Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Burns ; 50(1): 132-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37741785

RESUMO

INTRODUCTION: Burns are defined as a traumatic injury, usually of thermal origin, that affects the epithelial and adjacent tissue and is classified according to the depth reached. Tissue repair involved in this type of injury is often a challenge both due to its severity and the multiplicity of complications. Regenerative medicine has focused on the use of low-level laser photobiomodulation therapy (LLLT) and adipose-derived stem cells (ADSC), especially in the early stages of the process, to promote better healing and shorten repair time. Therefore, aim of this study was to evaluate the action of LLLT (660 nm) and ADSC in the repair process of burned skin tissue and investigate the association of the techniques (LLLT and ADSC). MATERIALS AND METHODS: An in vivo study was carried out using 96 rats (Wister) with a scald burn model at a temperature of 95ºC, exposing the animal's back for 14 s. Animals were randomized into seven groups and three periods, five, 14 and 21 days. The groups included GC: Control group, ADSC-: Group treated with CD49d negative cells, ADSC+ : Group treated with positive CD49d cells, CULT: Group treated with conventional isolation cells, LLLT: Group treated only with LLLT Low Power Laser, ADSC-LLLT: Group treated with CD49d negative cells and LLLT. ADSC+LLLT: Group treated with positive CD49d cells and LLLT. The groups treated with LLLT (660 nm; 5 J/cm2) received irradiation three times a week, on alternate days for five, 14 and 21 days, according to the time of biopsy. ADSC-treated groups received one to three applications of the cells in a total volume of 1000 µL starting soon after the surgical debridement of the burn. Photographic monitoring was carried out at 5, 14 and 21 days after the beginning of the experiment to assess the degree of lesion contraction. Macroscopic, morphometric and histopathological analyzes were performed. RESULTS: We showed significant re-epithelialization as well as an improvement in the healing process in the ADSC+, LLLT and ADSC+LLLT groups. We observed effects in the reduction of the inflammatory phase, increase in angiogenesis, decrease in oedema, greater collagen deposition, and better organization of the extracellular matrix compared to the other treatments. Moreover, the immunomagnetic separation of ADSC cells through the expression of the CD49d protein proved to be a useful means to obtain a more homogeneous population of cells with a role in tissue regeneration compared to the ADSC- and CULT groups. CONCLUSION: In conclusion, the association of ADSC+ with LLLT was effective in accelerating the burn repair process, stimulating cell proliferation and formation of more normal skin tissue.


Assuntos
Queimaduras , Terapia com Luz de Baixa Intensidade , Lesões dos Tecidos Moles , Ratos , Animais , Ratos Wistar , Queimaduras/patologia , Pele/patologia , Cicatrização/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Células-Tronco/metabolismo , Células-Tronco/patologia
2.
Lasers Med Sci ; 38(1): 129, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243832

RESUMO

Diabetic wounds are categorized by chronic inflammation, leading to the development of diabetic foot ulcers, which cause amputation and death. Herewith, we examined the effect of photobiomodulation (PBM) plus allogeneic diabetic adipose tissue-derived stem cells (ad-ADS) on stereological parameters and expression levels of interleukin (IL)-1ß and microRNA (miRNA)-146a in the inflammatory (day 4) and proliferation (day 8) stages of wound healing in an ischemic infected (with 2×107 colony-forming units of methicillin-resistant Staphylococcus aureus) delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. There were five groups of rats: group 1 control (C); group 2 (CELL) in which rat wounds received 1×106 ad-ADS; group 3 (CL) in which rat wounds received the ad-ADS and were subsequently exposed to PBM(890 nm, 80 Hz, 3.5 J/cm2, in vivo); group 4 (CP) in which the ad-ADS preconditioned by the PBM(630 nm + 810 nm, 0.05 W, 1.2 J/cm2, 3 times) were implanted into rat wounds; group 5 (CLP) in which the PBM preconditioned ad-ADS were implanted into rat wounds, which were then exposed to PBM. On both days, significantly better histological results were seen in all experimental groups except control. Significantly better histological results were observed in the ad-ADS plus PBM treatment correlated to the ad-ADS alone group (p<0.05). Overall, PBM preconditioned ad-ADS followed by PBM of the wound showed the most significant improvement in histological measures correlated to the other experimental groups (p<0.05). On days 4 and 8, IL-1 ß levels of all experimental groups were lower than the control group; however, on day 8, only the CLP group was different (p<0.01). On day 4, miR-146a expression levels were substantially greater in the CLP and CELL groups correlated to the other groups, on day 8 miR-146a in all treatment groups was upper than C (p<0.01). ad-ADS plus PBM, ad-ADS, and PBM all improved the inflammatory phase of wound healing in an IIDHWM in TIDM1 rats by reducing inflammatory cells (neutrophils, macrophages) and IL-1ß, and increasing miRNA-146a. The ad-ADS+PBM combination was better than either ad-ADS or PBM alone, because of the higher proliferative and anti-inflammatory effects of the PBM+ad-ADS regimen.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Staphylococcus aureus Resistente à Meticilina , MicroRNAs , Ratos , Animais , Diabetes Mellitus Experimental/patologia , Ratos Wistar , Cicatrização , Células-Tronco/patologia , Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , MicroRNAs/genética
3.
FASEB J ; 37(5): e22916, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073611

RESUMO

Liver fibrosis is closely related to the proliferation and differentiation of liver progenitor cells (LPCs). Yes-associated protein (YAP) is a key effector molecule of the Hippo signaling pathway and plays an important role in regulating cell proliferation and liver homeostasis. However, its role in LPCs proliferation and differentiation during liver fibrosis are not well understood. Using immunohistochemistry, immunofluorescence staining, quantitative PCR and Western blotting, we discovered that LPCs expansion and enhanced YAP expression in LPCs in either choline-deficient, ethionine-supplemented (CDE) diet or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced fibrotic mice, as well as in patients with liver fibrosis. By injecting adeno-associated virus vectors under the transcriptional control of Lgr5 promoter, we found that targeted knockdown of YAP in LPCs attenuated the CDE/DDC diet-induced ductular reaction and liver fibrosis. Using EdU incorporation and Cell Counting Kit-8 assays, we demonstrated that YAP can modulate LPCs proliferation. Importantly, spleen transplantation of YAP-overexpressing LPCs improved their ability to differentiate into hepatocytes and alleviated carbon tetrachloride-induced liver fibrosis. Collectively, our findings indicate that LPCs expansion and differentiation during liver fibrosis could be modulated by YAP, further suggesting the possibility of manipulating YAP expression in LPCs as a potential treatment for chronic liver diseases.


Assuntos
Cirrose Hepática , Proteínas de Sinalização YAP , Animais , Camundongos , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatócitos/patologia , Células-Tronco/patologia , Diferenciação Celular , Proliferação de Células
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166290, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662704

RESUMO

Hepatic fibrosis is characterized by excessive extracellular matrix deposition and ductular reactions, manifested as the expansion of hepatic progenitor cells (HPCs). We previously reported that the Y-box binding protein 1 (YB-1) in HPCs is involved in chronic liver injury. In this study, we constructed YB-1f/f Foxl1-Cre mice and investigated the role of YB-1 in HPC expansion in murine choline-deficient, ethionine-supplemented (CDE), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) models. Liver injury and fibrosis were measured using hematoxylin and eosin (HE), Masson, and Sirius Red staining. HPC proliferation was detected using EdU and immunofluorescence (IF). Autophagic flow was measured by mCherry-GFP-LC3B staining and transmission electron microscopy (TEM). YB-1 expression was measured by immunofluorescence and western blotting. CUT & Tag analysis, chromatin immunoprecipitation, and RT-PCR were performed to explore the regulation of autophagy-related protein 7 (Atg7) transcription by YB-1. Our results indicated that liver injury was accompanied by high expression of YB-1, proliferative HPCs, and activated autophagy in the CDE and DDC models. YB-1f/f Cre+/- mice displayed less liver injury and fibrosis than YB-1f/f Cre-/- mice in the CDE and DDC models. YB-1 promoted proliferation and autophagy of HPCs in vitro and in vivo. Transforming growth factor-ß (TGF-ß) induced YB-1 nuclear translocation and facilitated the proliferation and autophagy of HPCs. YB-1 nuclear translocation promoted the transcription of Atg7, which is essential for TGF-ß/YB-1 mediated HPCs expansion in vitro and in vivo. In summary, YB-1 nuclear translocation induced by TGF-ß in HPCs promotes the proliferation and autophagy of HPCs and Atg7 participates in YB-1-mediated HPC-expansion and liver fibrosis.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Cirrose Hepática/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Deficiência de Colina/induzido quimicamente , Deficiência de Colina/genética , Deficiência de Colina/patologia , Modelos Animais de Doenças , Etionina/toxicidade , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Piridinas/toxicidade , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia
5.
Nat Commun ; 12(1): 3447, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103494

RESUMO

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Assuntos
Sistema Cardiovascular/embriologia , Embrião de Mamíferos/patologia , Deficiências de Ferro , Animais , Aorta Torácica/anormalidades , Biomarcadores/metabolismo , Diferenciação Celular , Vasos Coronários/embriologia , Vasos Coronários/patologia , Suplementos Nutricionais , Edema/patologia , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Proteínas de Fluorescência Verde/metabolismo , Ferro/metabolismo , Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Penetrância , Fenótipo , Gravidez , Transdução de Sinais , Células-Tronco/patologia , Transgenes , Tretinoína/metabolismo
6.
Biochem Biophys Res Commun ; 554: 123-130, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33784507

RESUMO

Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been implicated in the ferroptosis in cancer cells and hematopoiesis in the bone marrow. However, the role of iron metabolism, especially NCOA4-mediated degradation of ferritin, has not been explored in the proliferation of mesenchymal stem cells. The present study was designed to explore the role of NCOA4-mediated ferritinophagy in hypoxia-treated dental pulp stem cells (DPSCs). Hypoxia treatment increased ROS generation, boosted cytosolic labile iron pool, increased expression of transferrin receptor 1 and NCOA4. Moreover, colocalization of LC3B with NCOA4 and ferritin was observed in hypoxia-treated DPSCs, indicating the development of ferritinophagy. Hypoxia promoted the proliferation of DPSCs, but not ferroptosis, under normal serum supplement and serum deprivation. NCOA4 knock-down reduced ferritin degradation and inhibited proliferation of DPSCs under hypoxia. Furthermore, the activation of hypoxia inducible factor 1α and p38 mitogen-activated protein kinase signaling pathway was involved in the upregulation of NCOA4 in hypoxia. Therefore, our present study suggested that NCOA4-mediated ferritinophagy promoted the level of labile iron pool, leading to enhanced iron availability and elevated cell proliferation of DPSCs. Our present study uncovered a physiological role of ferritinophagy in the proliferation and growth of mesenchymal stem cells under hypoxia.


Assuntos
Hipóxia Celular/fisiologia , Polpa Dentária/patologia , Ferritinas/metabolismo , Ferro/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Células-Tronco/patologia , Autofagia , Proliferação de Células/fisiologia , Polpa Dentária/metabolismo , Humanos , Células-Tronco/metabolismo
7.
Biomed Pharmacother ; 134: 111129, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348308

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC.


Assuntos
Anti-Inflamatórios/uso terapêutico , Berberina/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células-Tronco/patologia
8.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008767

RESUMO

Decreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with Citrobacter rodentium (CR)-induced infectious colitis, treatment with Pectin and Tributyrin diets reduced the severity of colitis by restoring Firmicutes and Bacteroidetes and by increasing mucus production. RNA-seq in young adult mouse colon (YAMC) cells identified higher expression of Lgr4, Lgr6, DCLK1, Muc2, and SIGGIR after Butyrate treatment. Lineage tracing in CR-infected Lgr5-EGFP-IRES-CreERT2/ROSA26-LacZ (Lgr5-R) mice also revealed an expansion of LacZ-labeled Lgr5(+) stem cells in the colons of both Pectin and Tributyrin-treated mice compared to control. Interestingly, gut microbiota was required for Pectin but not Tributyrin-induced Lgr5(+) stem cell expansion. YAMC cells treated with sodium butyrate exhibited increased Lgr5 promoter reporter activity due to direct Butyrate binding with Lgr5 at -4.0 Kcal/mol, leading to thermal stabilization. Upon ChIP-seq, H3K4me3 increased near Lgr5 transcription start site that contained the consensus binding motif for a transcriptional activator of Lgr5 (SPIB). Thus, a multitude of effects on gut microbiome, differential gene expression, and/or expansion of Lgr5(+) stem cells seem to underlie amelioration of colitis following dietary intervention.


Assuntos
Colite/microbiologia , Colite/patologia , Dieta , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Microbiota , Células-Tronco/patologia , Animais , Biodiversidade , Butiratos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citrobacter rodentium/fisiologia , Epitélio/patologia , Fermentação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Pectinas/farmacologia , Regiões Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Triglicerídeos/farmacologia
9.
Phytomedicine ; 81: 153424, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33278782

RESUMO

BACKGROUD: Exposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions. PURPOSE: We investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function. METHODS: To investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis. RESULTS: In this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model. CONCLUSION: These data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.


Assuntos
Grelina/farmacologia , Enteropatias/tratamento farmacológico , Mucosa Intestinal/citologia , Receptores Notch/metabolismo , Células-Tronco/efeitos da radiação , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Enteropatias/etiologia , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Lesões por Radiação , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/efeitos da radiação
10.
Acta Derm Venereol ; 100(18): adv00310, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073298

RESUMO

A variety of applications of human adipose tissue stem cell-derived exosomes have been suggested as novel cell-free therapeutic strategies in the regenerative and aesthetic medical fields. This study evaluated the clinical efficacy and safety of adipose tissue stem cell-derived exosomes as an adjuvant therapy after application of fractional CO2 laser for acne scars. A 12-week prospective, double-blind, randomized, split-face trial was performed. A total of 25 patients received 3 consecutive treatment sessions of fractional CO2 laser to the whole face, with a follow-up evaluation. Post-laser treatment regimens were applied; for each patient, one side of the face was treated with adipose tissue stem cell-derived exosomes gel and the other side was treated with control gel. Adipose tissue stem cell-derived exosomes-treated sides had achieved a significantly greater improvement than the control sides at the final follow-up visit (percentage reduction in échelle d'évaluation clinique des cicatrices d'acné scores: 32.5 vs 19.9%, p < 0.01). Treatment-related erythema was milder, and post-treatment downtime was shorter on the applications of human adipose tissue stem cell-derived exosomes-treated side. In conclusion, the combined use of this novel material with resurfacing devices would provide synergistic effects on both the efficacy and safety of atrophic acne scar treatments.


Assuntos
Acne Vulgar , Exossomos , Lasers de Gás , Terapia com Luz de Baixa Intensidade , Acne Vulgar/diagnóstico , Acne Vulgar/terapia , Tecido Adiposo/patologia , Cicatriz/diagnóstico , Cicatriz/etiologia , Cicatriz/terapia , Método Duplo-Cego , Humanos , Lasers de Gás/efeitos adversos , Estudos Prospectivos , Células-Tronco/patologia , Resultado do Tratamento
11.
Toxicol Mech Methods ; 30(8): 590-604, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32713235

RESUMO

3-dimensional (3D) cell cultures are being increasingly recognized as physiologically more relevant in vitro models than traditional monolayer cultures, because they better mimic in vivo-like microenvironment, cell-cell and cell-extracellular matrix interactions. Nevertheless, the broader use of 3D models might be limited by requirements for special consumables, equipment, or skills for 3D cell cultures, and by their limited throughput and scalability. In this study, we optimized and adapted a commercially available agarose-micromolding technique to produce scaffold-free spheroid cultures. Brightfield microscopy was used for routine nondestructive and noninvasive evaluation of spheroid formation and growth. The workflow is compatible with manual, as well as high speed automated microscopic image acquisition, and it is supplemented with an in-house developed macro 'Spheroid_Finder' for open source software Fiji to facilitate rapid automated image analysis. This protocol was used to characterize and quantify spheroid formation and growth of two different hepatic cell lines, hTERT immortalized, but non-cancerous, adult human liver stem cell line HL1-hT1, and human hepatocellular carcinoma cell line HepG2, as well as their responses to a model antiproliferative and cytotoxic agent, 5-fluorouracil. The complete protocol provides a simple and ready-to-use solution to initiate scaffold-free spheroid cultures in any laboratory with standard equipment for mammalian in vitro cell culture work. Thus, it allows to increase throughput and scale of spheroid culture experiments, which can be greatly utilized in different areas of biomedical, pharmaceutical and toxicological research.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fluoruracila/farmacologia , Ensaios de Triagem em Larga Escala , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Antimetabólitos Antineoplásicos/toxicidade , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/toxicidade , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Esferoides Celulares , Células-Tronco/metabolismo , Células-Tronco/patologia , Fatores de Tempo , Testes de Toxicidade , Fluxo de Trabalho
12.
Sci Rep ; 10(1): 5363, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210313

RESUMO

Muscle resident fibro-adipogenic progenitors (FAPs), support muscle regeneration by releasing cytokines that stimulate the differentiation of myogenic stem cells. However, in non-physiological contexts (myopathies, atrophy, aging) FAPs cause fibrotic and fat infiltrations that impair muscle function. We set out to perform a fluorescence microscopy-based screening to identify compounds that perturb the differentiation trajectories of these multipotent stem cells. From a primary screen of 1,120 FDA/EMA approved drugs, we identified 34 compounds as potential inhibitors of adipogenic differentiation of FAPs isolated from the murine model (mdx) of Duchenne muscular dystrophy (DMD). The hit list from this screen was surprisingly enriched with compounds from the glucocorticoid (GCs) chemical class, drugs that are known to promote adipogenesis in vitro and in vivo. To shed light on these data, three GCs identified in our screening efforts were characterized by different approaches. We found that like dexamethasone, budesonide inhibits adipogenesis induced by insulin in sub-confluent FAPs. However, both drugs have a pro-adipogenic impact when the adipogenic mix contains factors that increase the concentration of cAMP. Gene expression analysis demonstrated that treatment with glucocorticoids induces the transcription of Gilz/Tsc22d3, an inhibitor of the adipogenic master regulator PPARγ, only in anti-adipogenic conditions. Additionally, alongside their anti-adipogenic effect, GCs are shown to promote terminal differentiation of satellite cells. Both the anti-adipogenic and pro-myogenic effects are mediated by the glucocorticoid receptor and are not observed in the presence of receptor inhibitors. Steroid administration currently represents the standard treatment for DMD patients, the rationale being based on their anti-inflammatory effects. The findings presented here offer new insights on additional glucocorticoid effects on muscle stem cells that may affect muscle homeostasis and physiology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glucocorticoides/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Adipogenia/efeitos dos fármacos , Animais , Budesonida/administração & dosagem , Budesonida/farmacologia , Diferenciação Celular/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microscopia de Fluorescência , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , PPAR gama/metabolismo , Receptores de Glucocorticoides/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Transcrição/metabolismo
13.
Cell Rep ; 30(7): 2055-2064.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075752

RESUMO

Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that ß-catenin phosphorylated at Y489 (p-ß-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/ß-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/ß-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-ß-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-ß-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/ß-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Ensaios de Triagem em Larga Escala/métodos , Homeostase/efeitos dos fármacos , Humanos , Pulmão/citologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Células-Tronco/citologia , Células-Tronco/patologia , Transfecção , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
14.
Sci Rep ; 10(1): 104, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919399

RESUMO

Ascorbic acid-2-phosphate (A2-P) is an oxidation-resistant derivative of ascorbic acid that has been widely employed in culturing adipose-derived stem cells (ASCs) for faster expansion and cell sheet formation. While high dose ascorbic acid is known to induce cellular apoptosis via metabolic stress and genotoxic effects, potential cytotoxic effects of A2-P at high concentrations has not been explored. In this study, the relationship between ASC seeding density and A2-P-induced cytotoxicity was investigated. Spheroid-derived ASCs with smaller cellular dimensions were generated to investigate the effect of cell-cell contact on the resistance to A2-P-induced cytotoxicity. Decreased viability of ASC, fibroblast, and spheroid-derived ASC was noted at higher A2-P concentration, and it could be reverted with high seeding density. Compared to control ASCs, spheroid-derived ASCs seeded at the same density exhibited decreased viability in the A2-P-supplemented medium. The expression of antioxidant enzymes (catalase, SOD1, and SOD2) was enhanced in ASCs at higher seeding densities. However, their enhanced expression in spheroid-derived ASCs was less evident. Furthermore, we found that co-administration of catalase or N-acetylcysteine nullified the observed cytotoxicity. Collectively, A2-P can induce ASC cytotoxicity at higher concentrations, which can be prevented by seeding ASCs at high density or co-administration of another antioxidant.


Assuntos
Tecido Adiposo/patologia , Apoptose , Ácido Ascórbico/análogos & derivados , Proliferação de Células , Células-Tronco/patologia , Tecido Adiposo/efeitos dos fármacos , Adulto , Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Contagem de Células , Diferenciação Celular , Células Cultivadas , Humanos , Pessoa de Meia-Idade , Células-Tronco/efeitos dos fármacos
15.
J Biomed Mater Res B Appl Biomater ; 107(2): 278-285, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577609

RESUMO

In this study, the wound healing properties of the gelatin-based hydrogel (GBH) wound dressing combined with adipose-derived stem cells (ADSCs) were investigated using the mouse and porcine models. The analytical results showed that the ADSCs harvested from the porcine significantly increased cell growth and promoted cell differentiation (adipogenesis and osteogenesis) in comparison to the ADSCs harvested from the mouse in vitro. Moreover, the in vivo results also indicated that the GBH wound dressing combined with ADSCs and its culture medium could potentially accelerate wound healing in the mouse and porcine models. The ADSCs presented a possibility of recovery from wounds and injuries through skin regeneration. Therefore, both in vitro and in vivo results demonstrated that the ADSCs can potentially be an effective clinical treatment through the GBH wound dressing, which is a promising evidence-based complementary and alternative medicine for skin regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 278-285, 2019.


Assuntos
Tecido Adiposo/metabolismo , Bandagens , Hidrogéis/farmacologia , Pele , Transplante de Células-Tronco , Células-Tronco/metabolismo , Cicatrização , Tecido Adiposo/patologia , Aloenxertos , Animais , Hidrogéis/química , Camundongos , Pele/lesões , Pele/metabolismo , Pele/patologia , Células-Tronco/patologia , Suínos
16.
Gastroenterology ; 156(1): 187-202.e14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267710

RESUMO

BACKGROUND & AIMS: Upon liver injury in which hepatocyte proliferation is compromised, liver progenitor cells (LPCs), derived from biliary epithelial cells (BECs), differentiate into hepatocytes. Little is known about the mechanisms of LPC differentiation. We used zebrafish and mouse models of liver injury to study the mechanisms. METHODS: We used transgenic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of compounds that alter epigenetic factors on BEC-mediated liver regeneration. We analyzed zebrafish with disruptions of the histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3. Zebrafish larvae were collected and analyzed by whole-mount immunostaining and in situ hybridization; their liver tissues were collected for quantitative reverse transcription polymerase chain reaction. We studied mice in which hepatocyte-specific deletion of ß-catenin (Ctnnb1flox/flox mice injected with Adeno-associated virus serotype 8 [AAV8]-TBG-Cre) induces differentiation of LPCs into hepatocytes after a choline-deficient, ethionine-supplemented (CDE) diet. Liver tissues were collected and analyzed by immunohistochemistry and immunoblots. We performed immunohistochemical analyses of liver tissues from patients with compensated or decompensated cirrhosis or acute on chronic liver failure (n = 15). RESULTS: Loss of Hdac1 activity in zebrafish blocked differentiation of LPCs into hepatocytes by increasing levels of sox9b mRNA and reduced differentiation of LPCs into BECs by increasing levels of cdk8 mRNA, which encodes a negative regulator gene of Notch signaling. We identified Notch3 as the receptor that regulates differentiation of LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase that forms repressive complexes with Hdac1, produced the same defects in differentiation of LPCs into hepatocytes and BECs as observed in zebrafish with loss of Hdac1 activity. Administration of MS-275 to mice with hepatocyte-specific loss of ß-catenin impaired differentiation of LPCs into hepatocytes after the CDE diet. HDAC1 was expressed in reactive ducts and hepatocyte buds of liver tissues from patients with cirrhosis. CONCLUSIONS: Hdac1 regulates differentiation of LPCs into hepatocytes via Sox9b and differentiation of LPCs into BECs via Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte loss. HDAC1 activity was also required for differentiation of LPCs into hepatocytes in mice with liver injury after the CDE diet. These pathways might be manipulated to induce LPC differentiation for treatment of patients with advanced liver diseases.


Assuntos
Ductos Biliares/enzimologia , Diferenciação Celular , Proliferação de Células , Quinase 8 Dependente de Ciclina/metabolismo , Hepatócitos/enzimologia , Histona Desacetilase 1/metabolismo , Regeneração Hepática , Fígado/enzimologia , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Insuficiência Hepática Crônica Agudizada/enzimologia , Insuficiência Hepática Crônica Agudizada/patologia , Animais , Ductos Biliares/patologia , Deficiência de Colina/genética , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Quinase 8 Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Hepatócitos/patologia , Histona Desacetilase 1/genética , Humanos , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Camundongos Knockout , Mutação , Receptor Notch3/genética , Receptor Notch3/metabolismo , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Células-Tronco/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
17.
Lasers Med Sci ; 34(1): 15-21, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29980944

RESUMO

This study aimed to analyze the effects of laser irradiation on the membrane integrity and viability of stem cells from human exfoliated deciduous teeth (SHED) that were kept in serum starvation. Nutritional deficit was used to mimic the cellular stress conditions of SHED isolation for regenerative dental approaches, where laser therapy could be beneficial. SHED were cultured under serum starvation (MEMα + 1%FBS) for 1 or 24 h pre-irradiation (protocols A and B, respectively). Then, cells received low-level laser therapy (LLLT; 660 nm) at 2.5 J/cm2 (0.10 W; groups I and V), 5.0 J/cm2 (0.20 W; groups II and VI), 7.5 J/cm2 (0.30 W; groups III and VII), or remained non-irradiated (groups IV and VIII). During irradiation, cells were maintained in 1% FBS (groups I-IV) or 10% FBS (normal culture conditions; groups V-VIII). Membrane integrity was evaluated by quantifying lactate dehydrogenase (LDH) release (immediately after irradiation), and cell viability was assessed by the MTT assay (24, 48, and 72 h post-irradiation). Serum starvation did not alter LDH release by non-irradiated SHED, while LDH release decreased significantly in groups irradiated in 1% FBS (I and III), but not in groups irradiated in 10% FBS (V-VII), regardless the pre-irradiation conditions (protocols A/B). Cell viability was significantly higher 24 h after irradiation, in most protocol A groups. In contrast, cell viability remained mostly unaltered in protocol B groups. LLLT contributed to maintain membrane integrity in SHED subjected to nutritional deficit before and during irradiation with 0.10 or 0.30 W. Short serum starvation before irradiation improved SHED viability at 24 h post-irradiation.


Assuntos
Membrana Celular/metabolismo , Lasers , Fenômenos Fisiológicos da Nutrição , Células-Tronco/patologia , Células-Tronco/efeitos da radiação , Esfoliação de Dente/patologia , Dente Decíduo/efeitos da radiação , Membrana Celular/patologia , Membrana Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , L-Lactato Desidrogenase/metabolismo , Soro
18.
Handb Clin Neurol ; 156: 457-463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30454607

RESUMO

In response to various internal and external stimuli, neuronal progenitor cells in the hypothalamic area proliferate and differentiate to functionally working neurons even in adult animals. This is the case in the thermoregulatory system, especially in the process of heat acclimation. The heat acclimation process presents two different patterns, namely short-term and long-term heat acclimation. In rats, long-term heat acclimation is attained by exposing subjects to constant heat for more than 4 weeks, while short-term heat acclimation is established within several days of heat exposure. Heat exposure for more than 6 days facilitates cell proliferation in the ependymal layer of the third ventricle. The newborn cells then migrate into the hypothalamic parenchyma. After 33 days of heat exposure, the newborn cells abruptly differentiate to mature neurons. A part of the newborn cells are incorporated in a neuronal circuit in the hypothalamus. However, only 6 days of heat exposure hardly promote neuronal differentiation. An administration of mitosis inhibitor interferes with cell proliferation in the hypothalamic area and attenuates heat acclimation-induced improvement of heat tolerance. Long-term, but not short-term, heat acclimation may be established by generating new functional neurons in the hypothalamic area, which is where an important part of the thermoregulatory circuitry exists in rats.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Proliferação de Células/fisiologia , Neurogênese/fisiologia , Animais , Humanos , Hipotálamo/citologia , Neurônios/fisiologia , Células-Tronco/patologia
19.
Stem Cell Rev Rep ; 14(6): 785-792, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225821

RESUMO

Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.


Assuntos
Regeneração Óssea , Sistemas de Liberação de Medicamentos/métodos , Magnetoterapia/métodos , Nanopartículas/uso terapêutico , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Cicatrização , Animais , Humanos , Magnetoterapia/tendências , Campos Magnéticos , Medicina Regenerativa/tendências , Células-Tronco/patologia
20.
Phytomedicine ; 40: 68-78, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496177

RESUMO

BACKGROUND: Varicocele is present in 10-20% of the male infertile population. PURPOSE: Present study was done to demonstrate the reinforcing effect of berberine (BBR), as an antioxidant and anti-inflammatory agent, on Sertoli cells-related niche and spermatogonial stem cells (SSCs) self-renewal in experimentally-induced VCL condition. STUDY DESIGN: 50 mature male Wistar rats were divided into control, control-sham, non-treated VCL-induced, 50 mg kg-1 and 100 mg kg-1 BBR-treated VCL-induced groups. METHODS: The Leydig and Sertoli cells distribution and Leydig cells steroidogenic activity, expression of glial cell line-derived neurotrophic factor (GDNF), proto-oncogene Rearranged during Transfection (c-RET) receptor, Ets variant gene 5 (Etv5) and B-cell chronic lymphocytic leukemia (CLL)/lymphoma 6, member B (Bcl-6b) at mRNA and protein levels were analyzed. The mRNA integrity and DNA fragmentation were assessed. Finally, the serum levels of testosterone, inhibin B and testicular total antioxidant capacity, total thiol molecules, catalase, and malondialdehyde were evaluated. RESULTS: Observations revealed that, the BBR significantly enhanced VCL-reduced Leydig and Sertoli cells population, maintained Leydig-Sertoli cells network, enhanced GDNF, c-RET Etv5 and Bcl6b expression, up-regulated testicular antioxidant and endocrine status. CONCLUSION: The BBR by boosting Leydig-Sertoli cells network up-regulates the GDNF, Etv5 and Bcl-6b expression/synthesis in SSCs, which in turn improves SSCs self-renewal activities. Thus, the BBR could be considered as an appropriate agent for antioxidant therapy of VCLs. However, more studies with bigger sample number and focus on BBR-induced effects on other genes involving in the self-renewal process are needed to have more deterministic results.


Assuntos
Berberina/farmacologia , Células de Sertoli/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Varicocele/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Masculino , Ratos Wistar , Células de Sertoli/metabolismo , Espermatogônias/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo , Varicocele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA