Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Theriogenology ; 215: 31-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000127

RESUMO

The branched-chain amino acids (BCAAs: leucine, isoleucine and valine) are essential for animal growth and metabolic health. However, the effect of valine on male reproduction and its underlying molecular mechanism remain largely unknown. Here, we showed that l-valine supplementation (0.30% or 0.45%, water drinking for 3 weeks) did not change body and testis weights, but significantly altered morphology of sertoli cells and germ cells within seminiferous tubule, and enlarged the space between seminiferous tubules within mouse testis. l-valine treatment (0.45%) increased significantly the Caspase3/9 mRNA levels and CASPASE9 protein levels, therefore induced apoptosis of mouse testis. Moreover, gene expression levels related to autophagy (Atg5 and Lamb3), DNA 5 mC methylation (Dnmt1, Dnmt3a, Tet2 and Tet3), RNA m6A methylation (Mettl14, Alkbh5 and Fto), and m6A methylation binding proteins (Ythdf1/2/3 and Igf2bp1/2) were significantly reduced. Protein abundances of ALKBH5, FTO and YTHDF3 were also significantly reduced, but not for ATG5 and TET2. Testis transcriptome sequencing detected 537 differentially expressed genes (DEGs, 26 up-regulated and 511 down-regulated), involved in multiple important signaling pathways. RT-qPCR validated 8 of 9 DEGs (Cd36, Scd1, Insl3, Anxa5, Lcn2, Hsd17b3, Cyp11a1, Cyp17a1 and Agt) to be decreased significantly, consistent with RNA-seq results. Taken together, l-valine treatment could disturb multiple signaling pathways (autophagy and RNA methylation etc.), and induce apoptosis to destroy the tissue structure of mouse testis.


Assuntos
Testículo , Valina , Camundongos , Masculino , Animais , Valina/farmacologia , Valina/metabolismo , Células de Sertoli/metabolismo , Apoptose , Suplementos Nutricionais
2.
Phytomedicine ; 118: 154945, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437414

RESUMO

BACKGROUND: Triptolide (TP) is an important active compound from Tripterygium wilfordii Hook F (TwHF), however, it is greatly limited in clinical practice due to its severe toxicity, especially testicular injury. Melatonin is an endogenous hormone and has beneficial effects on the reproductive system. However, whether triptolide-induced testicular injury can be alleviated by melatonin and the underlying mechanism are not clear. PURPOSE: In this study, we aimed to explore whether triptolide-induced testicular Sertoli cells toxicity can be mitigated by melatonin and the underlying mechanisms involved. METHODS: Cell apoptosis was assessed by flow cytometry, western blot, immunofluorescence and immunohistochemistry. Fluorescent probe Mito-Tracker Red CMXRos was used to observe the mitochondria morphology. Mitochondrial membrane potential and Ca2+ levels were used to investigate mitochondrial function by confocal microscope and flow cytometry. The expression levels of SIRT1/Nrf2 pathway were detected by western blot, immunofluorescence and immunohistochemistry. Small interfering RNA of NRF2 and SIRT1 inhibitor EX527 was used to confirm the role of SIRT1/NRF2 pathway in the mitigation of triptolide-induced Sertoli cell damage by melatonin. Co-Immunoprecipitation assay was used to determine the interaction between SIRT1 and NRF2. RESULTS: Triptolide-induced dysfunction of testicular Sertoli cells was significantly improved by melatonin treatment. Specifically, triptolide-induced oxidative stress damage and changes of mitochondrial morphology, mitochondrial membrane potential, and BTB integrity were alleviated by melatonin. Mechanistically, triptolide inhibited SIRT1 and then reduced the activation of NRF2 pathway via regulating the interaction between SIRT1 and NRF2, thereby downregulating the downstream antioxidant genes, which was reversed by melatonin. Nevertheless, knockdown of NRF2 or inhibition of SIRT1 abolished the protective effect of melatonin. CONCLUSION: Triptolide-induced testicular Sertoli cell damage could be alleviated by melatonin via regulating the crosstalk between SIRT1 and NRF2, which is helpful for developing a new strategy to alleviate triptolide-induced toxicity.


Assuntos
Melatonina , Fenantrenos , Masculino , Humanos , Células de Sertoli , Melatonina/farmacologia , Melatonina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Fenantrenos/farmacologia
3.
Mol Cell Endocrinol ; 576: 112034, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516434

RESUMO

Antioxidant actions of melatonin and its impact on testicular function and fertility have already been described. Considering that Sertoli cells contribute to provide structural support and nutrition to germ cells, we evaluated the effect of melatonin on oxidative state and lactate metabolism in the immature murine TM4 cell line and in immature hamster Sertoli cells. A prooxidant stimulus applied to rodent Sertoli cells expressing MT1/MT2 receptors, increased lipid peroxidation whereas decreased antioxidant enzymes (superoxide dismutase 1, catalase, peroxiredoxin 1) expression and catalase activity. These changes were prevented by melatonin. Furthermore, melatonin stimulated lactate dehydrogenase (LDH) expression/activity via melatonin receptors, and increased intracellular lactate production in rodent Sertoli cells. Interestingly, oral melatonin supplementation in infertile men positively regulated LDHA testicular mRNA expression. Overall, our work provides insights into the potential benefits of melatonin on Sertoli cells contributing to testicular development and the future establishment of a sustainable spermatogenesis.


Assuntos
Melatonina , Células de Sertoli , Masculino , Cricetinae , Camundongos , Animais , Células de Sertoli/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Catalase/genética , Catalase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Roedores/metabolismo , Estresse Oxidativo , Lactatos/metabolismo
4.
Pharm Biol ; 61(1): 986-999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37386769

RESUMO

CONTEXT: Semen cuscutae is commonly used to treat male infertility (MI), and semen cuscutae flavonoid (SCF) is the main active component of semen cuscutae. The therapeutic mechanism of SCF on MI is still unclear. OBJECTIVE: To clarify the mechanisms of SCF against MI. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to predict the potential pathways of SCF against MI. Primary Sertoli cells (SCs) were extracted from testis of 60-day-old rats and divided into Control, Model, and 3 treatment groups. The Control and Model groups were given normal medium, the treatment groups were treated with various concentrations of SCF-containing medium (200, 400, and 800 µg/mL). After 24 h, the Model and treatment groups were exposed to heat stress at 43 °C for 15 min. Western blotting and immunohistochemistry were used to detect the expression of targets. RESULT: Network pharmacology indicated that the treatment of SCF on MI was closely related to PI3K-AKT signaling pathway. The in vitro experiments showed that SCF could up-regulated the expression of AKT, AR, occludin, and Ki67, and down-regulated the expression of CK-18 in SCs after heat stress. The AKT inhibitor could block this process. CONCLUSIONS: SCF can treat MI by regulating the proliferation and differentiation of SCs and the integrity of the blood-testis barrier. The study could provide experimental basis for clinical research.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Animais , Ratos , Humanos , Células de Sertoli , Barreira Hematotesticular , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Flavonoides/farmacologia
5.
Biochimie ; 208: 75-85, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36528184

RESUMO

Sertoli cells provide structural and nutritional support for germ cell development. They actively metabolize glucose and convert it into lactate, which is an important source of energy for germ cells. They also oxidize fatty acids (FA), stored as triacylglycerides (TAGs) within lipid droplets (LD), to fulfill their own energy requirements. So, the combined regulation of lactate production and FA metabolism may be relevant to the physiology of seminiferous tubules. Resveratrol (RSV) is a nutritional supplement found primarily in red grape skin that exhibits multiple beneficial health effects: it is cardioprotective, anti-inflammatory, anticancer, and antiaging. The aim of this study was to evaluate the effect of RSV in Sertoli cells lactate production and lipid metabolism. Sertoli cell cultures obtained from 20-day-old rats were incubated for different times with 10 or 50 µM RSV. RSV treatment increased lactate production and glucose consumption. These increments were accompanied by a rise in GLUT1 expression, which is the main glucose transporter in Sertoli cells. On the other hand, RSV decreased LD content and TAG levels. In addition, an increase in ATGL and FAT/CD36 mRNA levels was observed, which suggests augmented cytoplasmatic FA availability. RSV treatment also increased P-ACC levels, which might indicate that RSV promotes FA transport into the mitochondria to be oxidized. An enhanced expression of LCAD and MCAD, enzymes that participate in the oxidation of FA, was also observed. Altogether, these results suggest that RSV simultaneously regulates Sertoli cells lactate production and lipid metabolism, ensuring an adequate energetic balance both in germ and Sertoli cells.


Assuntos
Ácido Láctico , Células de Sertoli , Masculino , Animais , Ratos , Resveratrol/farmacologia , Antígenos CD36 , Ácidos Graxos , Glucose , Gotículas Lipídicas , Metabolismo dos Lipídeos , Células Cultivadas
6.
Eur J Pharmacol ; 938: 175430, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36460131

RESUMO

Disruption of blood-testis barrier (BTB) was a crucial pathological feature of diabetes induced-testicular injury at early phase. Aucubin (AU), a main active component in Eucommiae Cortex, has drawn attention for its benefits against male reproductive system disease. The current study was aimed at investigating the protective role of AU and exploring the underlying mechanism in diabetic model. A murine model of type 2 diabetes mellitus (T2DM) was induced by high-fat diet (HFD) combined with streptozocin (STZ). Testicular weight index and morphology, sperm quality, integrity of BTB and protein levels were analyzed. The underlying mechanism of the protective effect of AU was further explored in Sertoli cells (SCs) cultured with high glucose (HG). Our results showed AU inhibited testicular structural destruction, restored disruption of BTB and improved abnormal spermatogenic function in diabetic mice. Consistent with in vivo results, HG induced decreased transcellular resistance and increased permeability in SCs monolayers, while AU exposure reverses this trend. Meanwhile, reduced expression of Zonula occludin-1(ZO-1) and Connexin43(Cx43) in testicular tissue diabetic mice and HG-induced SCs was prominently reversed via AU treatment. Mechanistic studies suggested a high affinity interaction between AU and c-Src protein was identified based on molecular docking, and the activation of c-Src was significantly inhibited in AU treatment. Furthermore, AU significantly increased the expression of Cx43 and ZO-1 proteins HG-induced SCs, which can be further enhanced in gene-silenced c-Src cells to some extent. Our results suggested that AU ameliorated disruption of BTB and spermatogenesis dysfunction in diabetic mice via inactivating c-Src to stabilize cell junction integrity.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Barreira Hematotesticular/metabolismo , Barreira Hematotesticular/patologia , Conexina 43/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Testículo , Células de Sertoli/metabolismo , Junções Intercelulares/metabolismo , Suplementos Nutricionais
7.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232461

RESUMO

Quercetin and kaempferol are flavonoids widely present in fruits, vegetables, and medicinal plants. They have attracted much attention due to their antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective properties. As the guarantee cells in direct contact with germ cells, Sertoli cells exert the role of support, nutrition, and protection in spermatogenesis. In the current study, network pharmacology was used to explore the targets and signaling pathways of quercetin and kaempferol in treating spermatogenic disorders. In vitro experiments were integrated to verify the results of quercetin and kaempferol against heat stress-induced Sertoli cell injury. The online platform was used to analyze the GO biological pathway and KEGG pathway. The results of the network pharmacology showed that quercetin and kaempferol intervention in spermatogenesis disorders were mostly targeting the oxidative response to oxidative stress, the ROS metabolic process and the NFκB pathway. The results of the cell experiment showed that Quercetin and kaempferol can prevent the decline of cell viability induced by heat stress, reduce the expression levels of HSP70 and ROS in Sertoli cells, reduce p-NF-κB-p65 and p-IκB levels, up-regulate the expression of occludin, vimentin and F-actin in Sertoli cells, and protect cell structure. Our research is the first to demonstrate that quercetin and kaempferol may exert effects in resisting the injury of cell viability and structure under heat stress.


Assuntos
Queimaduras , Quercetina , Actinas , Antibacterianos/uso terapêutico , Antioxidantes/farmacologia , Queimaduras/tratamento farmacológico , Flavonoides , Resposta ao Choque Térmico , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Masculino , NF-kappa B/metabolismo , Farmacologia em Rede , Ocludina , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Vimentina
8.
Reprod Biol ; 22(4): 100677, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152357

RESUMO

The hypoxic microenvironment of cryptorchidism is an important factor in the impairment and fibrosis of Sertoli cells which result in blood-testis barrier (BTB) destruction and spermatogenesis loss. Recent studies have shown that melatonin, a well-known pineal hormone exerts beneficial effects against pathological fibrosis in a various of organs. However, it is still unknown whether melatonin can regulate hypoxia-induced fibrosis of Sertoli cells. In this study we evaluate melatonin levels, and its synthesizing enzymes, AANAT and HIOMT expression patterns in canine cryptorchidism and contralateral normal testis. Results show abdominal testes presented low melatonin levels and AANAT and HIOMT expression compared with testes located in the scrotum. Moreover, we established a hypoxia-induced fibrosis model in canine Sertoli cells induced by cobalt chloride (CoCl2) and found that melatonin inhibited the EMT markers expression and ECM production as well as Hif-1α expression of Sertoli cells in a dose-dependent manner. Furthermore, use of Lificiguat (synonyms YC-1, Hif-1α inhibitor) to interfere with the Hif-1α pathway showed a similar effect with melatonin suppression of the fibrosis in Sertoli cells. The results indicate that melatonin supplementation can alleviate the fibrosis process of Sertoli cells caused by hypoxia, which is associated with regulating the inhibition of Hif-1α signaling.


Assuntos
Criptorquidismo , Melatonina , Animais , Cães , Masculino , Acetilserotonina O-Metiltransferasa , Criptorquidismo/patologia , Criptorquidismo/veterinária , Fibrose , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Melatonina/farmacologia , Células de Sertoli/metabolismo
9.
J Mol Histol ; 53(3): 523-542, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35118589

RESUMO

Etoposide (Eto) is an anti-cancer drug that is associated with serious adverse effects on male reproductive function. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and selenium (Se) are known as anti-inflammatory, anti-apoptotic and anti-oxidant agents. This work was designed to investigate changes in the biochemical parameters as well as alterations in Sertoli cell vimentin expression, ultrastructure and ectoplasmic specializations (ESs) following Eto treatment and to assess the ameliorative effect of ω-3 versus Se on these alterations. Eighty four adult male albino rats were used and classified into four groups: group I (control group), group II (Eto group) received Eto in a single intra-peritoneal (IP) dose (60 mg/kg B.W.), group III (Eto & ω-3 group) received the single IP dose of Eto as well as ω-3 (300 mg/kg B.W./day by intra-gastric intubation) starting 5 days before Eto injection till the time of sacrifice & group IV (Eto & Se group) received the single IP dose of Eto as well as Se (0.5 mg/kg B.W./day IP) starting 5 days before Eto injection till the time of sacrifice. The rats were subdivided into 2 subgroups (a) and (b) that were sacrificed 3 and 7 days after Eto injection respectively. Eto administration in group II induced increase in malondialdehyde (MDA), decrease in superoxide dismutase (SOD), collapse of Sertoli cell vimentin filaments and ultrastructural degenerative changes in both Sertoli cells and ESs. Se (group IV) reversed Eto toxic effects potently, while ω-3 (group III) had some limited protective effects.


Assuntos
Selênio , Células de Sertoli , Animais , Masculino , Elétrons , Etoposídeo/metabolismo , Etoposídeo/farmacologia , Selênio/metabolismo , Selênio/farmacologia , Células de Sertoli/metabolismo , Testículo/metabolismo , Vimentina/metabolismo , Vimentina/farmacologia , Ratos
10.
Theriogenology ; 177: 1-10, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653791

RESUMO

Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 µM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be partially rescued by melatonin (MT) (10 nM). Transcriptome profiling identified 1611 differentially expressed genes (DEGs) (776 up- and 835 down-regulated) (20 µM CQ vs. DMSO), mainly involved in MAPK cascade, cell proliferation/apoptosis, HIF-1, PI3K-Akt and lysosome signaling pathways. In contrast, only 467 (224 up- and 243 down-regulated) DEGs (CQ + MT vs. DMSO) could be found after MT (10 nM) addition, enriched in cell cycle, regulation of apoptotic process, lysosome and reproduction pathways. Therefore, the partial rescue effects of MT on CQ treatment were confirmed by multiple assays (cell viability, ROS level, mitochondrial function, apoptosis, and mRNA levels of selected genes). Collectively, CQ treatment could impair porcine iSC viability by deranging the signaling pathways related to apoptosis and autophagy, which could be partially rescued by MT supplementation.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Melatonina , Doenças dos Suínos , Animais , Apoptose , Autofagia , COVID-19/veterinária , Cloroquina/farmacologia , Masculino , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases , SARS-CoV-2 , Células de Sertoli , Suínos
11.
Anim Reprod Sci ; 246: 106840, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34518030

RESUMO

Production of acceptable quality ejaculates in boars is dependent upon the Sertoli cell population established before puberty and how effectively these cells function after sexual maturity. In general, factors affecting Sertoli cell mitosis tend to have a two-fold greater effect on sperm production compared with those affecting spermatogenesis. Birthweight is a reliable indicator of in utero testicular development and prepubertal growth rates are positively correlated with testis size and sperm production after sexual maturity. Colostrum intake and pre-weaning nutrition account for much of the variation associated with quality and quantity of ejaculates and represent opportunities to further enhance lifetime sperm production. Interactions between young boars and humans, shortly after weaning, have important effects on spermatogenesis after sexual maturity and need to be studied further. The seasonal effect on depression in semen quality is the most significant factor affecting production of acceptable quality ejaculates after puberty. Ambient temperatures, greater than those of the thermoneutral zone, have both acute and chronic effects that compromise all aspects of the male reproductive axis. Identification of genes associated with heat-tolerant phenotypes holds promise for addressing this challenge, especially in light of the current trend in global warming. Supplementation of vitamins, minerals and other compounds have positive effects on sperm production during periods in which other stressors, especially heat stress, are present and is an important mitigation strategy. Recent information on housing conditions and boar usage patterns indicate these cause relatively minor changes in sperm production, overall, but for some males can have significant, long-term effects.


Assuntos
Análise do Sêmen , Sêmen , Humanos , Suínos , Masculino , Animais , Análise do Sêmen/veterinária , Sêmen/fisiologia , Espermatozoides/fisiologia , Espermatogênese/fisiologia , Células de Sertoli
12.
Sci Rep ; 11(1): 18824, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552120

RESUMO

Akt and nuclear factor kappa B (NF-κB) signaling pathways are involved in germ cell apoptosis and inflammation after testicular heat stress (THS). We observed that after THS induced by the exposure of rat testes to 43 °C for 20 min, their weight decreased, the fraction of apoptotic testicular germ cells significantly increased, and the proliferation of germ cells was inhibited. In addition, THS lowered serum testosterone (T) level, whereas the levels of follicle stimulating hormone and luteinizing hormone were not significantly changed. The ultrastructure of the seminiferous tubules became abnormal after THS, the structure of the blood-testis barrier (BTB) became loose, and the Sertoli cells showed a trend of differentiation. The level of phosphorylated Akt was reduced, whereas the amount of phosphorylated NF-κB p65 was augmented by THS. Wuzi-Yanzong (WZYZ), a classic Chinese medicine prescription for the treatment of male reproductive dysfunctions, alleviated the changes induced by THS. In order to determine the mechanism of action of WZYZ, we investigated how this preparation modulated the levels of T, androgen receptor (AR), erythropoietin (EPO), EPO receptor, and Tyro-3, Axl, and Mer (TAM) family of tyrosine kinase receptors. We found that WZYZ activated the Akt pathway, inhibited the Toll-like receptor/MyD88/NF-κB pathway, and repaired the structure of BTB by regulating the levels of T, AR, TAM receptors, and EPO. In conclusion, these results suggest that WZYZ activates the Akt pathway and inhibits the NF-κB pathway by acting on the upstream regulators, thereby improving spermatogenesis deficit induced by THS.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Animais , Hormônio Foliculoestimulante/sangue , Resposta ao Choque Térmico , Hormônio Luteinizante/sangue , Masculino , Ratos , Ratos Wistar , Células de Sertoli/efeitos dos fármacos , Testosterona/sangue
13.
Pharm Biol ; 59(1): 1314-1325, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34569428

RESUMO

CONTEXT: Lycium barbarum L. (Solanaceae) seed oil (LBSO) exerts LBSO exerts protective effects in the testis in vivo and in vitro via upregulating SIRT3. OBJECTIVE: This study evaluates the effects and mechanism of LBSO in the d-galactose (d-gal)-induced ageing testis. MATERIALS AND METHODS: Male Sprague Dawley (SD) rats (n = 30, 8-week-old) were randomly divided into three groups: LBSO group (n = 10) where rats received subcutaneous injection of d-gal at 125 mg/kg/day for 8 weeks and intragastric administration of LBSO at 1000 mg/kg/day for 4 weeks, ageing model group (n = 10) received 8-week-sunbcutaneous injection of d-gal, and control group (n = 10) with same administration of normal saline. Lentivirus had established TM4 cells with SIRT3 overexpression or silencing before LBSO intervened in vitro. RESULTS: Treatment with LBSO, the levels of INHB and testosterone both increased, compared to ageing model. In vitro, we found the ED50 of LBSO was 86.72 ± 1.49 and when the concentration of LBSO at 100 µg/mL to intervene TM4 cells, the number of cells increased from 8120 ± 676.2 to 15251 ± 1119, and the expression of SIRT3, HO-1, and SOD upregulated. However, HO-1 and SOD were dysregulated by silencing SIRT3. On the other hand, the expression of AMPK and PGC-1α upregulated as an effect of SIRT3 overexpression by lentivirus, meanwhile the same increasing trend of that being found in cells treated with LBSO, compared to control group. DISCUSSION AND CONCLUSIONS: LBSO alleviated oxidative stress in d-gal-induced sub-acutely ageing testis and TM4 cells by suppressing the oxidative stress to mitochondria via SIRT3/AMPK/PGC-1α.


Assuntos
Lycium/química , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Testículo/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/genética , Envelhecimento/efeitos dos fármacos , Animais , Linhagem Celular , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Óleos de Plantas/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Sementes , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/patologia , Sirtuínas/genética , Testículo/patologia
14.
Adv Exp Med Biol ; 1288: 307-319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453743

RESUMO

The testis is one of the organs in the mammalian body that is sensitive to toxicants. Accumulating evidence has shown that human exposure to toxic ingredients in Traditional Chinese Medicine (TCM), such as triptolide, gossypol, cannabidol, piperine, α-solanine, matrine, aristolochic acid, and emodin, lead to testis injury and reproductive dysfunction. The most obvious phenotype is reduced sperm counts due to defects in spermatogenesis. Studies have also shown that Sertoli cells in the seminiferous tubule, the functional unit of the testis that supports spermatogenesis, are the cell type that is most sensitive to the disruptive effects of toxicants. Since Sertoli cells are the "mother cells" that nurture germ cell development, Sertoli cell injury thus leads to failure in germ cell development in the seminiferous epithelium. Mounting evidence has shown that the Sertoli cell cytoskeletons, mitochondria function, Leydig cells steroidogenesis pathways and sperm ion channels are some of the prime targets of toxicants from TCM. We carefully evaluate recent findings in this area of research herein, and to provide a summary of these findings, including some insightful information regarding the underlying molecular basis of toxicant-induced testis injury that impede spermatogenesis.


Assuntos
Medicina Tradicional Chinesa , Testículo , Animais , Humanos , Masculino , Células de Sertoli , Espermatogênese , Espermatozoides
15.
Andrologia ; 53(9): e14169, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34197007

RESUMO

The blood-testis barrier (BTB) of Sertoli cells (SCs) is an important biological barrier that maintains spermatogenesis and provides a favourable microenvironment for spermatogenesis. However, heat stress can directly damage the BTB structural proteins of testicular SCs, leading to dyszoospermia. Wuzi Yanzong Pills (WYP) is a traditional Chinese medicine formula used to treat male reproductive diseases. However, whether WYP could ameliorate heat stress injury in primary SCs extracted from rat testes and BTB proteins remains unknown. Here, treatment with WYP (low, medium and high dose) increased the SC viability and the proliferation of cell antigen Ki67 significantly. Additionally, it promoted SC maturation, which presented in the form of increased androgen receptors (ARs) and decreased cytokeratin 18 (CK-18) in three WYP dose groups. WYP upregulated BTB proteins such as zonula occludens 1 (ZO-1) and occludin across all WYP groups and decreased phosphorylated Akt (p-Akt) in the middle and high-dose groups; however, ZO-1 and occludin recovery were reduced with the presence of Akt inhibitor in WYP groups. WYP improved SC viability and proliferation, and ameliorated dedifferentiation and BTB-proteins damaged by heat stress via Akt signalling. The findings present theoretical support for the effects of WYP in the management of dyszoospermia and male infertility.


Assuntos
Barreira Hematotesticular , Células de Sertoli , Animais , Medicamentos de Ervas Chinesas , Resposta ao Choque Térmico , Masculino , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Espermatogênese , Testículo
16.
Toxicol Appl Pharmacol ; 425: 115606, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087332

RESUMO

Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.


Assuntos
Diterpenos/farmacologia , Fator de Transcrição GATA4/metabolismo , Glicólise/efeitos dos fármacos , Fenantrenos/farmacologia , Fosfofrutoquinase-1 Tipo C/metabolismo , Células de Sertoli/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Compostos de Epóxi/farmacologia , Fator de Transcrição GATA4/efeitos dos fármacos , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfofrutoquinase-1 Tipo C/efeitos dos fármacos , Fosfofrutoquinase-1 Tipo C/genética , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/efeitos dos fármacos , Fator de Transcrição Sp1/genética
17.
Mol Reprod Dev ; 88(6): 405-415, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34032349

RESUMO

The effect of stress on male fertility is a widespread public health issue, but less is known about the related signaling pathway. To investigate this, we established a hypercortisolism mouse model by supplementing the drinking water with corticosterone for four weeks. In the hypercortisolism mice, the serum corticosterone was much higher than in the control, and serum testosterone was significantly decreased. Moreover, corticosterone treatment induced decrease of sperm counts and increase of teratozoospermia. Increased numbers of multinucleated giant cells and apoptotic germ cells as well as downregulated meiotic markers suggested that corticosterone induced impaired spermatogenesis. Further, upregulation of macrophage-specific marker antigen F4/80 as well as inflammation-related genes suggested that corticosterone induced inflammation in the testis. Lactate content was found to be decreased in the testis and Sertoli cells after corticosterone treatment, and lactate metabolism-related genes were downregulated. In vitro phagocytosis assays showed that the phagocytic activity in corticosterone-treated Sertoli cells was downregulated and accompanied by decreased mitochondrial membrane potential, while pyruvate dehydrogenase kinase-4 inhibitor supplementation restored this process. Taken together, our results demonstrated that dysfunctional phagocytosis capacity and lactate metabolism in Sertoli cells participates in corticosterone-induced impairment of spermatogenesis.


Assuntos
Glucocorticoides/toxicidade , Células de Sertoli/fisiologia , Espermatogênese/efeitos dos fármacos , Animais , Proteínas de Ligação ao Cálcio/análise , Corticosterona/toxicidade , Síndrome de Cushing/sangue , Síndrome de Cushing/induzido quimicamente , Síndrome de Cushing/fisiopatologia , Ácido Dicloroacético/farmacologia , Hormônio Foliculoestimulante/sangue , Ácido Láctico/metabolismo , Hormônio Luteinizante/sangue , Masculino , Meiose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Orquite/induzido quimicamente , Orquite/metabolismo , Fagocitose/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Receptores Acoplados a Proteínas G/análise , Células de Sertoli/metabolismo , Contagem de Espermatozoides , Espermatozoides/patologia , Testículo/metabolismo , Testosterona/sangue
18.
Reprod Domest Anim ; 56(6): 884-896, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738852

RESUMO

Glycine is a well-known free radical scavenger in the cellular antioxidant system that prevents oxidative damage and apoptosis. Excessive fluoride exposure is associated with multiple types of cellular damage in humans and animals. The objective of the present study was to investigate the protective effects of glycine on sodium fluoride (NaF) exposure and the possible underlying mechanisms in a porcine testicular Sertoli cell line model. Cellular viability and proliferation were examined following NaF exposure and glycine supplementation, and glycine dramatically ameliorated the decreases in NaF-induced porcine testicular Sertoli cell viability and proliferation. Further investigations revealed that glycine decreased NaF-induced intracellular reactive oxygen species production, DNA fragment accumulation and the apoptosis incidence in the porcine testicular Sertoli cell line; in addition, glycine improved mitochondrial function and ATP production. Notably, results of the SPiDER-ß-Gal analysis suggested that glycine alleviated NaF-induced cellular senescence and downregulated P53, P21, HMGA2 and P16INK4a gene expression in the porcine testicular Sertoli cell line. Collectively, the beneficial effects of glycine alleviate NaF-induced oxidative stress, apoptosis and senescence, and together with our previous findings, support the hypothesis that glycine plays an important role in protecting against NaF exposure-induced impairments in the porcine testicular Sertoli cell line.


Assuntos
Envelhecimento/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glicina/farmacologia , Fluoreto de Sódio/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Regulação da Expressão Gênica , Masculino , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Células de Sertoli/efeitos dos fármacos , Suínos
19.
Pak J Biol Sci ; 24(12): 1316-1321, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34989208

RESUMO

<b>Background and Objective:</b> Prolonged and uncontrolled hyperglycemia in diabetes mellitus can increase the production of reactive oxygen and enhance the risk of male infertility by reducing the number of Sertoli cells. This study aimed to investigate the potential effect of Ethanol Extract of <i>Annona muricata </i>leaf (EEAL) on the amount of Sertoli cells in alloxan-induced mice antioxidant to prevent reducing the number of Sertoli cells. <b>Materials and Methods:</b> The samples used for this study are 30 alloxan-induced Swiss Webster mice divided into a negative control group, a positive control group (glibenclamide 0.65 mg kg<sup>1</sup>) and three plant extract groups (EEAL 150, 300 and 600 mg kg<sup>1</sup>). Every solution was given every day for 14 days. Histological examination using HE-stained preparations was performed on 40x magnification to evaluate many Sertoli cells counted using Image J software. <b>Results:</b> three EEAL groups of 150, 300 and 600 mg kg<sup>1</sup> have significant effects (p<0.05) to increase the amounts of Sertoli cells compared to a negative control group. In contrast, it does not significantly affect the amounts of Sertoli cells than the positive control group. <b>Conclusion:</b> The administration of <i>A. muricata</i> leaf extract during 14 days significantly reduced the number of Sertoli cells on alloxan-induced mice.


Assuntos
Annona/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Células de Sertoli/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/etiologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Células de Sertoli/fisiologia
20.
Andrology ; 9(3): 965-976, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33305512

RESUMO

BACKGROUND: The direct correlation between Sertoli cell number and sperm production capacity highlights the importance of deciphering external factors that modify Sertoli cell proliferation. A growing body of evidence in vitro suggests that metformin, the main pharmacological agent for type 2 diabetes treatment in children, exerts anti-proliferative effects on Sertoli cells. OBJECTIVE: The aims of this study were to investigate the effect of metformin administration during postnatal period on Sertoli cell proliferation and on cell cycle regulators expression and to analyze the impact of this treatment on the sperm production capacity in adulthood. MATERIALS AND METHODS: Sprague Dawley rat pups were randomly divided into two groups: MET (receiving daily 200 mg/kg metformin, from Pnd3 to Pnd7 inclusive) and control (receiving vehicle). BrdU incorporation was measured to assess proliferation. Gene expression analyses were performed in Sertoli cells isolated from animals of both groups. Daily sperm production and sperm parameters were measured in adult male rats (Pnd90) that received neonatal treatment. RESULTS: MET group exhibited a significant decrease in BrdU incorporation in Sertoli cells. Concordantly, MET group showed a reduction in cyclin D1 and E2 expression and an increase in p21 expression in Sertoli cells. In addition, metformin-treated animals displayed lower values of daily sperm production on Pnd90. DISCUSSION AND CONCLUSION: These results suggest that metformin treatment may lead to a decrease in Sertoli cell proliferation, a concomitant altered expression of cell cycle regulators and ultimately, a reduction in daily sperm production in adult animals.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hipoglicemiantes/efeitos adversos , Metformina/efeitos adversos , Células de Sertoli/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Gravidez , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA