation of Nrf-2 and HO-1, and downregulation of KEAP-1 were observed. Overall, kurarinone showed an anti-inflammatory effect by inhibiting Th1 and Th17 cell differentiation and an antioxidant effect exerted in part through activating the Nrf-2/KEAP-1 pathway. These beneficial effects in CIA mice contributed to the amelioration of their arthritis, indicating that kurarinone might be an adjunct treatment option for rheumatoid arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Flavonoides/uso terapêutico , Animais , Antioxidantes/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galinhas , Colágeno Tipo II , Citocinas/sangue , Citocinas/metabolismo , Feminino , Flavonoides/farmacologia , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Articulações/efeitos dos fármacos , Articulações/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Malondialdeído/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Superóxido Dismutase/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
20.
Cancer Immunol Immunother ; 70(12): 3435-3449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33877384

RESUMO

Specific extracts of selected vegetables (SV) have been shown to benefit the survival of stage IIIb/IV non-small cell lung cancer patients in phase I/II studies and is currently in a phase III trial. However, the underlying mechanism of SV-mediated antitumor immune responses has not been elucidated. Our results indicate that SV modulated the NK and adoptive T cell immune responses in antitumor efficacy. Furthermore, antitumor effects of SV were also mediated by innate myeloid cell function, which requires both TLR and ß-glucan signaling in a MyD88/TRIF and Dectin-1-dependent manner, respectively. Additionally, SV treatment reduced granulocytic myeloid-derived suppressor cell (MDSC) infiltration into the tumor and limited monocytic MDSC toward the M2-like functional phenotype. Importantly, SV treatment enhanced antigen-specific immune responses by augmenting the activation of antigen-specific TH1/TH17 cells in secondary lymphoid organs and proliferative response, as well as by reducing the Treg population in the tumor microenvironment, which was driven by SV-primed activated M-MDSC. Our results support the idea that SV can subvert immune-tolerance state in the tumor microenvironment and inhibit tumor growth. The present study suggests that features, such as easy accessibility, favorable clinical efficacy, no detectable side effects and satisfactory safety make SV a feasible, appealing and convincing adjuvant therapy for the treatment of cancer patients and prevent tumor recurrence and/or metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Nutrientes/imunologia , Extratos Vegetais/imunologia , Microambiente Tumoral/imunologia , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Tolerância Imunológica/imunologia , Imunidade/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Monócitos/imunologia , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Recidiva Local de Neoplasia/imunologia , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA