Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neural Circuits ; 15: 659280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322001

RESUMO

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


Assuntos
Apoptose/fisiologia , Córtex Auditivo/fisiologia , Retroalimentação Fisiológica/fisiologia , Lasers/efeitos adversos , Neurônios/fisiologia , Tálamo/fisiologia , Estimulação Acústica/métodos , Animais , Apoptose/efeitos dos fármacos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/patologia , Retroalimentação Fisiológica/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Gerbillinae , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Tálamo/efeitos dos fármacos , Tálamo/patologia
2.
Int J Neuropsychopharmacol ; 23(7): 459-468, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32725129

RESUMO

BACKGROUND: Systemic administration of noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists such as MK-801 is widely used to model psychosis of schizophrenia (SZ). Acute systemic MK-801 in rodents caused an increase of the auditory steady-state responses (ASSRs), the oscillatory neural responses to periodic auditory stimulation, while most studies in patients with SZ reported a decrease of ASSRs. This inconsistency may be attributable to the comprehensive effects of systemic administration of MK-801. Here, we examined how the ASSR is affected by selectively blocking NMDAR in the thalamus. METHODS: We implanted multiple electrodes in the auditory cortex (AC) and prefrontal cortex to simultaneously record the local field potential and spike activity (SA) of multiple sites from awake mice. Click-trains at a 40-Hz repetition rate were used to evoke the ASSR. We compared the mean trial power and phase-locking factor and the firing rate of SA before and after microinjection of MK-801 (1.5 µg) into the medial geniculate body (MGB). RESULTS: We found that both the AC and prefrontal cortex showed a transient local field potential response at the onset of click-train stimulus, which was less affected by the application of MK-801 in the MGB. Following the onset response, the AC also showed a response continuing throughout the stimulus period, corresponding to the ASSR, which was suppressed by the application of MK-801. CONCLUSION: Our data suggest that the MGB is one of the generators of ASSR, and NMDAR hypofunction in the thalamocortical projection may account for the ASSR deficits in SZ.


Assuntos
Maleato de Dizocilpina/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Corpos Geniculados/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estimulação Acústica , Animais , Córtex Auditivo/efeitos dos fármacos , Maleato de Dizocilpina/administração & dosagem , Eletrodos Implantados , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Córtex Pré-Frontal/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Vigília
3.
Sci Rep ; 10(1): 12391, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709861

RESUMO

Efficient sensory processing requires that the brain maximize its response to unexpected stimuli, while suppressing responsivity to expected events. Mismatch negativity (MMN) is an auditory event-related potential that occurs when a regular pattern is interrupted by an event that violates the expected properties of the pattern. According to the predictive coding framework there are two mechanisms underlying the MMN: repetition suppression and prediction error. MMN has been found to be reduced in individuals with schizophrenia, an effect believed to be underpinned by glutamate N-methyl-D-aspartate receptor (NMDA-R) dysfunction. In the current study, we aimed to test how the NMDA-R antagonist, MK-801 in the anaesthetized rat, affected repetition suppression and prediction error processes along the auditory thalamocortical pathway. We found that low-dose systemic administration of MK-801 differentially affect thalamocortical responses, namely, increasing thalamic repetition suppression and cortical prediction error. Results demonstrate an enhancement of neuronal mismatch, also confirmed by large scale-responses. Furthermore, MK-801 produces faster and stronger dynamics of adaptation along the thalamocortical hierarchy. Clearly more research is required to understand how NMDA-R antagonism and dosage affects processes contributing to MMN. Nonetheless, because a low dose of an NMDA-R antagonist increased neuronal mismatch, the outcome has implications for schizophrenia treatment.


Assuntos
Córtex Auditivo/citologia , Maleato de Dizocilpina/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tálamo/citologia , Animais , Córtex Auditivo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Potenciais Evocados/efeitos dos fármacos , Feminino , Ratos
4.
J Neurochem ; 155(5): 538-558, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32374912

RESUMO

Individuals with Fragile X Syndrome (FXS) and autism spectrum disorder (ASD) exhibit cognitive impairments, social deficits, increased anxiety, and sensory hyperexcitability. Previously, we showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to abnormal development of parvalbumin (PV) interneurons and perineuronal nets (PNNs) in the developing auditory cortex (AC) of Fmr1 knock-out (KO) mice, which likely underlie auditory hypersensitivity. Thus, MMP-9 may serve as a potential target for treatment of auditory hypersensitivity in FXS. Here, we used the MMP-2/9 inhibitor, SB-3CT, to pharmacologically inhibit MMP-9 activity during a specific developmental period and to test whether inhibition of MMP-9 activity reverses neural oscillation deficits and behavioral impairments by enhancing PNN formation around PV cells in Fmr1 KO mice. Electroencephalography (EEG) was used to measure resting state and sound-evoked electrocortical activity in auditory and frontal cortices of postnatal day (P)22-23 male mice before and one-day after treatment with SB-3CT (25 mg/kg) or vehicle. At P27-28, animal behaviors were tested to measure the effects of the treatment on anxiety and hyperactivity. Results show that acute inhibition of MMP-9 activity improved evoked synchronization to auditory stimuli and ameliorated mouse behavioral deficits. MMP-9 inhibition enhanced PNN formation, increased PV levels and TrkB phosphorylation yet reduced Akt phosphorylation in the AC of Fmr1 KO mice. Our results show that MMP-9 inhibition during early postnatal development is beneficial in reducing some auditory processing deficits in the FXS mouse model and may serve as a candidate therapeutic for reversing sensory hypersensitivity in FXS and possibly other ASDs.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Compostos Heterocíclicos com 1 Anel/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Rede Nervosa/metabolismo , Sulfonas/farmacologia , Animais , Animais Recém-Nascidos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Percepção Auditiva/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/efeitos dos fármacos , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo
5.
Neurosci Lett ; 712: 134470, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476355

RESUMO

The potential contribution of trace amines (TA) to the pathophysiology of neuropsychiatric disorders makes it interesting to examine the effect of TA receptor ligands on schizophrenia biomarkers. We studied the effect of systemic administration of a putative Trace Amine-Associated Receptor 5 (TAAR5) agonist, alpha-NETA (2-(alpha-naphthoyl) ethyltrimethylammonium iodide), on the amplitude of the N40 event related potentials component and on the sensory gating (SG) index in C57BL/6 mice. It was found that low doses of alpha-NETA (2.5 mg/kg and 5 mg/kg) do not elicit a significant effect on the parameters of the N40 component and the SG index. However, the higher dose of alpha-NETA (10 mg/kg) induces a significant effect on the N40 component, but since a decrease in amplitude is observed on both the first and second stimuli in the pair, the SG index does not change. Thus, alpha-NETA administration causes a steady decrease in the N40 amplitude in response to both the first and second stimuli in the paired-click paradigm, and an increase in the N40 peak latency.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Naftalenos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Filtro Sensorial/efeitos dos fármacos , Estimulação Acústica , Animais , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Neuroscience ; 407: 93-107, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30292765

RESUMO

The central gain model of hyperacusis proposes that loss of auditory input can result in maladaptive neuronal gain increases in the central auditory system, leading to the over-amplification of sound-evoked activity and excessive loudness perception. Despite the attractiveness of this model, and supporting evidence for it, a critical test of the central gain theory requires that changes in sound-evoked activity be explicitly linked to perceptual alterations of loudness. Here we combined an operant conditioning task that uses a subject's reaction time to auditory stimuli to produce reliable measures of loudness growth with chronic electrophysiological recordings from the auditory cortex and inferior colliculus of awake, behaviorally-phenotyped animals. In this manner, we could directly correlate daily assessments of loudness perception with neurophysiological measures of sound encoding within the same animal. We validated this novel psychophysical-electrophysiological paradigm with a salicylate-induced model of hearing loss and hyperacusis, as high doses of sodium salicylate reliably induce temporary hearing loss, neural hyperactivity, and auditory perceptual disruptions like tinnitus and hyperacusis. Salicylate induced parallel changes to loudness growth and evoked response-intensity functions consistent with temporary hearing loss and hyperacusis. Most importantly, we found that salicylate-mediated changes in loudness growth and sound-evoked activity were correlated within individual animals. These results provide strong support for the central gain model of hyperacusis and demonstrate the utility of using an experimental design that allows for within-subject comparison of behavioral and electrophysiological measures, thereby making inter-subject variability a strength rather than a limitation.


Assuntos
Perda Auditiva/fisiopatologia , Hiperacusia/fisiopatologia , Percepção Sonora/fisiologia , Salicilato de Sódio/farmacologia , Estimulação Acústica/métodos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Feminino , Audição/efeitos dos fármacos , Audição/fisiologia , Perda Auditiva/tratamento farmacológico , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/fisiopatologia , Percepção Sonora/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Roedores
7.
J Neurosci ; 38(39): 8441-8452, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30126970

RESUMO

The systems-level mechanisms underlying loss of consciousness (LOC) under anesthesia remain unclear. General anesthetics suppress sensory responses within higher-order cortex and feedback connections, both critical elements of predictive coding hypotheses of conscious perception. Responses to auditory novelty may offer promise as biomarkers for consciousness. This study examined anesthesia-induced changes in auditory novelty responses over short (local deviant [LD]) and long (global deviant [GD]) time scales, envisioned to engage preattentive and conscious levels of processing, respectively. Electrocorticographic recordings were obtained in human neurosurgical patients (3 male, 3 female) from four hierarchical processing levels: core auditory cortex, non-core auditory cortex, auditory-related, and PFC. Stimuli were vowel patterns incorporating deviants within and across stimuli (LD and GD). Subjects were presented with stimuli while awake, and during sedation (responsive) and following LOC (unresponsive) under propofol anesthesia. LD and GD effects were assayed as the averaged evoked potential and high gamma (70-150 Hz) activity. In the awake state, LD and GD effects were present in all recorded regions, with averaged evoked potential effects more broadly distributed than high gamma activity. Under sedation, LD effects were preserved in all regions, except PFC. LOC was accompanied by loss of LD effects outside of auditory cortex. By contrast, GD effects were markedly suppressed under sedation in all regions and were absent following LOC. Thus, although the presence of GD effects is indicative of being awake, its absence is not indicative of LOC. Loss of LD effects in higher-order cortical areas may constitute an alternative biomarker of LOC.SIGNIFICANCE STATEMENT Development of a biomarker that indexes changes in the brain upon loss of consciousness (LOC) under general anesthesia has broad implications for elucidating the neural basis of awareness and clinical relevance to mechanisms of sleep, coma, and disorders of consciousness. Using intracranial recordings from neurosurgery patients, we investigated changes in the activation of cortical networks involved in auditory novelty detection over short (local deviance) and long (global deviance) time scales associated with sedation and LOC under propofol anesthesia. Our results indicate that, whereas the presence of global deviance effects can index awareness, their loss cannot serve as a biomarker for LOC. The dramatic reduction of local deviance effects in areas beyond auditory cortex may constitute an alternative biomarker of LOC.


Assuntos
Anestesia Geral , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Conscientização/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Adulto , Anestésicos Gerais/administração & dosagem , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Conscientização/efeitos dos fármacos , Ondas Encefálicas , Eletrocorticografia , Potenciais Evocados Auditivos/efeitos dos fármacos , Feminino , Humanos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Adulto Jovem
8.
Br J Anaesth ; 121(3): 605-615, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30115259

RESUMO

BACKGROUND: Current concepts suggest that impaired representation of information in cortical networks contributes to loss of consciousness under anaesthesia. We tested this idea in rat auditory cortex using information theory analysis of multiunit responses recorded under three anaesthetic agents with different molecular targets: isoflurane, propofol, and dexmedetomidine. We reasoned that if changes in the representation of sensory stimuli are causal for loss of consciousness, they should occur regardless of the specific anaesthetic agent. METHODS: Spiking responses were recorded with chronically implanted microwire arrays in response to acoustic stimuli incorporating varied temporal and spectral dynamics. Experiments consisted of four drug conditions: awake (pre-drug), sedation (i.e. intact righting reflex), loss of consciousness (a dose just sufficient to cause loss of righting reflex), and recovery. Measures of firing rate, spike timing, and mutual information were analysed as a function of drug condition. RESULTS: All three drugs decreased spontaneous and evoked spiking activity and modulated spike timing. However, changes in mutual information were inconsistent with altered stimulus representation being causal for loss of consciousness. First, direction of change in mutual information was agent-specific, increasing under dexmedetomidine and decreasing under isoflurane and propofol. Second, mutual information did not decrease at the transition between sedation and LOC for any agent. Changes in mutual information under anaesthesia correlated strongly with changes in precision and reliability of spike timing, consistent with the importance of temporal stimulus features in driving auditory cortical activity. CONCLUSIONS: The primary sensory cortex is not the locus for changes in representation of information causal for loss of consciousness under anaesthesia.


Assuntos
Anestesia Geral/métodos , Anestésicos Gerais/farmacologia , Córtex Auditivo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Estimulação Acústica/métodos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Córtex Auditivo/fisiologia , Estado de Consciência/fisiologia , Dexmedetomidina/farmacologia , Eletroencefalografia/efeitos dos fármacos , Feminino , Hipnóticos e Sedativos/farmacologia , Isoflurano/farmacologia , Propofol/farmacologia , Ratos Endogâmicos ACI , Tempo de Reação/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia
9.
Exp Neurol ; 309: 54-66, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30048715

RESUMO

Multiple sclerosis is characterized by intermingled episodes of de- and remyelination and the occurrence of white- and grey-matter damage. To mimic the randomly distributed pathophysiological brain lesions observed in MS, we assessed the impact of focal white and grey matter demyelination on thalamic function by directing targeted lysolecithin-induced lesions to the capsula interna (CI), the auditory cortex (A1), or the ventral medial geniculate nucleus (vMGN) in mice. Pathophysiological consequences were compared with those of cuprizone treatment at different stages of demyelination and remyelination. Combining single unit recordings and auditory stimulation in freely behaving mice revealed changes in auditory response profile and electrical activity pattern in the thalamus, depending on the region of the initial insult and the state of remyelination. Cuprizone-induced general demyelination significantly diminished vMGN neuronal activity and frequency-specific responses. Targeted lysolecithin-induced lesions directed either to A1 or to vMGN revealed a permanent impairment of frequency-specific responses, an increase in latency of auditory responses and a reduction in occurrence of burst firing in vMGN neurons. These findings indicate that demyelination of grey matter areas in the thalamocortical system permanently affects vMGN frequency specificity and the prevalence of bursting in the auditory thalamus.


Assuntos
Potenciais de Ação/fisiologia , Doenças Desmielinizantes/patologia , Tálamo/fisiopatologia , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiopatologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Corpos Geniculados/patologia , Gliose/induzido quimicamente , Gliose/patologia , Substância Cinzenta/patologia , Lisofosfatidilcolinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Proteína Proteolipídica de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Psicoacústica , Tálamo/efeitos dos fármacos
10.
Horm Behav ; 104: 63-76, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605635

RESUMO

Contribution to Special Issue on Fast effects of steroids. This review introduces functional MRI (fMRI) as an outstanding tool to assess rapid effects of sex steroids on auditory processing in seasonal songbirds. We emphasize specific advantages of this method as compared to other more conventional and invasive methods used for this purpose and summarize an exemplary auditory fMRI study performed on male starlings exposed to different types of starling song before and immediately after the inhibition of aromatase activity by an i.p. injection of Vorozole™. We describe how most challenges that relate to the necessity to anesthetize subjects and minimize image- and sound-artifacts can be overcome in order to obtain a voxel-based 3D-representation of changes in auditory brain activity to various sound stimuli before and immediately after a pharmacologically-induced depletion of endogenous estrogens. Analysis of the fMRI data by assumption-free statistical methods identified fast specific changes in activity in the auditory brain regions that were stimulus-specific, varying over different seasons, and in several instances lateralized to the left side of the brain. This set of results illustrates the unique features of fMRI that provides opportunities to localize and quantify the brain responses to rapid changes in hormonal status. fMRI offers a new image-guided research strategy in which the spatio-temporal profile of fast neuromodulations can be identified and linked to specific behavioral inputs or outputs. This approach can also be combined with more localized invasive methods to investigate the mechanisms underlying the observed neural changes.


Assuntos
Inibidores da Aromatase/farmacologia , Percepção Auditiva/efeitos dos fármacos , Imageamento por Ressonância Magnética , Aves Canoras/fisiologia , Estimulação Acústica/veterinária , Animais , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Mapeamento Encefálico/veterinária , Feminino , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , Masculino , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
11.
Basic Clin Pharmacol Toxicol ; 122(2): 245-252, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28869786

RESUMO

Event-related potentials (ERPs) are commonly used in Neuroscience research, particularly the P3 waveform because it is associated with cognitive brain functions and is easily elicited by auditory or sensory inputs. ERPs are affected by drugs such as lorazepam, which increase the latency and decrease the amplitude of the P3 wave. In this study, auditory-evoked ERPs were generated in 13 older healthy volunteers using an oddball tone paradigm, after administration of single 0.5 and 2 mg doses of lorazepam. Population pharmacokinetics (PK)/pharmacodynamics (PD) models were developed using nonlinear mixed-effects methods in order to assess the effect of lorazepam on the latency and amplitude of the P3 waveforms. The PK/PD models showed that doses of 0.3 mg of lorazepam achieved approximately half of the maximum effect on the latency of the P3 waveform. For P3 amplitude, half the maximum effect was achieved with a dose of 1.2 mg of lorazepam. The PK/PD models also predicted an efficacious dose range of lorazepam, which was close to the recommended therapeutic range. The use of longitudinal P3 latency data allowed better predictions of the lorazepam efficacious dose range than P3 amplitude or aggregate exposure-response data, suggesting that latency could be a more sensitive parameter for drugs with similar mechanisms of action as lorazepam and that time course rather than single time-point ERP data should be collected. Overall, the results suggest that P3 ERP waveforms could be used as potential non-specific biomarkers for functional target engagement for drugs with brain activity, and PK/PD models can aid trial design and choice of doses for development of new drugs with ERP activity.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Potenciais Evocados P300/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacocinética , Lorazepam/administração & dosagem , Lorazepam/farmacocinética , Modelos Biológicos , Estimulação Acústica , Córtex Auditivo/fisiologia , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Tempo de Reação/efeitos dos fármacos , Método Simples-Cego
12.
Hear Res ; 356: 51-62, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29108871

RESUMO

Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2'-chloroethylamide (ACEA), a highly-selective CB1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6-10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis.


Assuntos
Ácidos Araquidônicos/farmacologia , Córtex Auditivo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Hiperacusia/prevenção & controle , Receptor CB1 de Canabinoide/agonistas , Ácido Salicílico , Zumbido/prevenção & controle , Estimulação Acústica , Ritmo alfa/efeitos dos fármacos , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Citoproteção , Modelos Animais de Doenças , Eletrocorticografia , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Cobaias , Hiperacusia/induzido quimicamente , Hiperacusia/metabolismo , Hiperacusia/fisiopatologia , Masculino , Ruído , Tempo de Reação/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Zumbido/induzido quimicamente , Zumbido/metabolismo , Zumbido/fisiopatologia
13.
Neuropsychobiology ; 75(2): 53-62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065422

RESUMO

BACKGROUND/AIMS: The onset response to a single tone as measured by electroencephalography (EEG) is diminished in power and synchrony in schizophrenia. Because neural synchrony, particularly at gamma frequencies (30-80 Hz), is hypothesized to be supported by the N-methyl-D-aspartate receptor (NMDAr) system, we tested whether phencyclidine (PCP), an NMDAr antagonist, produced similar deficits to tone stimuli in rats. METHODS: Experiment 1 tested the effect of a PCP dose (1.0, 2.5, and 4.5 mg/kg) on response to single tones on intracranial EEG recorded over the auditory cortex in rats. Experiment 2 evaluated the effect of PCP after acute administration of saline or PCP (5 mg/kg), after continuous subchronic administration of saline or PCP (5 mg/kg/day), and after a week of drug cessation. In both experiments, a time-frequency analysis quantified mean power (MP) and phase locking factor (PLF) between 1 and 80 Hz. Event-related potentials (ERPs) were also measured to tones, and EEG spectral power in the absence of auditory stimuli. RESULTS: Acute PCP increased PLF and MP between 10 and 30 Hz, while decreasing MP and PLF between approximately 50 and 70 Hz. Acute PCP produced a dose-dependent broad-band increase in EEG power that extended into gamma range frequencies. There were no consistent effects of subchronic administration on gamma range activity. Acute PCP increased ERP amplitudes for the P16 and N70 components. CONCLUSIONS: Findings suggest that acute PCP-induced NMDAr hypofunction has differential effects on neural power and synchrony which vary with dose, time course of administration and EEG frequency. EEG synchrony and power appear to be sensitive translational biomarkers for disrupted NMDAr function, which may contribute to the pathophysiology of schizophrenia and other neuropsychiatric disorders.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fenciclidina/farmacologia , Estimulação Acústica , Animais , Relação Dose-Resposta a Droga , Eletroencefalografia , Masculino , Psicoacústica , Ratos , Ratos Sprague-Dawley , Análise Espectral , Fatores de Tempo
14.
J Comput Neurosci ; 43(3): 173-187, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29047010

RESUMO

The pathophysiology of auditory hallucination, a common symptom of schizophrenia, has yet been understood, but during auditory hallucination, primary auditory cortex (A1) shows paradoxical responses. When auditory stimuli are absent, A1 becomes hyperactive, while A1 responses to auditory stimuli are reduced. Such activation pattern of A1 responses during auditory hallucination is consistent with aberrant gamma rhythms in schizophrenia observed during auditory tasks, raising the possibility that the pathology underlying abnormal gamma rhythms can account for auditory hallucination. Moreover, A1 receives top-down signals in the gamma frequency band from an adjacent association area (Par2), and cholinergic modulation regulates interactions between A1 and Par2. In this study, we utilized a computational model of A1 to ask if disrupted cholinergic modulation could underlie abnormal gamma rhythms in schizophrenia. Furthermore, based on our simulation results, we propose potential pathology by which A1 can directly contribute to auditory hallucination.


Assuntos
Córtex Auditivo/fisiopatologia , Colinérgicos/farmacologia , Ritmo Gama/efeitos dos fármacos , Alucinações/fisiopatologia , Esquizofrenia/fisiopatologia , Estimulação Acústica , Córtex Auditivo/efeitos dos fármacos , Simulação por Computador , Eletroencefalografia , Feminino , Ritmo Gama/fisiologia , Alucinações/patologia , Humanos , Masculino , Modelos Neurológicos , Inibição Neural/efeitos dos fármacos , Esquizofrenia/patologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
15.
Anat Rec (Hoboken) ; 300(12): 2220-2232, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806500

RESUMO

Neuronal damage in primary auditory cortex (A1) underlies complex manifestations of noise exposure, prevention of which is critical for health maintenance. Acid sphingomyelinase (ASM) catalyzes generation of ceramide (Cer) which if over-activated mediates neuronal disorders in various diseases. Tricyclic antidepressants (TCAs), by restraining ASM/Cer, benefits multiple neuronal anomalies, so we aimed to elucidate the effect of TCA on noise induced hearing loss and auditory cortex derangement, unraveling mechanism involved. The mice were exposed to noise with frequencies of 20-20 KHz and intensity of 95 dB. Doxepin hydrochloride (DOX), a kind of TCAs, was given intragastrically by 5 mg kg-1  days-1 . Morphology of neurons was examined using hematoxylin-eosin (HE) and Nissl staining. Apoptosis was assayed through transferase-mediated dUTP nick end labeling (TUNEL). The content of ASM, Cer or acid ceramidase (AC) was detected by western blot and immunohistochemistry analysis. We demonstrated intense, broad band noise caused upward shift of auditory brainstem response (ABR) threshold to sound over frequencies 4-32 KHz, with prominent morphologic changes and enhanced apoptosis in neurons of primary auditory cortex (A1) (P < 0.05). DOX partly restored noise-caused hearing loss alleviating morphologic changes or apoptosis remarkably (P < 0.05). Both ASM and Cer abundance were elevated significantly by noise which was reversed upon DOX treatment (P < 0.05), but neither noise nor DOX altered AC content. DOX had no influence on hearing, neuronal morphology or ASM/Cer in control mice. Our result suggests DOX palliates noise induced hearing loss and neuronal damage in auditory cortex by correcting over-activation of ASM/Cer without hampering intrinsic behavior of it. Anat Rec, 300:2220-2232, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Auditivo/metabolismo , Ceramidas/metabolismo , Doxepina/farmacologia , Perda Auditiva Provocada por Ruído/metabolismo , Ruído/efeitos adversos , Esfingomielina Fosfodiesterase/metabolismo , Estimulação Acústica/efeitos adversos , Animais , Antidepressivos Tricíclicos/farmacologia , Antidepressivos Tricíclicos/uso terapêutico , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/patologia , Ceramidas/antagonistas & inibidores , Doxepina/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/patologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores
16.
Psychiatry Res ; 256: 202-206, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645081

RESUMO

Amplitudes of auditory evoked potentials (AEP) increase with the intensity/loudness of sounds (loudness-dependence of AEP, LDAEP), and the time between adjacent sounds (time-dependence of AEP, TDAEP). Both, blunted LDAEP and blunted TDAEP are markers of altered auditory function in schizophrenia (SZ). However, while blunted LDAEP has been attributed to altered serotonergic function, blunted TDAEP has been linked to altered NMDA receptor function. Despite phenomenological similarities of the two effects, no common pharmacological underpinnings have been identified. To test whether LDAEP and TDAEP are both affected by NMDA receptor blockade, two rhesus macaques passively listened to auditory clicks of 5 different intensities presented with stimulus-onset asynchronies ranging between 0.2 and 6.4s. 8 AEP components were analyzed, including the N85, the presumed human N1 homolog. LDAEP and TDAEP were estimated as the slopes of AEP amplitude with intensity and the logarithm of stimulus-onset asynchrony, respectively. On different days, AEPs were collected after systemic injection of MK-801 or vehicle. Both TDAEP and LDAEP of the N85 were blunted by the NMDA blocker MK-801 and recapitulate the SZ phenotype. In summary, LDAEP and TDAEP share important pharmacological commonalities that may help identify a common pharmacological intervention to normalize both electrophysiological phenotypes in SZ.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Percepção Sonora/efeitos dos fármacos , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Percepção Sonora/fisiologia , Macaca mulatta , Masculino , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
17.
Eur J Neurosci ; 46(2): 1779-1789, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544049

RESUMO

Learning to associate a stimulus with reinforcement causes plasticity in primary sensory cortex. Neural activity caused by the associated stimulus is paired with reinforcement, but population analyses have not found a selective increase in response to that stimulus. Responses to other stimuli increase as much as, or more than, responses to the associated stimulus. Here, we applied population analysis at a new time point and additionally evaluated whether cholinergic receptor blockers interacted with the plastic changes in cortex. Three days of tone identification behavior caused responsiveness to increase broadly across primary auditory cortex, and target responses strengthened less than overall responsiveness. In pharmacology studies, behaviorally impairing doses of selective acetylcholine receptor blockers were administered during behavior. Neural responses were evaluated on the following day, while the blockers were absent. The muscarinic group, blocked by scopolamine, showed lower responsiveness and an increased response to the tone identification target that exceeded both the 3-day control group and task-naïve controls. Also, a selective increase in the late phase of the response to the tone identification stimulus emerged. Nicotinic receptor antagonism, with mecamylamine, more modestly lowered responses the following day and lowered target responses more than overall responses. Control acute studies demonstrated the muscarinic block did not acutely alter response rates, but the nicotinic block did. These results lead to the hypothesis that the decrease in the proportion of the population spiking response that is selective for the target may be explained by the balance between effects modulated by muscarinic and nicotinic receptors.


Assuntos
Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Neurônios/metabolismo , Reconhecimento Fisiológico de Modelo/fisiologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Mapeamento Encefálico , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Masculino , Mecamilamina/farmacologia , Microeletrodos , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Reconhecimento Fisiológico de Modelo/efeitos dos fármacos , Ratos Sprague-Dawley , Escopolamina/farmacologia
18.
Neuroimage ; 152: 78-93, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254512

RESUMO

The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Propofol/administração & dosagem , Estimulação Acústica , Adulto , Anestésicos Intravenosos/administração & dosagem , Percepção Auditiva/efeitos dos fármacos , Eletrocorticografia , Feminino , Ritmo Gama , Humanos , Masculino , Pessoa de Meia-Idade
19.
Nat Med ; 23(1): 39-48, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27892953

RESUMO

Although 22q11.2 deletion syndrome (22q11DS) is associated with early-life behavioral abnormalities, affected individuals are also at high risk for the development of schizophrenia symptoms, including psychosis, later in life. Auditory thalamocortical (TC) projections recently emerged as a neural circuit that is specifically disrupted in mouse models of 22q11DS (hereafter referred to as 22q11DS mice), in which haploinsufficiency of the microRNA (miRNA)-processing-factor-encoding gene Dgcr8 results in the elevation of the dopamine receptor Drd2 in the auditory thalamus, an abnormal sensitivity of thalamocortical projections to antipsychotics, and an abnormal acoustic-startle response. Here we show that these auditory TC phenotypes have a delayed onset in 22q11DS mice and are associated with an age-dependent reduction of miR-338-3p, a miRNA that targets Drd2 and is enriched in the thalamus of both humans and mice. Replenishing depleted miR-338-3p in mature 22q11DS mice rescued the TC abnormalities, and deletion of Mir338 (which encodes miR-338-3p) or reduction of miR-338-3p expression mimicked the TC and behavioral deficits and eliminated the age dependence of these deficits. Therefore, miR-338-3p depletion is necessary and sufficient to disrupt auditory TC signaling in 22q11DS mice, and it may mediate the pathogenic mechanism of 22q11DS-related psychosis and control its late onset.


Assuntos
Córtex Auditivo/fisiopatologia , Vias Auditivas/fisiopatologia , Síndrome de DiGeorge/genética , MicroRNAs/genética , Transtornos Psicóticos/genética , Tálamo/fisiopatologia , Idade de Início , Animais , Antipsicóticos/farmacologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Vias Auditivas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Western Blotting , Síndrome de DiGeorge/fisiopatologia , Síndrome de DiGeorge/psicologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Deleção de Genes , Haploinsuficiência , Humanos , Camundongos , MicroRNAs/metabolismo , Vias Neurais , Optogenética , Técnicas de Patch-Clamp , Fenótipo , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/psicologia , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Dopamina D2/genética , Reflexo de Sobressalto , Esquizofrenia/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
20.
Neurosci Lett ; 633: 189-195, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27641319

RESUMO

The effects of anesthesia on the functional auditory characteristics of cortical neurons, such as spatial and temporal response properties, vary between an anesthetized and an awake subject. However, studies have shown that an appropriate anesthetic method that approaches the awake condition is still useful because of its greater stability and controllability. The present study compared neural response properties from two core fields of the mouse auditory cortex under three anesthetic conditions: urethane; ketamine and xylazine hydrochloride (KX) mixture; and a combination of medetomidine, midazolam, and butorphanol (MMB). To measure sound stimulation in vivo, we recorded flavoprotein-autofluorescent images of endogenous green fluorescence. Under all conditions, fluorescence changes in auditory core subfields in response to tones were observed, and response properties, such as peak intensity, latency, duration, and activated areas were analyzed. Results showed larger response peak intensity, latency, and duration in the core subfields under urethane compared with KX and MMB, with no significant differences between KX and MMB. Conversely, under KX anesthesia the activated areas showed characteristic response properties in a subfield-dependent manner. These results demonstrated the varied effects of anesthesia on response properties in the core subfields of the auditory cortex.


Assuntos
Anestésicos Combinados/farmacologia , Córtex Auditivo/efeitos dos fármacos , Flavoproteínas/metabolismo , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Butorfanol/farmacologia , Ketamina/farmacologia , Masculino , Medetomidina/farmacologia , Camundongos Endogâmicos C57BL , Midazolam/farmacologia , Imagem Óptica , Uretana/farmacologia , Xilazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA