Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 154: 112332, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34118349

RESUMO

Cadmium (Cd) is one of the toxic environmental heavy metals that poses health hazard to animals due to its toxicity. Nano-Selenium (Nano-Se) is a Nano-composite form of Se, which has emerged as a promising therapeutic agent for its protective roles against heavy metals-induced toxicity. Heat shock proteins (HSPs) play a critical role in cellular homeostasis. However, the potential protective effects of Nano-Se against Cd-induced cerebellar toxicity remain to be illustrated. To investigate the toxic effects of Cd on chicken's cerebellum, and the protective effects of Nano-Se against Cd-induced cerebellar toxicity, a total of 80 male chicks were divided into four groups and treated as follows: (A) 0 mg/kg Cd, (B) 1 mg/kg Nano-Se (C) 140 mg/kg Cd + 1 mg/kg Nano-Se (D) 140 mg/kg Cd for 90 days. We tested heat shock protein pathway-related factors including heat shock factors (HSFs) HSF1, HSF2, HSF3 and heat shock proteins (HSPs) HSP10, HSP25, HSP27, HSP40, HSP60, HSP70 and HSP90 expressions. Histopathological results showed that Cd treatment caused degradation of Purkinje cells. In addition, HSFs and HSPs expression decreased significantly in the Cd group. Nano-Se co-treatment with Cd enhanced the expression of HSFs and HSPs. In summary, our findings explicated a potential protective effect of Nano-Se against Cd-induced cerebellar injury in chicken, suggesting that Nano-Se is a promising therapeutic agent for the treatment of Cd toxicity.


Assuntos
Cádmio/toxicidade , Doenças Cerebelares/tratamento farmacológico , Proteínas de Choque Térmico/metabolismo , Nanocompostos/química , Fármacos Neuroprotetores/uso terapêutico , Selênio/uso terapêutico , Animais , Doenças Cerebelares/induzido quimicamente , Doenças Cerebelares/patologia , Galinhas , Masculino , Fármacos Neuroprotetores/química , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Selênio/química
2.
Metab Brain Dis ; 36(7): 1699-1708, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970396

RESUMO

Cerebral ischemia/reperfusion (I/R) is known to increase reactive oxygen species (ROS) generation, consequences of oxidative stress (OS), and neuronal death in the susceptible brain areas including the cerebellum. Newly, remarkable attention has been paid to a natural diet with the capability to scavenge ROS. Withania coagulans root extract (WCE) is rich in components with antioxidants properties. Therefore, this study aimed to evaluate the effect of WCE on cerebellar Purkinje cells (PCs) against OS-mediated apoptosis after I/R injury. In this experimental study 64 male adult Wistar rats were randomly divided into 4 groups (n = 16) as follows: control, sham, I/R, and WCE 1000 + I/R. I/R animals were pretreated with daily administration of hydro-alcoholic WCE (1000 mg/kg) or distilled water as a vehicle for 30 days before I/R injury. After 72 h, the animals were sacrificed, the cerebellum tissue was removed and used for biochemical (CAT, SOD, GPx, and MDA levels) and histopathological (Nissl and TUNEL staining) assays. Findings showed that the MDA level and the number of apoptotic neurons significantly increased and viable Purkinje neurons decreased in I/R injury (p < 0.05). Administration of 1000 mg/kg WCE reduced MDA level and enhanced antioxidants activity including CAT, SOD, and GPx significantly. In addition, intact surviving PCs increased. At the same time, TUNEL-positive neurons decreased significantly in the WCE pre-treated group (p < 0.05). These findings suggest that WCE can counteract cerebral I/R-induced OS and associated neuronal death by enhancement of ROS scavenging and antioxidant capacity. It appears that pre-treatment with 1000 mg/kg WCE for thirty days can protect PCs against OS-mediated apoptosis after I/R injury.


Assuntos
Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células de Purkinje/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Withania , Animais , Masculino , Células de Purkinje/patologia , Ratos , Ratos Wistar
3.
PLoS One ; 16(3): e0247573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684143

RESUMO

Kola nut (from Cola nitida) is popular in Nigeria and West Africa and is commonly consumed by pregnant women during the first trimester to alleviate morning sickness and dizziness. There is, however, a dearth of information on its effects on the developing brain. This study, therefore, investigated the potential effects of kola nut on the structure of the developing neonatal and juvenile cerebellum in the rat. Pregnant Wistar rats were administered water (as control) or crude (aqueous) kola nut extract at 400, 600, and 800 mg/kg body weight orally, from pregnancy to day 21 after birth. On postnatal days 1, 7, 14, 21 and 28, the pups were weighed, anaesthetised, sacrificed and perfused with neutral buffered formalin. Their brains were dissected out, weighed and the cerebellum preserved in 10% buffered formalin. Paraffin sections of the cerebellum were stained with haematoxylin and eosin for cerebellar cytoarchitecture, cresyl violet stain for Purkinje cell count, Glial Fibrillary Acidic Protein (GFAP) immunohistochemistry (IHC) for estimation of gliosis, and B-cell lymphoma 2 (Bcl-2) IHC for apoptosis induction. The kola nut-treated rats exhibited initial reduction in body and brain weights, persistent external granular layer, increased molecular layer thickness, and loss of Bergmann glia. Their Purkinje cells showed reduction in density, loss of dendrites and multiple layering, and their white matter showed neurodegeneration (spongiosis) and GFAP and Bcl-2 over-expression, with evidence of reactive astrogliosis. This study, therefore, demonstrates that kola nut, administered repeatedly at certain doses to pregnant dams, could disrupt normal postnatal cerebellar development in their pups. The findings suggest potential deleterious effects of excessive kola nut consumption on human brain and thus warrant further studies to understand the wider implications for human brain development.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cola/efeitos adversos , Extratos Vegetais/efeitos adversos , Administração Oral , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cerebelo/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Nigéria , Extratos Vegetais/administração & dosagem , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos , Ratos Wistar
4.
Anat Rec (Hoboken) ; 304(4): 714-724, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32721089

RESUMO

Sofosbuvir is a promising antiviral drug against chronic hepatitis C virus. Although it is characterized by its high efficacy, its adverse effects on nervous tissue are still unclear. Saffron is known for its neuroprotective property. This is a biochemical, histological and immunohistochemical study of the effect of sofosbuvir on the cerebellar cortex of rat and the possible ameliorating role of saffron's aqueous extract. Twenty-four adult male Wistar albino rats were equally divided into four groups; control, saffron extract-treated, sofosbuvir-treated (41.1 mg/kg/day for 6 weeks) and group concomitantly treated with saffron extract and sofosbuvir. Sofosbuvir-treated group recorded a significant increase in cerebellar malondialdehyde level coupling with a significant decrease in tissue glutathione and superoxide dismutase. Light microscopy revealed reduced number of Purkinje cells. The granular layer depicted many granular cells and Bergmann astrocytes with nuclear and cytoplasmic alterations. Electron microscopy revealed disorganized molecular layer with disarranged myelinated axons and disrupted mitochondria. Few shrunken Purkinje cells showed electron-dense cytoplasm and rarefied nuclei, indistinct nuclear envelope and dilated perinuclear space, areas of vacuolated cytoplasm, fragmented rough endoplasmic reticulum and few dark mitochondria. Some axons with tiny mitochondria were detected. A significant upregulation in immunohistochemical expression of GFAP-positive astrocytes was recorded. Concomitant administration of saffron extract significantly improved all studied parameters. Saffron extract is beneficial in ameliorating sofosbuvir-induced cerebellar morphological changes mainly through its antioxidant and neuroprotective properties.


Assuntos
Antivirais/farmacologia , Córtex Cerebelar/efeitos dos fármacos , Crocus , Extratos Vegetais/farmacologia , Sofosbuvir/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Córtex Cerebelar/metabolismo , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
5.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008538

RESUMO

Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce. Thus, this study aimed to investigate the effects of long-term exposure to IHg in adult rats' cerebellum and explore the modulation of the cerebellar proteome associated with biochemical and functional outcomes, providing evidence, in a translational perspective, of new mercury toxicity targets and possible biomarkers. Fifty-four adult rats were exposed to 0.375 mg/kg of HgCl2 or distilled water for 45 days using intragastric gavage. Then, the motor functions were evaluated by rotarod and inclined plane. The cerebellum was collected to quantify mercury levels, to assess the antioxidant activity against peroxyl radicals (ACAPs), the lipid peroxidation (LPO), the proteomic profile, the cell death nature by cytotoxicity and apoptosis, and the Purkinje cells density. The IHg exposure increased mercury levels in the cerebellum, reducing ACAP and increasing LPO. The proteomic approach revealed a total 419 proteins with different statuses of regulation, associated with different biological processes, such as synaptic signaling, energy metabolism and nervous system development, e.g., all these molecular changes are associated with increased cytotoxicity and apoptosis, with a neurodegenerative pattern on Purkinje cells layer and poor motor coordination and balance. In conclusion, all these findings feature a neurodegenerative process triggered by IHg in the cerebellum that culminated into motor functions deficits, which are associated with several molecular features and may be related to the clinical outcomes of people exposed to the toxicant.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo , Mercúrio/toxicidade , Doenças Neurodegenerativas/metabolismo , Proteoma/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Metabolismo Energético/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Compostos de Metilmercúrio/toxicidade , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Peróxidos/metabolismo , Proteômica/métodos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
6.
Eur J Pharmacol ; 884: 173437, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32735986

RESUMO

The GABA analog phenibut (ß-Phenyl-GABA) is a GABAB receptor agonist that has been licensed for various uses in Russia. Phenibut is also available as a dietary supplement from online vendors worldwide, and previous studies have indicated that phenibut overdose results in intoxication, withdrawal symptoms, and addiction. F-phenibut (ß-(4-Fluorophenyl)-GABA), a derivative of phenibut, has not been approved for clinical use. However, it is also available as a nootropic supplement from online suppliers. F-phenibut binds to GABAB with a higher affinity than phenibut; therefore, F-phenibut may lead to more serious intoxication than phenibut. However, the mechanisms by which F-phenibut acts on GABAB receptors and influences neuronal function remain unknown. In the present study, we compared the potency of F-phenibut, phenibut, and the GABAB agonist (±)-baclofen (baclofen) using in vitro patch-clamp recordings obtained from mouse cerebellar Purkinje cells slice preparations Our findings indicate that F-phenibut acted as a potent GABAB agonist. EC50 of outward current density evoked by the three GABAB agonists decreased in the following order: phenibut (1362 µM) > F-phenibut (23.3 µM) > baclofen (6.0 µM). The outward current induced by GABAB agonists was an outward-rectifying K+ current, in contrast to the previous finding that GABAB agonists activates an inward-rectifying K+ current. The K+ current recorded in the present study was insensitive to extracellular Ba2+, intra- or extracellular Cs+, and intra- or extracellular tetraethylammonium-Cl. Moreover, F-phenibut suppressed action potential generation in Purkinje cells. Thus, abuse of F-phenibut may lead to severe damage by inhibiting the excitability of GABAB-expressing neurons.


Assuntos
Agonistas dos Receptores de GABA-B/farmacologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Células de Purkinje/efeitos dos fármacos , Receptores de GABA-B/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Potenciais de Ação , Animais , Baclofeno/farmacologia , Relação Dose-Resposta a Droga , Feminino , Agonistas dos Receptores de GABA-B/toxicidade , Técnicas In Vitro , Masculino , Camundongos Endogâmicos ICR , Células de Purkinje/metabolismo , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/toxicidade
7.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396688

RESUMO

Bilirubin toxicity to the central nervous system (CNS) is responsible for severe and permanent neurologic damage, resulting in hearing loss, cognitive, and movement impairment. Timely and effective management of severe neonatal hyperbilirubinemia by phototherapy or exchange transfusion is crucial for avoiding permanent neurological consequences, but these therapies are not always possible, particularly in low-income countries. To explore alternative options, we investigated a pharmaceutical approach focused on protecting the CNS from pigment toxicity, independently from serum bilirubin level. To this goal, we tested the ability of curcumin, a nutraceutical already used with relevant results in animal models as well as in clinics in other diseases, in the Gunn rat, the spontaneous model of neonatal hyperbilirubinemia. Curcumin treatment fully abolished the landmark cerebellar hypoplasia of Gunn rat, restoring the histological features, and reverting the behavioral abnormalities present in the hyperbilirubinemic rat. The protection was mediated by a multi-target action on the main bilirubin-induced pathological mechanism ongoing CNS damage (inflammation, redox imbalance, and glutamate neurotoxicity). If confirmed by independent studies, the result suggests the potential of curcumin as an alternative/complementary approach to bilirubin-induced brain damage in the clinical scenario.


Assuntos
Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/prevenção & controle , Cerebelo/anormalidades , Modelos Animais de Doenças , Hiperbilirrubinemia/fisiopatologia , Malformações do Sistema Nervoso/prevenção & controle , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Bilirrubina/sangue , Lesões Encefálicas/fisiopatologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiopatologia , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/prevenção & controle , Humanos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Malformações do Sistema Nervoso/fisiopatologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Ratos Gunn , Resultado do Tratamento
8.
J Chem Neuroanat ; 102: 101706, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669431

RESUMO

BACKGROUND: Cerebellar ataxias comprise a group of terminal illnesses with ataxia as the main symptom. Curcumin as a yellow polyphenol was extracted from the rhizome ofCurcuma longa. Owing to its antioxidant, anti-inflammatory, anti-fibrotic and anti-tumor features, curcumin is considered as a potential therapeutic agent. AIM: In this study, we aim to investigate the neuroprotective effects of oral administration of curcumin on a rat model of cerebellar ataxia induced by neurotoxin 3-acetylpyridine. METHODS: The animals were randomly separated into three groups (control, 3-acetylpyridine, and curcumin + 3-acetylpyridine). Next, motor performance and muscle electromyography activity were assessed. Then, in the molecular part of the study, the anti-apoptotic role of curcumin in cerebellar ataxia and its relationship to protection of Purkinje cells were investigated. RESULTS: Curcumin treatment improved motor coordination and muscular activity, reduced cleaved caspase-3, and increased glutathione level in 3-AP-lesioned rats as well as total volumes of cerebellar granular and molecular layers. CONCLUSION: the present study implies that curcumin might have neuroprotective effects to counteract neurotoxicity of 3-AP-induced ataxia.


Assuntos
Atrofia/tratamento farmacológico , Ataxia Cerebelar/tratamento farmacológico , Cerebelo/efeitos dos fármacos , Curcumina/uso terapêutico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Células de Purkinje/efeitos dos fármacos , Animais , Atrofia/induzido quimicamente , Atrofia/patologia , Ataxia Cerebelar/induzido quimicamente , Ataxia Cerebelar/patologia , Cerebelo/patologia , Curcumina/farmacologia , Modelos Animais de Doenças , Eletromiografia , Masculino , Fármacos Neuroprotetores/farmacologia , Células de Purkinje/patologia , Piridinas , Ratos , Ratos Sprague-Dawley
9.
Biol Trace Elem Res ; 190(2): 446-456, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30488169

RESUMO

We investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Prior to mating, rats were randomly divided into control, Pb, and Pb plus ascorbic acid (PA) groups. Pregnant rats were administered Pb in drinking water (0.3% Pb acetate), and ascorbic acid (100 mg/kg) via oral intubation until the end of the experiment. Offspring were sacrificed at postnatal day 21, the age at which the morphology of the cerebellar cortex in developing pups is similar to that of the adult brain. In the cerebellum, Pb exposure significantly reduced Purkinje cells and ascorbic acid prevented their reduction. Along with the change of the Purkinje cells, long-term Pb exposure significantly reduced the expression of the synaptic marker (synaptophysin), γ-aminobutyric acid (GABA)-synthesizing enzyme (glutamic acid decarboxylase 67), and axonal myelin basic protein while ascorbic acid co-treatment attenuated Pb-mediated reduction of these proteins in the cerebellum of pups. However, glutamatergic N-methyl-D-aspartate receptor subtype 1 (NMDAR1), anchoring postsynaptic density protein 95 (PSD95), and antioxidant superoxide dismutases (SODs) were adversely changed; Pb exposure increased the expression of NMDAR1, PSD95, and SODs while ascorbic acid co-administration attenuated Pb-mediated induction. Although further studies are required about the neurotoxicity of the Pb exposure, the results presented here suggest that developmental Pb exposure disrupted normal development of Purkinje cells by increasing glutamatergic and oxidative stress in the cerebellum. Additionally, ascorbic acid co-treatment is beneficial in attenuating prenatal and postnatal Pb exposure-induced maldevelopment of Purkinje cells in the developing cerebellum.


Assuntos
Ácido Ascórbico/farmacologia , Cerebelo/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Administração Oral , Animais , Ácido Ascórbico/administração & dosagem , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Glutamato Descarboxilase/antagonistas & inibidores , Glutamato Descarboxilase/metabolismo , Chumbo/administração & dosagem , Chumbo/toxicidade , Masculino , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Superóxido Dismutase/metabolismo , Sinaptofisina/antagonistas & inibidores , Sinaptofisina/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Folia Morphol (Warsz) ; 78(3): 564-574, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30402879

RESUMO

BACKGROUND: Humans are widely exposed to acrylamide (ACR) and its neurotoxicity is a significant public health issue attracting wide attention. The aim of the study was to investigate ACR-induced adverse cerebellar changes in rats and study the possible oligodendrogenic effect of omega 3 and green tea. MATERIALS AND METHODS: Twenty-four adult albino rats weighing 150-200 g were randomly divided into four equal groups (6 rats each): control group (Group I), the rats that received ACR 45 mg/kg/day (Group II), the rats that received ACR concomitant with omega 3 at a dosage of 200 mg/kg/day (Group III), the rats that received ACR concomitant with green tea dissolved in drinking water at a dosage of 5 g/L (Group IV). The rats were euthanized after 8 weeks of the experiment. Malondialdehyde (MDA) and glutathione (GSH) were measured in cerebellar homogenates. Sections of 5 µm thickness from specimens from the cerebellum were stained with haematoxylin and eosin, silver stain and immunohistochemical stains: platelet-derived growth factor alpha (PDGFα; for oligodendrocytes), glial fibrillary acidic protein (GFAP; for astrocytes) and BCL2 (antiapoptotic). RESULTS: Omega 3 and green tea had improved MDA and GSH as compared to the ACR group. Histologically, the ACR group showed variable degrees of cellular degeneration. Omega 3 had induced oligodendrogenesis in Group III. The optical density of silver stain was significantly (p < 0.05) increased in Groups III and IV as compared to the ACR group. Area per cent of positive PDGFα was significantly increased in the ACR + omega 3 group as compared to the ACR group. Area per cent of positive GFAP was significantly decreased in Groups III and IV as compared to the ACR group. Area per cent of positive BCL2 was significantly increased in the omega 3-trated group as compared to the ACR group. CONCLUSIONS: Concomitant administration of omega 3 or green tea with ACR might mitigate the adverse cerebellar changes caused by ACR thanks to an oligodendrogenic effect of omega 3.


Assuntos
Acrilamida/toxicidade , Cerebelo/patologia , Ácidos Graxos Ômega-3/farmacologia , Oligodendroglia/patologia , Chá/química , Animais , Antioxidantes/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Masculino , Oligodendroglia/efeitos dos fármacos , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Ratos
11.
J Nutr Biochem ; 58: 80-89, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29886192

RESUMO

Iodine is an essential component for thyroid hormone synthesis. Epidemiological investigations have demonstrated that maternal mild iodine deficiency (ID)-induced hypothyroxinemia can affect intellectual and behavioral function in offspring. There is no definitive evidence demonstrating the effects of maternal iodine supplementation on neurobehavioral function in regional areas with mild ID. Thus, we aimed to clarify the effects of maternal mild ID and iodine supplementation on motor coordination in offspring and illuminate the underlying molecular mechanisms. Animal models of maternal mild ID and iodine supplementation were generated by providing Wistar rats an iodine-deficient diet and deionized water supplemented with potassium iodide during pregnancy and lactation. We found that mild ID-induced hypothyroxinemia led to a shorter latent time before falling down from the rotarod, a longer time to traverse the balance beam and poorer wire grip of the forelimbs, which imply motor coordination dysfunction. However, these impairments in the offspring were improved by iodine supplementation during pregnancy and lactation. We further observed that the ultrastructure and dendritic tree morphology of cerebellar Purkinje cells were altered in mild ID-induced hypothyroxinemia but that these changes could be reversed by iodine supplementation. Maternal mild ID and iodine supplementation also affected expression of the mGluR1 signaling pathway in offspring. Together, iodine supplementation during pregnancy and lactation can improve motor coordination in offspring by modulating the mGluR1 signaling pathway in mild ID-induced hypothyroxinemia rats.


Assuntos
Iodo/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Tiroxina/sangue , Animais , Suplementos Nutricionais , Feminino , Iodo/deficiência , Iodo/urina , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Fosfolipase D/metabolismo , Gravidez , Células de Purkinje/efeitos dos fármacos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Hormônios Tireóideos/sangue
12.
Brain Res ; 1690: 23-30, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29630858

RESUMO

Optimal cytoplasmic calcium (Ca2+) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca2+ levels following impaired Ca2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO2) exposure (postnatal) of rat pups. NaAsO2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO2.


Assuntos
Antioxidantes/farmacologia , Arsenitos/efeitos adversos , Calbindinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Células de Purkinje/efeitos dos fármacos , Compostos de Sódio/efeitos adversos , Animais , Animais Recém-Nascidos , Tamanho Celular/efeitos dos fármacos , Curcumina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Distribuição Aleatória , Ratos Wistar , Ácido Tióctico/farmacologia , Regulação para Cima/efeitos dos fármacos
13.
Biomed Pharmacother ; 102: 375-384, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29571023

RESUMO

The neurotoxicity associated with cisplatin treatment is one of the major side effects compromising the efficacy of the anti-cancer treatment. The present study investigated the possible protective effects of taurine, an intracellular amino acid, on cisplatin-induced brain injury and exploratory behaviour using five groups of ten female rats each. Group I received drinking water only. Group II orally received taurine alone at 200 mg/kg whereas Group III received cisplatin alone intraperitoneally at 10 mg/kg. Groups IV and V were treated with taurine at 100 and 200 mg/kg respectively for sixteen consecutive days and a single intraperitoneal injection of cisplatin on day 13 to induce neurotoxicity. Endpoint analyses using video-tracking software revealed that cisplatin administration alone caused neurobehavioral deficits evinced by marked decrease in the total distance travelled, average speed, total time mobile, total mobile episode, number of crossing and absolute turn angle. Furthermore, cisplatin alone significantly suppressed brain antioxidant defense mechanisms, elevated nitric oxide and lipid peroxidation levels whereas it increased acetylcholinesterase activity in the treated rats. However, rats pretreated with taurine exhibited significant improvement in behavioural performance and brain antioxidant status with concomitant decrease in acetylcholinesterase activity and oxidative stress indices when compared with cisplatin alone group. Histologically, taurine pretreatment prevented cisplatin-induced neuronal death in the cerebral and cerebellar cortices, caudo-putamen and hippocampus as well as abrogated cisplatin-mediated decrease in the dendritic arborization and mean diameter of the somata of pyramidal neurons in the treated rats. In conclusion, taurine may be a possible protective supplement to reduce cisplatin-induced side-effects including neurotoxicity in patients undergoing cisplatin treatment.


Assuntos
Antineoplásicos/efeitos adversos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Comportamento Exploratório , Taurina/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Lesões Encefálicas/fisiopatologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Feminino , Atividade Motora/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos Wistar , Taurina/farmacologia
14.
Pak J Pharm Sci ; 30(6): 2067-2074, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29175775

RESUMO

Opioid addiction is associated with oxidative cell injury in neuronal cells. In this study, Bacopa monnieri (L.), a reputed nootropic plant, was evaluated against morphine-induced histopathological changes in the cerebellum of rats. B. monnieri methanolic extract (mBME) (40 mg/kg, p.o) and ascorbic acid (50 mg/kg, i.p) were administered two hours before morphine (20 mg/kg, i.p) for 14 and 21 days. The in vitro antioxidant activity of mBME was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging assay. Morphine produced vacuolization of basket and stellate cells and reduced the size of Purkinje cells in the cerebellum after 14 days. However, treatment for 21 days was associated with severe shrinkage of Purkinje cells with loss of their characteristic flask-shaped appearance as well as degeneration of basket, stellate and granule cells. Pretreatment with mBME and ascorbic acid for 14 and 21 days attenuated the morphine-induced histopathological changes in the cerebellum. The EC50 for the DPPH free-radical scavenging assay of mBME (39.06 µ/mL) as compared to ascorbic acid (30.25 µ/mL) and BHT (34.34 µ/mL) revealed that mBME strongly scavenged the free-radicals and thus possessed an efficient antioxidant propensity. These results concluded that B. monnieri having strong antioxidant activity exerted a protective effect against morphineinduced cerebellar toxicity.


Assuntos
Analgésicos Opioides/toxicidade , Bacopa , Cerebelo/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Morfina/toxicidade , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Ácido Ascórbico/farmacologia , Bacopa/química , Compostos de Bifenilo/química , Hidroxitolueno Butilado/farmacologia , Cerebelo/metabolismo , Cerebelo/patologia , Citoproteção , Sequestradores de Radicais Livres/isolamento & purificação , Masculino , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Picratos/química , Extratos Vegetais/isolamento & purificação , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos Sprague-Dawley
15.
Neurobiol Dis ; 105: 257-270, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28610891

RESUMO

Mucolipidosis type IV (MLIV) is a lysosomal storage disease exhibiting progressive intellectual disability, motor impairment, and premature death. There is currently no cure or corrective treatment. The disease results from mutations in the gene encoding mucolipin-1, a transient receptor potential channel believed to play a key role in lysosomal calcium egress. Loss of mucolipin-1 and subsequent defects lead to a host of cellular aberrations, including accumulation of glycosphingolipids (GSLs) in neurons and other cell types, microgliosis and, as reported here, cerebellar Purkinje cell loss. Several studies have demonstrated that N-butyldeoxynojirimycin (NB-DNJ, also known as miglustat), an inhibitor of the enzyme glucosylceramide synthase (GCS), successfully delays the onset of motor deficits, improves longevity, and rescues some of the cerebellar abnormalities (e.g., Purkinje cell death) seen in another lysosomal disease known as Niemann-Pick type C (NPC). Given the similarities in pathology between MLIV and NPC, we examined whether miglustat would be efficacious in ameliorating disease progression in MLIV. Using a full mucolipin-1 knockout mouse (Mcoln1-/-), we found that early miglustat treatment delays the onset and progression of motor deficits, delays cerebellar Purkinje cell loss, and reduces cerebellar microgliosis characteristic of MLIV disease. Quantitative mass spectrometry analyses provided new data on the GSL profiles of murine MLIV brain tissue and showed that miglustat partially restored the wild type profile of white matter enriched lipids. Collectively, our findings indicate that early miglustat treatment delays the progression of clinically relevant pathology in an MLIV mouse model, and therefore supports consideration of miglustat as a therapeutic agent for MLIV disease in humans.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Cerebelo/patologia , Inibidores Enzimáticos/uso terapêutico , Gliose/tratamento farmacológico , Transtornos dos Movimentos/tratamento farmacológico , Mucolipidoses , Células de Purkinje/efeitos dos fármacos , 1-Desoxinojirimicina/uso terapêutico , Animais , Antígenos CD/metabolismo , Contagem de Células , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Gliose/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/etiologia , Mucolipidoses/complicações , Mucolipidoses/genética , Mucolipidoses/patologia , Proteínas do Tecido Nervoso/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Células de Purkinje/patologia , Retina/patologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
16.
Biomed Pharmacother ; 86: 475-481, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012927

RESUMO

Noise pollution is one of the most widespread and fast growing environmental and occupational menaces in the modern era. Exposure to noise above 100dB is not adaptable through the brain homeostatic mechanism. Yet, the detrimental effects of noise have often been ignored. Developing reliable animal models to understand the neurobiology of noise stress and advance our research in the field of medicine to impede this growing stressor is needed. In this study experimental animals were divided into four groups, (i) Control and (ii) S. dulcis extract (200mg/kgbw) treated control group. (iii) To mimic the influence of noise, animals in this group were exposed to noise stress (100dB/4h/day) for 15days and finally, (iv) Noise exposed treated with S. dulcis extract (200mg/kgbw) group. Rota-rod and narrow beam performance results showed impaired motor co-ordination in noise exposed group on both 1st and 15th day when compared to controls. This impaired motor function on exposure to noise could be attributed to the altered norepinephrine, dopamine and serotonin levels in both the striatum and cerebellum. Moreover, the motor impaired associated changes could also be attributed to upregulated nNOS and iNOS protein expression in the cerebellum resulting in increased nitric oxide radical production. This increased reactive free radicals species can initiate lipid peroxidation mediated changes in the cerebellar Purkinje cells, which is responsible for initiating inhibitory motor response and ultimately leading to impaired motor co-ordination. Treatment with S. dulcis extract (200mg/kgbw) could control motor impairment and regulate neurotransmitter level as that of control groups when compared to noise exposed group. One key aspect of therapeutic efficacy of the plant could have resulted due to attenuated lipid peroxidation mediated damages on the cerebellar Purkinje cells thereby regulating motor impairment. Thus, targeting the antioxidant and free radicals scavenging properties of the plant could serve as a potential therapeutic to combat this environmental stressor.


Assuntos
Atividade Motora/efeitos dos fármacos , Neurotransmissores/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ruído/efeitos adversos , Extratos Vegetais/farmacologia , Scoparia/química , Animais , Antioxidantes/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos , Ratos Wistar
17.
J Ethnopharmacol ; 195: 159-165, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27825990

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. AIM OF THE STUDY: We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. MATERIALS AND METHODS: Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. RESULTS: Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. CONCLUSIONS: These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation.


Assuntos
Doenças Cerebelares/prevenção & controle , Cerebelo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Garcinia kola/química , Hipoglicemiantes/farmacologia , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Preparações de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Doenças Cerebelares/sangue , Doenças Cerebelares/etiologia , Doenças Cerebelares/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/patologia , Hipoglicemiantes/isolamento & purificação , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Fitoterapia , Preparações de Plantas/isolamento & purificação , Plantas Medicinais , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos Wistar , Estreptozocina , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/metabolismo
18.
Brain Res ; 1639: 132-48, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26972528

RESUMO

Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Fármacos Neuroprotetores/farmacologia , Sintomas Prodrômicos , Ataxias Espinocerebelares/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(1): 85-93, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26781419

RESUMO

OBJECTIVE: To investigate the protective effect of succinic acid (SA) on the cerebellar Purkinje cells (PCs) of neonatal rats with convulsion. METHODS: A total of 120 healthy neonatal Sprague-Dawley rats aged 7 days were randomly divided into a neonatal period group and a developmental period group. Each of the two groups were further divided into 6 sub-groups: normal control, convulsion model, low-dose phenobarbital (PB) (30 mg/kg), high-dose PB (120 mg/kg), low-dose SA (30 mg/kg), and high-dose SA (120 mg/kg). Intraperitoneal injection of pentylenetetrazole was performed to establish the convulsion model. The normal control group was treated with normal saline instead. The rats in the neonatal group were sacrificed at 30 minutes after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Those in the developmental group were sacrificed 30 days after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Whole cell patch clamp technique was used to record the action potential (AP) of PCs in the cerebellar slices of neonatal rats; the parallel fibers (PF) were stimulated at a low frequency to induce excitatory postsynaptic current (EPSC). The effect of SA on long-term depression (LTD) of PCs was observed. RESULTS: Compared with the normal control groups, the neonatal and developmental rats with convulsion had a significantly higher AP frequency of PCs (P<0.05), and the developmental rats with convulsion had a significantly decreased threshold stimulus (P<0.01) and a significantly greater inhibition of the amplitude of EPSC in PCs (P<0.05). Compared with the normal control groups, the neonatal and developmental rats with convulsion in the high-dose PB groups had a significantly decreased threshold stimulus (P<0.01), a significantly higher AP frequency of PCs (P<0.05), and a significantly greater inhibition of EPSC in PCs (P<0.05). Compared with the neonatal and developmental rats in the convulsion model groups, those in the high-dose SA groups had a significantly decreased AP frequency of PCs (P<0.05). The developmental rats in the low- and high-dose SA groups had a significantly higher AP threshold than those in the convulsion model group (P<0.05). CONCLUSIONS: The high excitability of PCs and the abnormal PF-PC synaptic plasticity caused by convulsion in neonatal rats may last to the developmental period, which can be aggravated by PB, while SA can reduce the excitability of PCs in neonatal rats with convulsion and repair the short- and long-term abnormalities of LTD of PCs caused by convulsion.


Assuntos
Citoproteção , Células de Purkinje/efeitos dos fármacos , Convulsões/tratamento farmacológico , Ácido Succínico/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Células de Purkinje/fisiologia , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia
20.
Folia Med (Plovdiv) ; 58(4): 241-249, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28068280

RESUMO

BACKGROUND: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action. AIM: The effect of L. owariensis was therefore assessed in alcohol-induced neurodegeneration of the cerebellar cortex in rats. MATERIALS AND METHODS: Two groups of rats were oro-gastrically fed thrice daily with 5 g/kg ethanol (25% w/v), and 5 g/kg ethanol (25% w/v) plus L. owariensis (100 mg/kg body weight) respectively in diluted nutritionally complete diet (50% v/v). A control group was correspondingly fed a nutritionally complete diet (50% v/v) made isocaloric with glucose. Cytoarchitectural study of the cerebellar cortex was examined with H&E. Immunocytochemical analysis was carried out with the use of monoclonal antibody anti-NF in order to detect alterations in the neuronal cytoskeleton. RESULTS: After 4 days of binge alcohol treatment, we observed that L. owariensis supplementation significantly lowered the levels of histologic and biochemical indices of neurodegeneration. The level of neurodegeneration and cytoarchitecture distortion of the cerebellar cortex of rats exposed to ethanol was reduced by L. owariensis. Neurofilament-immunoreactivity (NF-IR) was evoked in the Purkinje cells of rats that received L. owariensis supplement. CONCLUSIONS: L. owariensis attenuates alcohol-induced cerebellar degeneration in the rat by alleviating oxidative stress and alteration of NF protein expression in the Purkinje cells.


Assuntos
Apocynaceae , Depressores do Sistema Nervoso Central/toxicidade , Cerebelo/efeitos dos fármacos , Etanol/toxicidade , Proteínas de Neurofilamentos/efeitos dos fármacos , Preparações de Plantas/farmacologia , Células de Purkinje/efeitos dos fármacos , Transtornos do Sistema Nervoso Induzidos por Álcool , Animais , Doenças Cerebelares , Cerebelo/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Doenças Neurodegenerativas , Proteínas de Neurofilamentos/metabolismo , Células de Purkinje/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA