Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 196: 106506, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648865

RESUMO

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Homeostase , Ferro , Mitocôndrias , Doença de Parkinson , alfa-Sinucleína , Humanos , Ferro/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Homeostase/fisiologia , Homeostase/efeitos dos fármacos , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos
2.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433304

RESUMO

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Assuntos
Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Miócitos Cardíacos/metabolismo , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Sinalização do Cálcio , Fatores de Tempo , Acoplamento Excitação-Contração , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Terapia por Estimulação Elétrica/instrumentação , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo
3.
Circ Res ; 134(5): 482-501, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323474

RESUMO

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Assuntos
Imidazóis , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Piridazinas , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Cardiotoxicidade/patologia , Proteômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Doenças Mitocondriais/patologia , Trifosfato de Adenosina
4.
J Neurochem ; 167(5): 603-614, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37952981

RESUMO

It has been more than 10 years since the hopes for disease modeling and drug discovery using induced pluripotent stem cell (iPSC) technology boomed. Recently, clinical trials have been conducted with drugs identified using this technology, and some promising results have been reported. For amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, several groups have identified candidate drugs, ezogabine (retigabine), bosutinib, and ropinirole, using iPSCs-based drug discovery, and clinical trials using these drugs have been conducted, yielding interesting results. In our previous study, an iPSCs-based drug repurposing approach was utilized to show the potential of ropinirole hydrochloride (ROPI) in reducing ALS-specific pathological phenotypes. Recently, a phase 1/2a trial was conducted to investigate the effects of ropinirole on ALS further. This double-blind, randomized, placebo-controlled study confirmed the safety and tolerability of and provided evidence of its ability to delay disease progression and prolong the time to respiratory failure in ALS patients. Furthermore, in the reverse translational research, in vitro characterization of patient-derived iPSCs-motor neurons (MNs) mimicked the therapeutic effects of ROPI in vivo, suggesting the potential application of this technology to the precision medicine of ALS. Interestingly, RNA-seq data showed that ROPI treatment suppressed the sterol regulatory element-binding protein 2-dependent cholesterol biosynthesis pathway. Therefore, this pathway may be involved in the therapeutic effect of ROPI on ALS. The possibility that this pathway may be involved in the therapeutic effect of ALS was demonstrated. Finally, new future strategies for ALS using iPSCs technology will be discussed in this paper.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Doenças Neurodegenerativas/metabolismo , Pesquisa Translacional Biomédica , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Cells ; 12(10)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37408218

RESUMO

Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Mitocôndrias/metabolismo , Metabolismo Energético
6.
Theranostics ; 13(11): 3872-3896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441603

RESUMO

Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Ascórbico/farmacologia , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Tretinoína/farmacologia , Tretinoína/metabolismo , Células Cultivadas , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
7.
Phytomedicine ; 118: 154942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421767

RESUMO

BACKGROUND: The continuous evolution of SARS-CoV-2 has underscored the development of broad-spectrum prophylaxis. Antivirals targeting the membrane fusion process represent promising paradigms. Kaempferol (Kae), an ubiquitous plant flavonol, has been shown efficacy against various enveloped viruses. However, its potential in anti-SARS-CoV-2 invasion remains obscure. PURPOSE: To evaluate capabilities and mechanisms of Kae in preventing SARS-CoV-2 invasion. METHODS: To avoid interference of viral replication, virus-like particles (VLPs) constructed with luciferase reporter were applied. To investigate the antiviral potency of Kae, human induced pluripotent stem cells (hiPSC)-derived alveolar epithelial cells type II (AECII) and human ACE2 (hACE2) transgenic mice were utilized as in vitro and in vivo models, respectively. Using dual split protein (DSP) assays, inhibitory activities of Kae in viral fusion were determined in Alpha, Delta and Omicron variants of SARS-CoV-2, as well as in SARS-CoV and MERS-CoV. To further reveal molecular determinants of Kae in restricting viral fusion, synthetic peptides corresponding to the conserved heptad repeat (HR) 1 and 2, involved in viral fusion, and the mutant form of HR2 were explored by circular dichroism and native polyacrylamide gel electrophoresis. RESULTS: Kae inhibited SARS-CoV-2 invasion both in vitro and in vivo, which was mainly attributed to its suppressive effects on viral fusion, but not endocytosis, two pathways that mediate viral invasion. In accordance with the proposed model of anti-fusion prophylaxis, Kae functioned as a pan-inhibitor of viral fusion, including three emerged highly pathogenic coronaviruses, and the currently circulating Omicron BQ.1.1 and XBB.1 variants of SARS-CoV-2. Consistent with the typical target of viral fusion inhibitors, Kae interacted with HR regions of SARS-CoV-2 S2 subunits. Distinct from previous inhibitory fusion peptides which prevent the formation of six-helix bundle (6-HB) by competitively interacting with HRs, Kae deformed HR1 and directly reacted with lysine residues within HR2 region, the latter of which was considered critical for the preservation of stabilized S2 during SARS-CoV-2 invasion. CONCLUSIONS: Kae prevents SARS-CoV-2 infection by blocking membrane fusion and possesses a broad-spectrum anti-fusion ability. These findings provide valuable insights into potential benefits of Kae-containing botanical products as a complementary prophylaxis, especially during the waves of breakthrough infections and re-infections.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , SARS-CoV-2 , Sequência de Aminoácidos , Quempferóis/farmacologia , Glicoproteína da Espícula de Coronavírus , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos/química , Antivirais/farmacologia , Antivirais/uso terapêutico
8.
Circ Res ; 133(2): e19-e46, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313752

RESUMO

BACKGROUND: Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS: We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS: We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS: Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Deficiências de Ferro , Humanos , Miócitos Cardíacos/metabolismo , Mutação , Cardiomiopatia Dilatada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Ferro/metabolismo , Clatrina/genética , Clatrina/metabolismo , Clatrina/farmacologia
9.
Nutrients ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242247

RESUMO

In cell-based regenerative medicine, induced pluripotent stem cells (iPSCs) generated from reprogrammed adult somatic cells have emerged as a useful cell source due to the lack of ethical concerns and the low risk of immune rejection. To address the risk of teratoma formation, which is a safety issue in iPSC-based cell therapy, it is essential to selectively remove undifferentiated iPSCs remaining in the iPSC-derived differentiated cell product prior to in vivo transplantation. In this study, we explored whether an ethanol extract of coptidis rhizoma (ECR) exhibited anti-teratoma activity and identified the active components involved in the selective elimination of undifferentiated iPSCs. Transcriptome analysis of iPSCs confirmed that cell death-related pathways were significantly altered by ECR treatment. Our results demonstrate that ECR effectively induced apoptotic cell death and DNA damage in iPSCs, and that reactive oxygen species generation, mitochondrial damage, caspase activation, and p53 activation were involved in ECR-mediated iPSC death. However, in iPSC-derived differentiated cells (iPSC-Diff), reduced cell viability and the DNA damage response were not observed after ECR treatment. We co-cultured iPSCs and iPSC-Diff and found that ECR treatment selectively removed iPSCs, whereas iPSC-Diff remained intact. Prior to in ovo implantation, ECR treatment of a mixed cell culture of iPSCs and iPSC-Diff significantly suppressed iPSC-derived teratoma formation. Among the main components of the ECR, berberine and coptisine showed selective cytotoxicity to iPSCs but not to iPSC-Diff. Together, these results indicate the usefulness of ECRs in preparing safe and effective iPSC-based therapeutic cell products with no risk of teratoma formation.


Assuntos
Medicamentos de Ervas Chinesas , Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Etanol/farmacologia , Apoptose , Diferenciação Celular
10.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175819

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are cells with promising applications. However, their immaturity has restricted their use in cell therapy, disease modeling, and other studies. Therefore, the current study focused on inducing the maturation of CMs. We supplemented hiPSC-CMs with fatty acids (FAs) to promote their phenotypic maturity. Proteomic sequencing was performed to identify regulators critical for promoting the maturation of hiPSC-CMs. AKAP1 was found to be significantly increased in FA-treated hiPSC-CMs, and the results were verified. Therefore, we inhibited AKAP1 expression in the FA-treated cells and analyzed the outcomes. FA supplementation promoted the morphological and functional maturation of the hiPSC-CMs, which was accompanied by the development of a mitochondrial network. Proteomic analysis results revealed that AKAP1 expression was significantly higher in FA-treated hiPSC-CMs than in control cells. In addition, increased phosphorylation of the mitochondrial dynamin Drp1 and an increased mitochondrial fusion rate were found in FA-treated hiPSC-CMs. After AKAP1 was knocked down, the level of DRP1 phosphorylation in the cell was decreased, and the mitochondrial fusion rate was reduced. FA supplementation effectively promoted the maturation of hiPSC-CMs, and in these cells, AKAP1 regulated mitochondrial dynamics, possibly playing a significant role.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Diferenciação Celular , Células Cultivadas , Ácidos Graxos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo , Proteômica
11.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092553

RESUMO

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Puberdade Precoce , Humanos , Feminino , Camundongos , Animais , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipotálamo/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade Precoce/genética , Puberdade Precoce/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Front Immunol ; 14: 1107559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742316

RESUMO

Electroacupuncture (EA) and induced pluripotent stem cell (iPSC)-derived small extracellular vesicles (iPSC-EVs) have substantial beneficial effects on ischemic stroke. However, the detailed mechanisms remain unclear. Here, we explored the mechanisms underlying the regulation of EA and iPSC-EVs in the microbiome-gut-brain axis (MGBA) after ischemic stroke. Ischemic stroke mice (C57BL/6) were subjected to middle cerebral artery occlusion (MCAO) or Sham surgery. EA and iPSC-EVs treatments significantly improved neurological function and neuronal and intestinal tract injury, downregulated the levels of IL-17 expression and upregulated IL-10 levels in brain and colon tissue after cerebral ischemia-reperfusion. EA and iPSC-EVs treatments also modulated the microbiota composition and diversity as well as the differential distribution of species in the intestines of the mice after cerebral ischemia-reperfusion. Our results demonstrated that EA and iPSC-EVs treatments regulated intestinal immunity through MGBA regulation of intestinal microbes, reducing brain and colon damage following cerebral ischemia and positively impacting the outcomes of ischemic stroke. Our findings provide new insights into the application of EA combined with iPSC-EVs as a treatment for ischemic stroke.


Assuntos
Isquemia Encefálica , Eletroacupuntura , Microbioma Gastrointestinal , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Animais , Humanos , Camundongos , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Eixo Encéfalo-Intestino , Eletroacupuntura/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto da Artéria Cerebral Média/terapia , AVC Isquêmico/terapia , Camundongos Endogâmicos C57BL
13.
Hypertension ; 80(4): 740-753, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36655574

RESUMO

BACKGROUND: Vascular smooth muscle cells (SMCs) plasticity is a central mechanism in cardiovascular health and disease. We aimed at providing cellular phenotyping, epigenomic and proteomic depiction of SMCs derived from induced pluripotent stem cells and evaluating their potential as cellular models in the context of complex diseases. METHODS: Human induced pluripotent stem cell lines were differentiated using RepSox (R-SMCs) or PDGF-BB (platelet-derived growth factor-BB) and TGF-ß (transforming growth factor beta; TP-SMCs), during a 24-day long protocol. RNA-Seq and assay for transposase accessible chromatin-Seq were performed at 6 time points of differentiation, and mass spectrometry was used to quantify proteins. RESULTS: Both induced pluripotent stem cell differentiation protocols generated SMCs with positive expression of SMC markers. TP-SMCs exhibited greater proliferation capacity, migration and lower calcium release in response to contractile stimuli, compared with R-SMCs. Genes involved in the contractile function of arteries were highly expressed in R-SMCs compared with TP-SMCs or primary SMCs. R-SMCs and coronary artery transcriptomic profiles were highly similar, characterized by high expression of genes involved in blood pressure regulation and coronary artery disease. We identified FOXF1 and HAND1 as key drivers of RepSox specific program. Extracellular matrix content contained more proteins involved in wound repair in TP-SMCs and higher secretion of basal membrane constituents in R-SMCs. Open chromatin regions of R-SMCs and TP-SMCs were significantly enriched for variants associated with blood pressure and coronary artery disease. CONCLUSIONS: Both induced pluripotent stem cell-derived SMCs models present complementary cellular phenotypes of high relevance to SMC plasticity. These cellular models present high potential to study functional regulation at genetic risk loci of main arterial diseases.


Assuntos
Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Proteômica , Doença da Artéria Coronariana/metabolismo , Diferenciação Celular/genética , Becaplermina/genética , Becaplermina/metabolismo , Becaplermina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Cromatina/metabolismo
14.
Bratisl Lek Listy ; 124(4): 267-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598319

RESUMO

BACKGROUND: Cholinergic neurons, a type of neurons found in central nervous system, play a vital role in muscle movement and activities. Cholinergic neurons degeneration is the main pathological symptom of neurodegenerative diseases. Among a variety of stem cells, iPSCs have emerged as a promising candidate for transplantation to improve the repair of neuronal lesion sites. However, the establishment of an appropriate induction method to yield large numbers of cholinergic neurons has yet to be determined. Here, we studied the differentiation potential of iPSCs to generate cholinergic neurons by developing a new optimized differentiation protocol. METHODS: The iPSCs were harvested on 6-well matrigel-coated plate and incubated with serum­free DMEM/F12 with 2 % B27 supplement, 20 ng/ml the basic fibroblast growth factor and 20 ng/ml epidermal growth factor for 48 hours. Then, the pre-induced cells were treated in neuronal induction medium supplemented with all-trans retinoic acid, sonic hedgehog, 100 ng/ml glial-derived neurotrophic factor and 200 ng/ml brain-derived neurotrophic factor for 7 days. Cell viability during induction stages was tested by MTT assay. Differentiated cells were evaluated with crystal violet staining, immunocytochemistry and real­time PCR. RESULTS: Our results showed that the survival rate of iPSCs leveled out and was similar to that in the control group following the differentiation process. Immunochemistry results revealed that the expression of ChAT was observed in cells in both pre­induction and induction stages with a significantly higher expression level at the induction stage as compared to the pre-induction stage. However, none of these markers was expressed in the iPSCs. Cresyl violet staining confirmed the neuronal phenotype of differentiated cells. The induction group significantly expressed the higher levels of Islet1, Olig2 and HB9, whereas pluripotency markers including those of Oct4 and Nestin plunged. CONCLUSION: Our investigation represents a highly efficient protocol for iPSCs differentiation toward cholinergic neurons which could be used for further preclinical transplantation studies (Tab. 1, Fig. 5, Ref. 35). Text in PDF www.elis.sk Keywords: induced pluripotent stem cells, cholinergic neurons, neurotrophic factors, induction protocol, preclinical transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciação Celular , Neurônios Colinérgicos
15.
Biomed Pharmacother ; 157: 113970, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36371854

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.


Assuntos
Produtos Biológicos , Cardiomiopatias , Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Miócitos Cardíacos , Cardiomiopatias/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Diferenciação Celular
16.
Arch Physiol Biochem ; 129(1): 131-142, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32783745

RESUMO

Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos , Análise de Custo-Efetividade , Avaliação Pré-Clínica de Medicamentos , Diferenciação Celular/genética
17.
Sci Rep ; 12(1): 17381, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253431

RESUMO

Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) differentiate into AVP neurons, whereas human ESCs/iPSCs die. Human ESCs/iPSCs are generally more similar to mouse epiblast stem cells (mEpiSCs) compared to mouse ESCs. In this study, we converted human FNDI-specific iPSCs by the naive conversion kit. Although the conversion was partial, we found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.


Assuntos
Diabetes Insípido Neurogênico , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Humanos , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo , Vasopressinas/metabolismo
18.
Clin Transl Med ; 12(7): e954, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35872650

RESUMO

BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Animais , Bradicardia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , NAD/metabolismo
19.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886932

RESUMO

Studies on ESRRB-regulating porcine-induced pluripotent stem cells (piPSCs) converted to trophoblast-like stem cells (TLSCs) contribute to the understanding of early embryo development. However, the epigenetic modification regulation network during the conversion is poorly understood. Here, the global change in histone H3 Lysine 4, 9, 27, 36 methylation and Lysine 27 acetylation was investigated in piPSCs and TLSCs. We found a high modification profile of H3K36me2 in TLSCs compared to that of piPSCs, whereas the profiles of other modifications remained constant. KDM4C, a H3K36me3/2 demethylase, whose gene body region was combined with ESRRB, was upregulated in TLSCs. Moreover, KDM4 inhibitor supplementation rescued the AP-negative phenotype observed in TLSCs, confirming that KDM4C could regulate the pluripotency of TLSCs. Subsequently, KDM4C replenishment results show the significantly repressed proliferation and AP-positive staining of TLSCs. The expressions of CDX2 and KRT8 were also upregulated after KDM4C overexpression. In summary, these results show that KDM4C replaced the function of ESRRB. These findings reveal the unique and crucial role of KDM4C-mediated epigenetic chromatin modifications in determination of piPSCs' fate and expand the understanding of the connection between piPSCs and TSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Metilação , Células-Tronco Pluripotentes/metabolismo , Suínos , Trofoblastos/metabolismo
20.
Transl Psychiatry ; 12(1): 243, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680847

RESUMO

NMDA receptors (NMDARs), a prominent subtype of glutamatergic receptors, are implicated in the pathogenesis and development of neuropsychiatric disorders such as epilepsy, intellectual disability, autism spectrum disorder, and schizophrenia, and are therefore a potential therapeutic target in treating these disorders. Neurons derived from induced pluripotent stem cells (iPSCs) have provided the opportunity to investigate human NMDARs in their native environment. In this review, we describe the expression, function, and regulation of NMDARs in human iPSC-derived neurons and discuss approaches for utilizing human neurons for identifying potential drugs that target NMDARs in the treatment of neuropsychiatric disorders. A challenge in studying NMDARs in human iPSC-derived neurons is a predominance of those receptors containing the GluN2B subunit and low synaptic expression, suggesting a relatively immature phenotype of these neurons and delayed development of functional NMDARs. We outline potential approaches for improving neuronal maturation of human iPSC-derived neurons and accelerating the functional expression of NMDARs. Acceleration of functional expression of NMDARs in human iPSC-derived neurons will improve the modeling of neuropsychiatric disorders and facilitate the discovery and development of novel therapeutics targeting NMDARs for the treatment of these disorders.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA