Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359483

RESUMO

BACKGROUND: Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE: This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS: Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 µM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS: The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and ß-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION: In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.


Assuntos
Fumar Cigarros , Cílios , Flavanonas , Animais , Ratos , Ratos Sprague-Dawley , Cílios/metabolismo , Interleucina-17/metabolismo , Células Epiteliais
2.
Cell Death Dis ; 13(7): 659, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902579

RESUMO

Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Autofagia , Cílios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Neurônios/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
3.
Cell Death Dis ; 13(6): 559, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729109

RESUMO

Primary cilia dyskinesia (PCD) is a rare genetic disease caused by ciliary structural or functional defects. It causes severe outcomes in patients, including recurrent upper and lower airway infections, progressive lung failure, and randomization of heterotaxy. To date, although 50 genes have been shown to be responsible for PCD, the etiology remains elusive. Meanwhile, owing to the lack of a model mimicking the pathogenesis that can be used as a drug screening platform, thereby slowing the development of related therapies. In the current study, we identified compound mutation of DNAH9 in a patient with PCD with the following clinical features: recurrent respiratory tract infections, low lung function, and ultrastructural defects of the outer dynein arms (ODAs). Bioinformatic analysis, structure simulation assay, and western blot analysis showed that the mutations affected the structure and expression of DNAH9 protein. Dnah9 knock-down (KD) mice recapitulated the patient phenotypes, including low lung function, mucin accumulation, and increased immune cell infiltration. Immunostaining, western blot, and co-immunoprecipitation analyses were performed to clarify that DNAH9 interacted with CCDC114/GAS8 and diminished their protein levels. Furthermore, we constructed an airway organoid of Dnah9 KD mice and discovered that it could mimic the key features of the PCD phenotypes. We then used organoid as a drug screening model to identify mitochondrial-targeting drugs that can partially elevate cilia beating in Dnah9 KD organoid. Collectively, our results demonstrated that Dnah9 KD mice and an organoid model can recapture the clinical features of patients with PCD and provide an excellent drug screening platform for human ciliopathies.


Assuntos
Dineínas do Axonema , Discinesias , Síndrome de Kartagener , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Cílios/metabolismo , Avaliação Pré-Clínica de Medicamentos , Dineínas/metabolismo , Discinesias/metabolismo , Discinesias/patologia , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Camundongos , Mutação/genética , Organoides/metabolismo
4.
Mol Cells ; 45(4): 169-176, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35387896

RESUMO

A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.


Assuntos
Cílios , Leptina , Animais , Cílios/metabolismo , Humanos , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo
5.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34535504

RESUMO

The hedgehog signaling pathway is best known for its role in developmental patterning of the neural tube and limb bud. More recently, hedgehog signaling has been recognized for its roles in growth of adult tissues and maintenance of progenitor cell niches. However, the role of hedgehog signaling in fully differentiated cells like neurons in the adult brain is less clear. In mammals, coordination of hedgehog pathway activity relies on primary cilia and patients with ciliopathies such as Bardet-Biedl and Alström syndrome exhibit clinical features clearly attributable to errant hedgehog such as polydactyly. However, these ciliopathies also present with features not clearly associated with hedgehog signaling such as hyperphagia-associated obesity. How hedgehog signaling may contribute to feeding behavior is complex and unclear, but cilia are critical for proper energy homeostasis. Here, we provide a detailed analysis of the expression of core components of the hedgehog signaling pathway in the adult mouse hypothalamus with an emphasis on feeding centers. We show that hedgehog pathway genes continue to be expressed in differentiated neurons important for the regulation of feeding behavior. Furthermore, we demonstrate for the first time that pathway activity is regulated at the transcriptional level by fasting. These data suggest that hedgehog signaling is involved in the proper functioning of brain regions that regulate feeding behavior and that hedgehog pathway dysfunction may play a role in the obesity observed in certain ciliopathies.


Assuntos
Jejum , Proteínas Hedgehog , Animais , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/metabolismo , Camundongos , Transdução de Sinais
6.
Sci Rep ; 11(1): 2232, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500561

RESUMO

Airborne fine dust particles (FDPs) have been identified as major toxins in air pollution that threaten human respiratory health. While searching for an anti-FDP reagent, we found that green tea extract (GTE) and fractions rich in flavonol glycosides (FLGs) and crude tea polysaccharides (CTPs) had protective effects against FDP-stimulated cellular damage in the BEAS-2B airway epithelial cell line. The GTE, FLGs, and CTPs significantly increased viability and lowered oxidative stress levels in FDP-treated cells. Combined treatment with GTE, FLGs, and CTPs also exerted synergistic protective effects on cells and attenuated FDP-induced elevations in inflammatory gene expression. Moreover, the green tea components increased the proportion of ciliated cells and upregulated ciliogenesis in the airway in FDP-stimulated BEAS-2B cells. Our findings provide insights into how natural phytochemicals protect the airway and suggest that green tea could be used to reduce FDP-induced airway damage as an ingredient in pharmaceutical, nutraceutical, and also cosmeceutical products.


Assuntos
Catequina/uso terapêutico , Extratos Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Chá/química , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
7.
Semin Cell Dev Biol ; 110: 43-50, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32466971

RESUMO

An emerging number of rare genetic disorders termed ciliopathies are associated with pediatric obesity. It is becoming clear that the mechanisms associated with cilia dysfunction and obesity in these syndromes are complex. In addition to ciliopathic syndromic forms of obesity, several cilia-associated signaling gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis including their roles in centrally mediated food intake as well as in peripheral tissues, many questions remain. Here, we briefly discuss the syndromic ciliopathies and monoallelic cilia signaling gene mutations associated with obesity. We also describe potential ways cilia may be involved in common obesity. We discuss how neuronal cilia impact food intake potentially through leptin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We highlight several recent studies that have implicated the potential for cilia in peripheral tissues such as adipose and the pancreas to contribute to metabolic dysfunction. Then we discuss the potential for cilia to impact energy homeostasis through their roles in both development and adult tissue homeostasis. The studies discussed in this review highlight how a comprehensive understanding of the requirement of cilia for the regulation of diverse biological functions will contribute to our understanding of common forms of obesity.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Cílios/metabolismo , Ciliopatias/genética , Leptina/genética , Obesidade Mórbida/genética , Obesidade Infantil/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Criança , Cílios/patologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Transdução de Sinais
8.
Semin Cell Dev Biol ; 110: 139-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32475690

RESUMO

Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cílios/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Canais de Cátion TRPP/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adulto , Corpos Basais/efeitos dos fármacos , Corpos Basais/metabolismo , Corpos Basais/patologia , Criança , Cílios/efeitos dos fármacos , Cílios/patologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Expressão Gênica , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mutação , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia , Receptores de Superfície Celular/deficiência , Transdução de Sinais , Canais de Cátion TRPP/deficiência
9.
Nat Commun ; 11(1): 5772, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188191

RESUMO

Hypothalamic neurons including proopiomelanocortin (POMC)-producing neurons regulate body weights. The non-motile primary cilium is a critical sensory organelle on the cell surface. An association between ciliary defects and obesity has been suggested, but the underlying mechanisms are not fully understood. Here we show that inhibition of ciliogenesis in POMC-expressing developing hypothalamic neurons, by depleting ciliogenic genes IFT88 and KIF3A, leads to adulthood obesity in mice. In contrast, adult-onset ciliary dysgenesis in POMC neurons causes no significant change in adiposity. In developing POMC neurons, abnormal cilia formation disrupts axonal projections through impaired lysosomal protein degradation. Notably, maternal nutrition and postnatal leptin surge have a profound impact on ciliogenesis in the hypothalamus of neonatal mice; through these effects they critically modulate the organization of hypothalamic feeding circuits. Our findings reveal a mechanism of early life programming of adult adiposity, which is mediated by primary cilia in developing hypothalamic neurons.


Assuntos
Adiposidade , Cílios/metabolismo , Hipotálamo/embriologia , Hipotálamo/metabolismo , Lisossomos/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/metabolismo , Axônios/metabolismo , Metabolismo Energético , Feminino , Glucose/metabolismo , Leptina/metabolismo , Desnutrição/patologia , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese , Obesidade/metabolismo , Obesidade/patologia , Organogênese , Pró-Opiomelanocortina/metabolismo , Proteólise
10.
Front Endocrinol (Lausanne) ; 11: 621888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597927

RESUMO

The centrosome apparatus is vital for spindle assembly and chromosome segregation during mitotic divisions. Its replication, disjunction and separation have to be fine-tuned in space and time. A multitude of post-translational modifications (PTMs) have been implicated in centrosome modulation, including phosphorylation, ubiquitination and acetylation. Among them is the emerging O-linked N-acetylglucosamine (O-GlcNAc) modification. This quintessential PTM has a sole writer, O-GlcNAc transferase (OGT), and the only eraser, O-GlcNAcase (OGA). O-GlcNAc couples glucose metabolism with signal transduction and forms a yin-yang relationship with phosphorylation. Evidence from proteomic studies as well as single protein investigations has pinpointed a role of O-GlcNAc in centrosome number and separation, centriole number and distribution, as well as the cilia machinery emanating from the centrosomes. Herein we review our current understanding of the sweet modification embedded in centrosome dynamics and speculate that more molecular details will be unveiled in the future.


Assuntos
Acetilglucosamina/metabolismo , Centrossomo/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Animais , Cílios/metabolismo , Humanos
11.
Cells ; 8(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295970

RESUMO

Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.


Assuntos
Centrossomo/metabolismo , Centrossomo/fisiologia , Cílios/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Centríolos/metabolismo , Centríolos/fisiologia , Cílios/genética , Humanos , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Mitose/genética , Organelas/metabolismo , Organelas/fisiologia
12.
Mol Biol Rep ; 45(5): 1515-1521, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30073588

RESUMO

Multiple distinct mutations in the protein polycystin 1 (PC1) cause autosomal dominant polycystic kidney disease (ADPKD), a common cause of end stage renal disease. Growing evidence supports the theory that the severity and rate of progression of kidney cysts is correlated with the level of functional PC1 expressed in the primary cilia. Factors that regulate trafficking of PC1 to cilia are thus of great interest both as potential causes of ADPKD, but also as possible modifiable factors to treat ADPKD. Cysteine palmitoylation is a common post-translational modification that frequently alters protein trafficking, localization, and expression levels. Here, using multiple complementary approaches, we show that PC1 is palmitoylated, likely at a single cysteine in the carboxyl terminal fragment that is generated by autoproteolysis of PC1. Additional data suggest that protein palmitoylation is important for PC1 localization and expression levels. These data together identify palmitoylation as a novel post-translational modification of PC1 and a possible pharmacologic target to augment PC1 expression in cilia.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Processamento de Proteína Pós-Traducional , Canais de Cátion TRPP/metabolismo , Animais , Linhagem Celular , Cílios/metabolismo , Cisteína/metabolismo , Rim/metabolismo , Lipoilação/fisiologia , Camundongos , Rim Policístico Autossômico Dominante/genética , Transporte Proteico , Suínos , Canais de Cátion TRPP/genética
13.
Biomed Pharmacother ; 105: 1248-1253, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30021361

RESUMO

Chronic obstructive pulmonary disease (COPD) is a respiratory disorder characterized by a progressive and irreversible airflow limitation. COPD is associated to a chronic inflammatory response with infiltration of inflammatory cells in the surface epithelium of large airways and abnormalities in structure and functions of cilia. Thyme (Thymus vulgaris L.) is a traditional medicinal plant of the Mediterranean area used to treat respiratory disorders. We previously evidenced that thyme extract reduce IL-1beta and IL-8, by downregulating the activated NF-κB levels, suggesting its potential therapeutically use in COPD. Cilia beating frequency (CBF) is dramatically impaired in COPD and different pharmacological agents can modulate cilia function. Herein we evaluated the effect of a commercial thyme extract in modulating CBF by measuring its activity in stimulating cAMP, Ca2+ levels and CBF in a MucilAir 3D human COPD airway epithelia reconstituted in vitro system using salmeterol, YM976, isoproterenol and GSK1016790 A as positive controls. Results showed that thyme extract increased cAMP levels starting from 12 h post-treatment, decreased extracellular Ca2+ levels and increased the CBF in airway epithelia from COPD donors. Overall, this work demonstrated that thyme extract is effective in stimulating CBF by inducing an increase of cAMP and Ca2+ levels, thus supporting its therapeutical use in the treatment of COPD.


Assuntos
Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Thymus (Planta)/química , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Cálcio/metabolismo , Linhagem Celular , Cílios/efeitos dos fármacos , Cílios/metabolismo , AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
14.
J Biol Chem ; 292(51): 20883-20896, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29089388

RESUMO

Icariin, a prenylated flavonol glycoside isolated from the herb Epimedium, has been considered as a potential alternative therapy for osteoporosis. Previous research has shown that, unlike other flavonoids, icariin is unlikely to act via the estrogen receptor, but its exact mechanism of action is unknown. In this study, using rat calvarial osteoblast culture and rat bone growth models, we demonstrated that icariin promotes bone formation by activating the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway requiring functional primary cilia of osteoblasts. We found that icariin increases the peak bone mass attained by young rats and promotes the maturation and mineralization of rat calvarial osteoblasts. Icariin activated cAMP/PKA/CREB signaling of the osteoblasts by increasing intracellular cAMP levels and facilitating phosphorylation of both PKA and CREB. Blocking cAMP/PKA/CREB signaling with inhibitors of the cAMP-synthesizing adenylyl cyclase (AC) and PKA inhibitors significantly inhibited the osteogenic effect of icariin in the osteoblasts. Icariin-activated cAMP/PKA/CREB signaling was localized to primary cilia, as indicated by localization of soluble AC and phosphorylated PKA. Furthermore, blocking ciliogenesis via siRNA knockdown of a cilium assembly protein, IFT88, inhibited icariin-induced PKA and CREB phosphorylation and also abolished icariin's osteogenic effect. Finally, several of these outcomes were validated in icariin-treated rats. Together, these results provide new insights into icariin function and its mechanisms of action and strengthen existing ties between cAMP-mediated signaling and osteogenesis.


Assuntos
Flavonoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Epimedium/química , Feminino , Osteogênese/genética , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Sci Rep ; 7(1): 6687, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751666

RESUMO

Mechanical stimulation of airway epithelial cells causes apical release of ATP, which increases ciliary beat frequency (CBF) and speeds up mucociliary clearance. The mechanisms responsible for this ATP release are poorly understood. CALHM1, a transmembrane protein with shared structural features to connexins and pannexins, has been implicated in ATP release from taste buds, but it has not been evaluated for a functional role in the airway. In the present study, Calhm1 knockout, Panx1 knockout, and wild-type mouse nasal septal epithelial cells were grown at an air-liquid interface (ALI) and subjected to light mechanical stimulation from an air puff. Apical ATP release was attenuated in Calhm1 knockout cultures following mechanical stimulation at a pressure of 55 mmHg for 50 milliseconds (p < 0.05). Addition of carbenoxolone, a PANX1 channel blocker, completely abolished ATP release in Calhm1 knockout cultures but not in wild type or Panx1 knockout cultures. An increase in CBF was observed in wild-type ALIs following mechanical stimulation, and this increase was significantly lower (p < 0.01) in Calhm1 knockout cultures. These results demonstrate that CALHM1 plays a newly defined role, complementary to PANX1, in ATP release and downstream CBF modulation following a mechanical stimulus in airway epithelial cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Cálcio/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Nariz/citologia , Ar , Animais , Conexinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo
16.
Ann N Y Acad Sci ; 1391(1): 71-84, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27706820

RESUMO

One in 12 people worldwide suffers from diabetes and more than 90% of affected adult individuals are diagnosed with type 2 diabetes mellitus (T2DM). Obesity adds to the personal risk to develop T2DM, and both metabolic diseases are rampantly increasing worldwide. Over recent years, primary cilia have moved into the focus of basic and clinical research, after several human diseases have been identified as ciliopathies (i.e., they are linked to ciliary dysfunction). A subset of ciliopathies presents with obesity and diabetes, either as core symptoms or major complications. Several studies have shown a role for ciliary signaling in the satiety signaling centers of the hypothalamus and in other metabolically active tissues, such as pancreatic islets. Here, we discuss recent advances and perspectives in ciliary metabolic research.


Assuntos
Cílios/metabolismo , Ciliopatias/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Animais , Cílios/patologia , Ciliopatias/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Obesidade/fisiopatologia
17.
BMC Cell Biol ; 17(1): 29, 2016 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-27421907

RESUMO

BACKGROUND: Spermatogenesis in the semi-aquatic fern, Marsilea vestita, is a rapid, synchronous process that is initiated when dry microspores are placed in water. Development is post-transcriptionally driven and can be divided into two phases. The first phase consists of nine mitotic division cycles that produce 7 sterile cells and 32 spermatids. During the second phase, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. RESULTS: Analysis of the transcriptome from the male gametophyte of Marsilea revealed that one kinesin-2 (MvKinesin-2) and two kinesin-9 s (MvKinesin-9A and MvKinesin-9B) are present during spermatid differentiation and ciliogenesis. RNAi knockdowns show that MvKinesin-2 is required for mitosis and cytokinesis in spermatogenous cells. Without MvKinesin-2, most spermatozoids contain two or more coiled microtubule ribbons with attached cilia and very large cell bodies. MvKinesin-9A is required for the correct placement of basal bodies along the organelle coil. Knockdowns of MvKinesin-9A have basal bodies and cilia that are irregularly positioned. Spermatozoid swimming behavior in MvKinesin-2 and -9A knockdowns is altered because of defects in axonemal placement or ciliogenesis. MvKinesin-2 knockdowns only quiver in place while MvKinesin-9A knockdowns swim erratically compared to controls. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology and swimming behavior, though development is slower than normal for these gametes. CONCLUSIONS: Our results show that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. MvKinesin-2 is required for cytokinesis, a role not typically associated with this protein, as well as for ciliogenesis during rapid development and MvKinesin-9A is needed for the correct orientation of basal bodies. Our results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.


Assuntos
Cílios/metabolismo , Cinesinas/metabolismo , Marsileaceae/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Corpos Basais/metabolismo , Diferenciação Celular , Técnicas de Silenciamento de Genes , Inativação Gênica , Filogenia
18.
Cell Mol Life Sci ; 73(7): 1457-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26786898

RESUMO

Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Transdução de Sinais/fisiologia , Animais , Cílios/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias , Obesidade/metabolismo , Obesidade/patologia , Receptores para Leptina/metabolismo
19.
Hum Mol Genet ; 25(3): 448-58, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26612203

RESUMO

Epilepsy or seizure disorder is among the least understood chronic medical conditions affecting over 65 million people worldwide. Here, we show that disruption of the polycystic kidney disease 2-like 1 (Pkd2l1 or Pkdl), encoding polycystin-L (PCL), a non-selective cation channel, increases neuronal excitability and the susceptibility to pentylenetetrazol-induced seizure in mice. PCL interacts with ß2-adrenergic receptor (ß2AR) and co-localizes with ß2AR on the primary cilia of neurons in the brain. Pkdl deficiency leads to the loss of ß2AR on neuronal cilia, which is accompanied with a remarkable reduction in cAMP levels in the central nervous system (CNS). The reduction of cAMP levels is associated with a reduction in the activation of cAMP response element-binding protein, but not the activation of Ca(2+)/calmodulin-dependent protein kinase II, Akt or mitogen-activated protein kinases. Our data, thus, indicate for the first time that a ciliary protein complex is required for the control of neuronal excitability in the CNS.


Assuntos
Canais de Cálcio/genética , Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Epilepsia/genética , Hipocampo/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores de Superfície Celular/genética , Tálamo/metabolismo , Animais , Canais de Cálcio/deficiência , Córtex Cerebral/patologia , Cílios/metabolismo , Cílios/patologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/patologia , Potenciais Pós-Sinápticos Excitadores , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/patologia , Humanos , Transporte de Íons , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Pentilenotetrazol , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Superfície Celular/deficiência , Transdução de Sinais , Tálamo/patologia
20.
J Biol Chem ; 290(49): 29663-75, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26451044

RESUMO

The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway.


Assuntos
AMP Cíclico/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cílios/metabolismo , DNA Complementar/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C3H , Microscopia de Fluorescência , Dados de Sequência Molecular , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Receptor Smoothened , Peixe-Zebra , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA