Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.454
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Virol J ; 21(1): 95, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664855

RESUMO

BACKGROUND: African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS: Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS: Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.


Assuntos
Vírus da Febre Suína Africana , Anti-Inflamatórios , Antivirais , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Antivirais/farmacologia , Suínos , Anti-Inflamatórios/farmacologia , Chlorocebus aethiops , Células Vero , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Macrófagos/imunologia , Febre Suína Africana/virologia , Replicação Viral/efeitos dos fármacos , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Efeito Citopatogênico Viral/efeitos dos fármacos , Citocinas/metabolismo , Internalização do Vírus/efeitos dos fármacos
2.
J Ethnopharmacol ; 330: 118206, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636572

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.


Assuntos
Croton , Óleos Voláteis , Folhas de Planta , Animais , Croton/química , Óleos Voláteis/toxicidade , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Chlorocebus aethiops , Camundongos , Células Vero , Testes de Mutagenicidade , Administração Oral , Células HeLa , Células HT29 , Células MCF-7 , Masculino , Feminino , Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA/efeitos dos fármacos
3.
Planta Med ; 90(6): 469-481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580306

RESUMO

Methylrhodomelol (1: ) is a bromophenol from the red alga Vertebrata lanosa that has been associated with antimicrobial properties. The aim of the current study was, therefore, to assess the antimicrobial potential of this compound in more detail against the gram-negative pathogen Pseudomonas aeruginosa. 1: exerted weak bacteriostatic activity against different strains when grown in minimal medium, whereas other phenolics were inactive. In addition, 1: (35 and 10 µg/mL) markedly enhanced the susceptibility of multidrug-resistant P. aeruginosa toward the aminoglycoside gentamicin, while it did not affect the viability of Vero kidney cells up to 100 µM. Finally, pyoverdine release was reduced in bacteria treated at sub-inhibitory concentration, but no effect on other virulence factors was observed. Transcriptome analysis of treated versus untreated P. aeruginosa indicated an interference of 1: with bacterial carbon and energy metabolism, which was corroborated by RT-qPCR and decreased ATP-levels in treated bacteria. In summary, the current study characterized the antibacterial properties of methylrhodomelol, revealed its potential as an adjuvant to standard antibiotics, and generated a hypothesis on its mode of action.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Rodófitas , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Animais , Rodófitas/química , Células Vero , Fenóis/farmacologia , Chlorocebus aethiops , Gentamicinas/farmacologia
4.
Microb Cell Fact ; 23(1): 92, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539154

RESUMO

Excessive consumption of antibiotics is considered one of the top public health threats, this necessitates the development of new compounds that can hamper the spread of infections. A facile green technology for the biosynthesis of Zinc oxide nanoparticles (ZnO NPs) using the methanol extract of Spirulina platensis as a reducing and stabilizing agent has been developed. A bunch of spectroscopic and microscopic investigations confirmed the biogenic generation of nano-scaled ZnO with a mean size of 19.103 ± 5.66 nm. The prepared ZnO NPs were scrutinized for their antibacterial and antibiofilm potentiality, the inhibition zone diameters ranged from 12.57 ± 0.006 mm to 17.33 ± 0.006 mm (at 20 µg/mL) for a variety of Gram-positive and Gram-negative pathogens, also significant eradication of the biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae by 96.7% and 94.8% respectively was detected. The free radical scavenging test showed a promising antioxidant capacity of the biogenic ZnO NPs (IC50=78.35 µg/mL). Furthermore, the anti-inflammatory role detected using the HRBCs-MSM technique revealed an efficient stabilization of red blood cells in a concentration-dependent manner. In addition, the biogenic ZnO NPs have significant anticoagulant and antitumor activities as well as minimal cytotoxicity against Vero cells. Thus, this study offered green ZnO NPs that can act as a secure substitute for synthetic antimicrobials and could be applied in numerous biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Spirulina , Óxido de Zinco , Animais , Chlorocebus aethiops , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Células Vero , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Phytomedicine ; 128: 155491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489894

RESUMO

BACKGROUND: Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE: The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS: The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS: Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION: This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.


Assuntos
Antivirais , Arctium , Vírus Chikungunya , Vírus da Dengue , Furanos , Lignanas , Simulação de Acoplamento Molecular , Replicação Viral , Furanos/farmacologia , Lignanas/farmacologia , Arctium/química , Vírus Chikungunya/efeitos dos fármacos , Animais , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Células Vero , Chlorocebus aethiops , Vírus da Dengue/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Sementes/química
6.
Viruses ; 16(3)2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543718

RESUMO

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologia
7.
Chem Biodivers ; 21(4): e202400319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423999

RESUMO

A new oxidized heptene, 7-benzoyloxy-4-hydroxy-1-ethoxy-2E,4Z-heptadiene-1,6-dione, namely siamheptene A (1), together with eight known compounds (2-9), were isolated from the leaves of Uvaria siamensis. Their structures were elucidated by detailed analysis of spectroscopic (IR, 1D and 2D NMR) and mass spectrometric data. Compound 9 is reported for the first time from Uvaria genus. Siamheptene A was evaluated for cytotoxicity against HeLa (cervical cancer cells), A549 (lung cancer cells), and Vero cells using the MTT assay and screened for antibacterial activities. In addition, the isolated compounds (1-7, and 9) were investigated for their antioxidant (DPPH, FRAP and ABTS+ assays), anti-glycation, and anti-tyrosinase properties. Based on our results, compound 1 had mild cytotoxicity against Hela and A549 cancer cell lines, with IC50 ranging from 31.09 to 31.67 µg/mL. Compound 1 also showed antioxidant activities in all tasted assays. However, it showed no detectable activity (>128 µg/mL) against various bacterial strains, and it has no inhibitory effects on tyrosinase enzymes. Among of all tested compounds, chrysin (5), showcased highest anti-glycation and anti-tyrosinase activities. This comprehensive analysis provides highlighting the potential of 1 as a lead compound for further structural modification and development of cytotoxic or antioxidant agents.


Assuntos
Antineoplásicos , Uvaria , Animais , Chlorocebus aethiops , Humanos , Monofenol Mono-Oxigenase , Uvaria/química , Antioxidantes/farmacologia , Antioxidantes/química , Células Vero , Antineoplásicos/farmacologia , Extratos Vegetais/química
8.
J Mol Med (Berl) ; 102(4): 521-536, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381158

RESUMO

Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix. Here, we assess the potential of protease inhibitors (PI) derived from potatoes in inhibiting viral infection and reducing tissue damage. The original full spectrum of potato PI was developed into five fractions by means of chromatography and hydrolysis. Individual fractions showed varying inhibitory efficacy towards a panel of proteases including trypsin, chymotrypsin, ACE2, elastase, and cathepsins B and L. The fractions did not interfere with SARS-CoV-2 infection of Vero E6 cells in vitro. Importantly, two of the fractions fully inhibited elastin-degrading activity of complete primary human neutrophil degranulate. These data warrant further development of potato PI fractions for biomedical purposes, including tissue damage crucial to SARS-CoV-2 pathogenesis. KEY MESSAGES: Protease inhibitor fractions from potato differentially inhibit a series of human proteases involved in viral replication and in tissue damage by overshoot inflammation. Protease inhibition of cell surface receptors such as ACE2 does not prevent virus infection of Vero cells in vitro. Protease inhibitors derived from potato can fully inhibit elastin-degrading primary human neutrophil proteases. Protease inhibitor fractions can be produced at high scale (hundreds of thousands of kilograms, i.e., tons) allowing economically feasible application in lower and higher income countries.


Assuntos
COVID-19 , Solanum tuberosum , Animais , Chlorocebus aethiops , Humanos , Solanum tuberosum/metabolismo , Peptídeo Hidrolases , Células Vero , Enzima de Conversão de Angiotensina 2 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Inibidores Enzimáticos , Inflamação , Antivirais , Elastina/metabolismo
9.
Phytomedicine ; 124: 155308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185069

RESUMO

BACKGROUND: In the past decades, extensive research has been conducted to identify new drug targets for the treatment of Herpes simplex virus type 1 (HSV-1) infections. However, the emergence of drug-resistant HSV-1 strains remains a major challenge. This necessitates the identification of new drugs with novel mechanisms of action. Lanatoside C (LanC), a cardiac glycoside (CG) approved by the US Food and Drug Administration (FDA), has demonstrated anticancer and antiviral properties. Nevertheless, its potential as an agent against HSV-1 infections and the underlying mechanism of action are currently unknown. PURPOSE: This study aimed to investigate the antiviral activity of LanC against HSV-1 and elucidate its molecular mechanisms. METHODS: The in vitro antiviral activity of LanC was assessed by examining the levels of viral genes, proteins, and virus titers in HSV-1-infected ARPE-19 and Vero cells. Immunofluorescence (IF) analysis was performed to determine the intracellular distribution of NRF2. Additionally, an in vivo mouse model of HSV-1 infection was developed to evaluate the antiviral activity of LanC, using indicators such as intraepidermal nerve fibers (IENFs) loss and viral gene inhibition. RESULTS: Our findings demonstrate that LanC significantly inhibits HSV-1 replication both in vitro and in vivo. The antiviral effect of LanC is mediated by the perinuclear translocation of NRF2. CONCLUSIONS: LanC exhibits anti-HSV-1 effects in viral infections, which are associated with the intracellular translocation of NRF2. These findings suggest that LanC has the potential to serve as a novel NRF2 modulator in the treatment of viral diseases.


Assuntos
Herpesvirus Humano 1 , Lanatosídeos , Chlorocebus aethiops , Animais , Camundongos , Células Vero , Fator 2 Relacionado a NF-E2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
10.
Int J Environ Health Res ; 34(2): 1113-1123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37029956

RESUMO

This study examined the antioxidant, anticancer and antiviral properties of the methanolic extracts from bigarade (Citrus aurantium L.) leaves at two development stages. Ferulic acid, naringin and naringenin were the principal phenolic components of young and old leaves. The highest total antioxidant capacity was obtained in young leaf extracts (YLE). These latter also exhibited the highest antiradical DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) activities, while the highest iron chelating and reducing power activities were observed in old leaf extracts (OLE). The potent anticancer activity was observed in YLE for human lung carcinoma (A-549) and in OLE for colon adenocarcinoma (DLD-1) cells. YLE showed the highest virucidal effects as compared to OLE and the positive control acyclovir against herpes simplex virus type-1 (HSV-1) propagation in Vero cells during the absorption and replication periods. The young and old leaves might be a source of natural antioxidants and protective agents against oxidative damage.


Assuntos
Adenocarcinoma , Citrus , Neoplasias do Colo , Herpesvirus Humano 1 , Animais , Chlorocebus aethiops , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Células Vero , Citrus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antivirais/farmacologia , Estresse Oxidativo , Pulmão
11.
Phytomedicine ; 123: 155197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952409

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Assuntos
Dioxolanos , Glicosídeos , Lignanas , Naftalenos , Phyllanthus , Infecção por Zika virus , Zika virus , Recém-Nascido , Animais , Humanos , Chlorocebus aethiops , Infecção por Zika virus/tratamento farmacológico , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Replicação Viral
12.
Biol Trace Elem Res ; 202(4): 1683-1698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37460779

RESUMO

The zinc oxide nanoparticles (ZnONPs) have attracted exhilarating research interest due to their novel distinguishing characteristics such as size, shape, high surface activity, large surface area and biocompatibility. Being highly bioavailable and exerting a superior efficacy than conventional zinc sources, ZnONPs is emerging as an alternative feed supplement for poultry. The present study involves the synthesis of ZnONPs through a cost effective and eco-friendly method using planetary ball milling technique and characterized for its size, shape, optical property, functional group and elemental concentration using particle size analyzer, Transmission Electron Microscopy, X-Ray Diffraction analysis, Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy and Inductively Coupled Plasma-Mass Spectroscopy. In vitro cytotoxicity study using Baby Hamster kidney (BHK-21) cells, Vero cells and primary chick liver culture cells revealed that ZnONPs can be safely incorporated in the broiler chick's feed up to the concentration of 100 mg/kg. To investigate the effects of ZnONPs on production performances in broiler chicks, a feeding trial was carried out using 150-day-old broiler chicks randomly allotted in five treatment groups. The dietary treatment groups were: T1 (80 mg/kg of zinc oxide), T2 (60 mg/kg of zinc methionine) and T3, T4 and T5 received 60, 40 and 20 mg/kg of ZnONPs respectively. The results showed a significant improvement (p < 0.05) in the body weight gain and feed conversion ratio of broiler chicks supplemented with 20 and 40 mg/kg of ZnONPs. The ZnONPs supplementation significantly (p < 0.05) increased the dressing percentage in addition to significant (p < 0.05) reduction in the meat pH compared to inorganic and organic zinc supplementation. Overall, an eco-friendly method for ZnONPs synthesis was demonstrated and the optimum dietary level (20 mg/kg) of ZnONPs could enhance the growth, the meat quality and Zn uptake without any negative effects on selected serum biochemical parameters in the broiler chicks.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Chlorocebus aethiops , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Galinhas/metabolismo , Células Vero , Suplementos Nutricionais/análise , Zinco/farmacologia , Nanopartículas Metálicas/química , Carne/análise , Ração Animal/análise
13.
Microsc Res Tech ; 87(3): 602-615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018343

RESUMO

This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 µm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 µg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 µg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.


Assuntos
Antineoplásicos , Cucurbita , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Animais , Chlorocebus aethiops , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Cucurbita/metabolismo , Simulação de Acoplamento Molecular , Células Vero , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Antineoplásicos/farmacologia , Sementes/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Difração de Raios X
14.
Biotechnol Lett ; 46(1): 127-142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150096

RESUMO

Rhodomyrtus tomentosa leaf (RT)-incorporated transferosomes were developed with lecithin and cholesterol blends with edge activators at different ratios. RT-transferosomes were characterized and employed in transferosomal gel formulations for the management of skin and soft-tissue infections. The optimized formulation entrapped up to 81.90 ± 0.31% of RT with spherical vesicles (405.3 ± 2.0 nm), polydispersity index value of 0.16 ± 0.08, and zeta potential of - 61.62 ± 0.86 mV. Total phenolic and flavonoid contents of RT-transferosomes were 15.65 ± 0.04 µg GAE/g extract and 43.13 ± 0.91 µg QE/g extract, respectively. RT-transferosomes demonstrated minimum inhibitory and minimum bactericidal concentrations at 8-256 and 64-1024 µg/mL, respectively. Free radical scavenging assay showed RT-transferosomes with high scavenging activity against DPPH and ABTS radicals. Moreover, RT-transferosomes demonstrated moderate activity against mushroom tyrosinase, with IC50 values of 245.32 ± 1.32 µg/mL. The biocompatibility results against L929 fibroblast and Vero cells demonstrated IC50 at 7.05 ± 0.17 and 4.73 ± 0.13 µg/mL, respectively. In addition, nitric oxide production significantly decreased by 6.78-88.25% following the treatment with 31.2-500 ng/mL RT-transferosomes (p < 0.001). Furthermore, the freeze-thaw stability study displayed no significant change in stability in the sedimentation and pH of gel fortified with RT-transferosomes. The results suggested that RT-transferosome formulation can be effectively employed as natural biomedicines for scar prevention and the management of skin soft-tissue infections.


Assuntos
Lipossomos , Fosfatidilcolinas , Xantonas , Animais , Chlorocebus aethiops , Hidrogéis , Células Vero , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química
15.
Sci Rep ; 13(1): 21489, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057373

RESUMO

Natural products and herbal medicine have been widely used in drug discovery for treating infectious diseases. Recent outbreak of COVID-19 requires various therapeutic strategies. Here, we used YSK-A, a mixture of three herbal components Boswellia serrata, Commiphora myrrha, and propolis, to evaluate potential antiviral activity against SARS-CoV-2. We showed that YSK-A inhibited SARS-CoV-2 propagation with an IC50 values of 12.5 µg/ml and 15.42 µg/ml in Vero E6 and Calu-3 cells, respectively. Using transcriptome analysis, we further demonstrated that YSK-A modulated various host gene expressions in Calu-3 cells. Among these, we selected 9 antiviral- or immune-related host genes for further study. By siRNA-mediated knockdown experiment, we verified that MUC5AC, LIF, CEACAM1, and GDF15 host genes were involved in antiviral activity of YSK-A. Therefore, silencing of these genes nullified YSK-A-mediated inhibition of SARS-CoV-2 propagation. These data indicate that YSK-A displays an anti-SARS-CoV-2 activity by targeting multiple antiviral genes. Although the exact antiviral mechanism of each constituent has not been verified yet, our data indicate that YSK-A has an immunomodulatory effect on SARS-CoV-2 and thus it may represent a novel natural product-derived therapeutic agent for treating COVID-19.


Assuntos
Produtos Biológicos , COVID-19 , Plantas Medicinais , Chlorocebus aethiops , Animais , SARS-CoV-2 , Produtos Biológicos/farmacologia , Antivirais/farmacologia , Células Vero
16.
Parasites Hosts Dis ; 61(4): 405-417, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38043536

RESUMO

Chagas disease, caused by Trypanosoma cruzi parasite, is a significant but neglected tropical public health issue in Latin America due to the diversity of its genotypes and pathogenic profiles. This complexity is compounded by the adverse effects of current treatments, underscoring the need for new therapeutic options that employ medicinal plant extracts without negative side effects. Our research aimed to evaluate the trypanocidal activity of Bidens pilosa fractions against epimastigote and trypomastigote stages of T. cruzi, specifically targeting the Brener and Nuevo León strains-the latter isolated from Triatoma gerstaeckeri in General Terán, Nuevo León, México. We processed the plant's aerial parts (stems, leaves, and flowers) to obtain a methanolic extract (Bp-mOH) and fractions with varying solvent polarities. These preparations inhibited more than 90% of growth at concentrations as low as 800 µg/ml for both parasite stages. The median lethal concentration (LC50) values for the Bp-mOH extract and its fractions were below 500 µg/ml. Tests for cytotoxicity using Artemia salina and Vero cells and hemolytic activity assays for the extract and its fractions yielded negative results. The methanol fraction (BPFC3MOH1) exhibited superior inhibitory activity. Its functional groups, identified as phenols, enols, alkaloids, carbohydrates, and proteins, include compounds such as 2-hydroxy-3-methylbenzaldehyde (50.9%), pentadecyl prop-2-enoate (22.1%), and linalool (15.4%). Eight compounds were identified, with a match confirmed by the National Institute of Standards and Technology (NIST-MS) software through mass spectrometry analysis.


Assuntos
Bidens , Doença de Chagas , Trypanosoma cruzi , Animais , Chlorocebus aethiops , Cromatografia Gasosa-Espectrometria de Massas , Metanol/farmacologia , Células Vero , Doença de Chagas/tratamento farmacológico , Extratos Vegetais/farmacologia
17.
PLoS One ; 18(12): e0296032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109310

RESUMO

Nanotechnology applications have been employed to improve the stability of bioactive components and drug delivery. Natural-based extracts, especially olive leaf extracts, have been associated with the green economy not only as recycled agri-waste but also in the prevention and treatment of various non-communicable diseases (NCDs). The aim of this work was to provide a comparison between the characteristics, biological activity, and gene expression of water extract of olive leaves (OLE), green synthesized OLE silver nanoparticles (OL/Ag-NPs), and OLE whey protein capsules (OL/WPNs) of the two olive varieties, Tofahy and Shemlali. The particles were characterized by dynamic light scattering, scanning electron microscope (SEM), and Fourier transform infrared. The bioactive compounds of the preparations were evaluated for their antioxidant activity and anticancer effect on HCT-116 colorectal cells as well as for their regulatory effects on cytochrome C oxidase (Cox1) and tumor necrosis factor α (TNF-α) genes. (OL/Ag-NPs) were found to be smaller than (OL/WPNs) with sizes of (37.46±1.85 and 44.86±1.62 nm) and (227.20±2.43 and 553.02±3.60 nm) for Tofahy and Shemlali, respectively. SEM showed that Shemlali (OL/Ag-NPs) had the least aggregation due to their highest Ƹ-potential (-31.76 ± 0.87 mV). The preparations were relatively nontoxic to Vero cells (IC50 = 151.94-789.25 µg/mL), while they were cytotoxic to HCT-116 colorectal cells (IC50 = 77.54-320.64 µg/mL). Shemlali and Tofahy OLE and Tofahy OL/Ag-NPs had a higher selectivity index (2.97-7.08 µg/mL) than doxorubicin (2.36 µg/mL), indicating promising anticancer activity. Moreover, Shemlali preparations regulated the expression of Cox1 (up-regulation) and TNF-α (down-regulation) on HCT-116 cells, revealing their efficiency in suppressing the expression of genes that promote cancer cell proliferation. (OL/Ag-NPs) from Tofahy and Shemlali were found to be more stable, effective, and safe than (OL/WPNs). Consequently, OL/Ag-NPs, especially Tofahy, are the best and safest nanoscale particles that can be safely used in food and pharmaceutical applications.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Olea , Animais , Chlorocebus aethiops , Humanos , Prata/farmacologia , Soro do Leite , Proteínas do Soro do Leite , Fator de Necrose Tumoral alfa , Células Vero , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005252

RESUMO

In the present study, we performed comprehensive LC-MS chemical profiling and biological tests of Vepris boiviniana leaves and stem bark extracts of different polarities. In total, 60 bioactive compounds were tentatively identified in all extracts. The 80% ethanolic stem bark extract exhibited the highest activity in the ABTS assay, equal to 551.82 mg TE/g. The infusion extract of stem bark consistently demonstrated elevated antioxidant activity in all assays, with values ranging from 137.39 mg TE/g to 218.46 mg TE/g. Regarding the enzyme inhibitory assay, aqueous extracts from both bark and leaves exhibited substantial inhibition of AChE, with EC50 values of 2.41 mg GALAE/g and 2.25 mg GALAE/g, respectively. The 80% ethanolic leaf extract exhibited the lowest cytotoxicity in VERO cells (CC50: 613.27 µg/mL) and demonstrated selective cytotoxicity against cancer cells, particularly against H1HeLa cells, indicating potential therapeutic specificity. The 80% ethanolic bark extract exhibited elevated toxicity in VERO cells but had reduced anticancer selectivity. The n-hexane extracts, notably the leaves' n-hexane extract, displayed the highest toxicity towards non-cancerous cells with selectivity towards H1HeLa and RKO cells. In viral load assessment, all extracts reduced HHV-1 load by 0.14-0.54 log and HRV-14 viral load by 0.13-0.72 log, indicating limited antiviral activity. In conclusion, our research underscores the diverse bioactive properties of Vepris boiviniana extracts, exhibiting potent antioxidant, enzyme inhibitory, and cytotoxicity potential against cancer cells.


Assuntos
Antioxidantes , Extratos Vegetais , Animais , Chlorocebus aethiops , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células Vero , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Etanol , Antivirais/farmacologia
19.
BMC Complement Med Ther ; 23(1): 354, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803435

RESUMO

BACKGROUND: Dolomiaea costus (syn: Saussurea costus; Family Asteraceae) occupies an important place in the traditional Chinese medicinal plants and is prescribed for a wide range of disorders. The current study aimed to tentatively identify the phytoconstituents of D. costus extract and to explore antiproliferative activity against human breast cancer cells and its possible apoptotic mechanism along with antiviral activity against human adenovirus 5 (Adv-5). METHODS: The phytoconstituents of 70% ethanol extract of D. costus were assessed using HPLC/ESI-MS/MS technique. The cell viability was investigated against breast cancer cell line (MCF-7) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanistically, the apoptotic effects on the Bax, Bcl2 and Caspase 3 were determined via quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR). Further, the antiviral activity was assessed against Adv-5 based on virucidal and adsorption mechanisms. RESULTS: The HPLC/MS analysis of the extract revealed tentative identification of twenty compounds of polyphenolic nature, mainly flavonoids, lignans, coumarins, and anthocyanidins. The plant extract showed a cytotoxic effect against MCF-7 and Vero cells with IC50 values of 15.50 and 44 µg/ml, respectively, indicating its aggressiveness against the proliferation of breast cancer cells as confirmed by apoptotic genes expression which revealed upregulation of Bax and Caspase 3 but further insight analysis is needed to explore exact mechanistic pathway. Antiviral activity against Adv-5 was observed at a non-toxic concentration of the tested extract. CONCLUSIONS: Such observations against human breast cancer and viral replication supported further studies for nanoformulations in drug delivery systems as targeting therapy and in vivo studies before biomedical applications.


Assuntos
Antineoplásicos , Asteraceae , Neoplasias da Mama , Costus , Animais , Chlorocebus aethiops , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Caspase 3/metabolismo , Costus/metabolismo , Espectrometria de Massas em Tandem , Antivirais/farmacologia , Antivirais/uso terapêutico , Células Vero , Proteína X Associada a bcl-2 , Cromatografia Líquida de Alta Pressão , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Apoptose
20.
Pharm Biol ; 61(1): 1446-1453, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675874

RESUMO

CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading rapidly. Relevant research based on the antiviral effects of Thesium chinense Turcz (Santalaceae) was not found. OBJECTIVE: To investigate the antiviral and anti-inflammatory effects of extracts of T. chinense. MATERIALS AND METHODS: To investigate the anti-entry and replication effect of the ethanol extract of T. chinense (drug concentration 80, 160, 320, 640, 960 µg/mL) against the SARS-CoV-2. Remdesivir (20.74 µM) was used as positive control, and Vero cells were used as host cells to detect the expression level of nucleocapsid protein (NP) in the virus by real-time quantitative polymerase chain reaction (RT-PCR) and Western blotting. RAW264.7 cells were used as an anti-inflammatory experimental model under lipopolysaccharide (LPS) induction, and the expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The ethanol extract of T. chinense significantly inhibited the replication (half maximal effective concentration, EC50: 259.3 µg/mL) and entry (EC50: 359.1 µg/mL) of SARS-CoV-2 into Vero cells, and significantly reduced the levels of IL-6 and TNF-α produced by LPS-stimulated RAW264.7 cells. Petroleum ether (EC50: 163.6 µg/mL), ethyl acetate (EC50: 22.92 µg/mL) and n-butanol (EC50: 56.8 µg/mL) extracts showed weak inhibition of SARS-CoV-2 replication in Vero cells, and reduced the levels of IL-6 and TNF-α produced by LPS-stimulated RAW264.7 cells. CONCLUSION: T. chinense can be a potential candidate to fight SARS-CoV-2, and is becoming a traditional Chinese medicine candidate for treating COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animais , Interleucina-6 , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Células Vero , Inflamação/tratamento farmacológico , Antivirais/farmacologia , Etanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA