RESUMO
The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.
Assuntos
Biorretroalimentação Psicológica/fisiologia , Macaca fascicularis/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Modelos Neurológicos , Reflexo Monosináptico/fisiologia , Córtex Visual/citologiaRESUMO
Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS.
Assuntos
Ritmo alfa/fisiologia , Tálamo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Visual/fisiologia , Animais , Simulação por Computador , Eletrodos Implantados , Eletroencefalografia , Feminino , Furões , Interneurônios/fisiologia , Imageamento por Ressonância Magnética , Masculino , Microeletrodos , Modelos Animais , Modelos Neurológicos , Rede Nervosa/fisiologia , Optogenética , Tálamo/citologia , Tálamo/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estimulação Transcraniana por Corrente Contínua/instrumentação , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagemRESUMO
Primate social communication depends on the perceptual integration of visual and auditory cues, reflected in the multimodal mixing of sensory signals in certain cortical areas. The macaque cortical face patch network, identified through visual, face-selective responses measured with fMRI, is assumed to contribute to visual social interactions. However, whether face patch neurons are also influenced by acoustic information, such as the auditory component of a natural vocalization, remains unknown. Here, we recorded single-unit activity in the anterior fundus (AF) face patch, in the superior temporal sulcus, and anterior medial (AM) face patch, on the undersurface of the temporal lobe, in macaques presented with audiovisual, visual-only, and auditory-only renditions of natural movies of macaques vocalizing. The results revealed that 76% of neurons in face patch AF were significantly influenced by the auditory component of the movie, most often through enhancement of visual responses but sometimes in response to the auditory stimulus alone. By contrast, few neurons in face patch AM exhibited significant auditory responses or modulation. Control experiments in AF used an animated macaque avatar to demonstrate, first, that the structural elements of the face were often essential for audiovisual modulation and, second, that the temporal modulation of the acoustic stimulus was more important than its frequency spectrum. Together, these results identify a striking contrast between two face patches and specifically identify AF as playing a potential role in the integration of audiovisual cues during natural modes of social communication.
Assuntos
Percepção Auditiva/fisiologia , Reconhecimento Facial/fisiologia , Macaca mulatta/fisiologia , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Estimulação Acústica , Acústica , Animais , Imageamento por Ressonância Magnética , Estimulação LuminosaRESUMO
Many theories propose recurrent interactions across the cortical hierarchy, but it is unclear if cortical circuits are selectively wired to implement looped computations. Using subcellular channelrhodopsin-2-assisted circuit mapping in mouse visual cortex, we compared feedforward (FF) or feedback (FB) cortico-cortical (CC) synaptic input to cells projecting back to the input source (looped neurons) with cells projecting to a different cortical or subcortical area. FF and FB afferents showed similar cell-type selectivity, making stronger connections with looped neurons than with other projection types in layer (L)5 and L6, but not in L2/3, resulting in selective modulation of activity in looped neurons. In most cases, stronger connections in looped L5 neurons were located on their apical tufts, but not on their perisomatic dendrites. Our results reveal that CC connections are selectively wired to form monosynaptic excitatory loops and support a differential role of supragranular and infragranular neurons in hierarchical recurrent computations.
Assuntos
Biorretroalimentação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Córtex Visual/citologiaRESUMO
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.
Assuntos
Potenciais de Ação/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Animais , Conjuntos de Dados como Assunto , Eletrofisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/fisiologia , Córtex Visual/citologiaRESUMO
In many behavioral tasks, cortex enters a desynchronized state where low-frequency fluctuations in population activity are suppressed. The precise behavioral correlates of desynchronization and its global organization are unclear. One hypothesis holds that desynchronization enhances stimulus coding in the relevant sensory cortex. Another hypothesis holds that desynchronization reflects global arousal, such as task engagement. Here, we trained mice on tasks where task engagement could be distinguished from sensory accuracy. Using widefield calcium imaging, we found that performance-related desynchronization was global and correlated better with engagement than with accuracy. Consistent with this link between desynchronization and engagement, rewards had a long-lasting desynchronizing effect. To determine whether engagement-related state changes depended on the relevant sensory modality, we trained mice on visual and auditory tasks and found that in both cases desynchronization was global, including regions such as somatomotor cortex. We conclude that variations in low-frequency fluctuations are predominately global and related to task engagement.
Assuntos
Nível de Alerta/fisiologia , Córtex Auditivo/fisiologia , Sincronização Cortical/fisiologia , Tomada de Decisões/fisiologia , Córtex Visual/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Córtex Auditivo/diagnóstico por imagem , Eletroencefalografia , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Imagem Óptica , Estimulação Luminosa , Recompensa , Técnicas Estereotáxicas , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagemRESUMO
A biophysically detailed description of the mechanisms of the primary vision is still being developed. We have incorporated a simplified, filter-based description of retino-thalamic visual signal processing into the detailed, conductance-based refractory density description of the neuronal population activity of the primary visual cortex. We compared four mechanisms of the direction selectivity (DS), three of them being based on asymmetrical projections of different types of thalamic neurons to the cortex, distinguishing between (i) lagged and nonlagged, (ii) transient and sustained, and (iii) On and Off neurons. The fourth mechanism implies a lack of subcortical bias and is an epiphenomenon of intracortical interactions between orientation columns. The simulations of the cortical response to moving gratings have verified that first three mechanisms provide DS to an extent compared with experimental data and that the biophysical model realistically reproduces characteristics of the visual cortex activity, such as membrane potential, firing rate, and synaptic conductances. The proposed model reveals the difference between the mechanisms of both the intact and the silenced cortex, favoring the second mechanism. In the fourth case, DS is weaker but significant; it completely vanishes in the silenced cortex.DS in the On-Off mechanism derives from the nonlinear interactions within the orientation map. Results of simulations can help to identify a prevailing mechanism of DS in V1. This is a step towards a comprehensive biophysical modeling of the primary visual system in the frameworks of the population rate coding concept.
Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Percepção de Movimento/fisiologia , Tálamo , Córtex Visual , Animais , Biologia Computacional , Tálamo/citologia , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologiaRESUMO
One way to assess a neuron's function is to describe all its inputs and outputs. With this goal in mind, we used serial section electron microscopy to map 899 synaptic inputs and 623 outputs in one inhibitory interneuron in a large volume of the mouse visual thalamus. This neuron innervated 256 thalamocortical cells spread across functionally distinct subregions of the visual thalamus. All but one of its neurites were bifunctional, innervating thalamocortical and local interneurons while also receiving synapses from the retina. We observed a wide variety of local synaptic motifs. While this neuron innervated many cells weakly, with single en passant synapses, it also deployed specialized branches that climbed along other dendrites to form strong multi-synaptic connections with a subset of partners. This neuron's diverse range of synaptic relationships allows it to participate in a mix of global and local processing but defies assigning it a single circuit function.
Assuntos
Interneurônios/fisiologia , Inibição Neural , Sinapses/fisiologia , Tálamo/citologia , Córtex Visual/citologia , Animais , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Técnicas de Rastreamento Neuroanatômico , Tálamo/fisiologia , Córtex Visual/fisiologiaRESUMO
Mitochondrial calcium ([Ca2+]mito) dynamics plays vital roles in regulating fundamental cellular and organellar functions including bioenergetics. However, neuronal [Ca2+]mito dynamics in vivo and its regulation by brain activity are largely unknown. By performing two-photon Ca2+ imaging in the primary motor (M1) and visual cortexes (V1) of awake behaving mice, we find that discrete [Ca2+]mito transients occur synchronously over somatic and dendritic mitochondrial network, and couple with cytosolic calcium ([Ca2+]cyto) transients in a probabilistic, rather than deterministic manner. The amplitude, duration, and frequency of [Ca2+]cyto transients constitute important determinants of the coupling, and the coupling fidelity is greatly increased during treadmill running (in M1 neurons) and visual stimulation (in V1 neurons). Moreover, Ca2+/calmodulin kinase II is mechanistically involved in modulating the dynamic coupling process. Thus, activity-dependent dynamic [Ca2+]mito-to-[Ca2+]cyto coupling affords an important mechanism whereby [Ca2+]mito decodes brain activity for the regulation of mitochondrial bioenergetics to meet fluctuating neuronal energy demands as well as for neuronal information processing.
Assuntos
Encéfalo/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Encéfalo/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias/ultraestrutura , Córtex Motor/citologia , Córtex Motor/metabolismo , Córtex Visual/citologiaRESUMO
We have previously shown that the physiological size of postsynaptic currents maximises energy efficiency rather than information transfer across the retinothalamic relay synapse. Here, we investigate information transmission and postsynaptic energy use at the next synapse along the visual pathway: from relay neurons in the thalamus to spiny stellate cells in layer 4 of the primary visual cortex (L4SS). Using both multicompartment Hodgkin-Huxley-type simulations and electrophysiological recordings in rodent brain slices, we find that increasing or decreasing the postsynaptic conductance of the set of thalamocortical inputs to one L4SS cell decreases the energy efficiency of information transmission from a single thalamocortical input. This result is obtained in the presence of random background input to the L4SS cell from excitatory and inhibitory corticocortical connections, which were simulated (both excitatory and inhibitory) or injected experimentally using dynamic-clamp (excitatory only). Thus, energy efficiency is not a unique property of strong relay synapses: even at the relatively weak thalamocortical synapse, each of which contributes minimally to the output firing of the L4SS cell, evolutionarily-selected postsynaptic properties appear to maximise the information transmitted per energy used.
Assuntos
Modelos Neurológicos , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Biologia Computacional , Simulação por Computador , Metabolismo Energético/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tálamo/citologia , Córtex Visual/citologia , Vias Visuais/citologia , Vias Visuais/fisiologiaRESUMO
Cortical plasticity peaks early in life and tapers in adulthood, as exemplified in the primary visual cortex (V1), wherein brief loss of vision in one eye reduces cortical responses to inputs from that eye during the critical period but not in adulthood. The synaptic locus of cortical plasticity and the cell-autonomous synaptic factors determining critical periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits V1 plasticity. Loss of SynCAM 1 selectively reduces the number of thalamocortical inputs onto parvalbumin (PV+) interneurons, impairing the maturation of feedforward inhibition in V1. SynCAM 1 acts in PV+ interneurons to actively restrict cortical plasticity, and brief PV+-specific knockdown of SynCAM 1 in adult visual cortex restores juvenile-like plasticity. These results identify a synapse-specific, cell-autonomous mechanism for thalamocortical visual circuit maturation and closure of the visual critical period.
Assuntos
Molécula 1 de Adesão Celular/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Parvalbuminas/genética , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologiaRESUMO
The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.
Assuntos
Perfilação da Expressão Gênica , Neocórtex/citologia , Neocórtex/metabolismo , Animais , Biomarcadores/análise , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Córtex Motor/metabolismo , Neocórtex/anatomia & histologia , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única , Córtex Visual/anatomia & histologia , Córtex Visual/citologia , Córtex Visual/metabolismoRESUMO
Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.
Assuntos
Córtex Visual/fisiologia , Animais , Simulação por Computador , Camundongos , Modelos Neurológicos , Neurônios/metabolismo , Sinapses/metabolismo , Tálamo/fisiologia , Córtex Visual/citologiaRESUMO
Laminar architecture of primary auditory cortex (A1) has long been investigated by traditional histochemical techniques such as Nissl staining, retrograde and anterograde tracings. Uncertainty still remains, however, about laminar boundaries in mice. Here we investigated the cortical lamina structure by combining neuronal tracing and immunofluorochemistry for laminar specific markers. Most retrogradely labeled corticothalamic neurons expressed Forkhead box protein P2 (Foxp2) and distributed within the laminar band of Foxp2-expressing cells, identifying layer 6. Cut-like homeobox 1 (Cux1) expression in layer 2-4 neurons divided the upper layers into low expression layers 2/3 and high expression layers 3/4, which overlapped with the dense terminals of vesicular glutamate transporter 2 (vGluT2) and anterogradely labeled lemniscal thalamocortical axons. In layer 5, between Cux1-expressing layers 2-4 and Foxp2-defined layer 6, retrogradely labeled corticocollicular projection neurons mostly expressed COUP-TF interacting protein 2 (Ctip2). Ctip2-expressing neurons formed a laminar band in the middle of layer 5 distant from layer 6, creating a laminar gap between the two laminas. This gap contained a high population of commissural neurons projecting to contralateral A1 compared to other layers and received vGluT2-immunopositive, presumptive thalamocortical axon collateral inputs. Our study shows that layer 5 is much wider than layer 6, and layer 5 can be divided into at least three sublayers. The thalamorecipient layers 3/4 may be separated from layers 2/3 using Cux1 and can be also divided into layer 4 and layer 3 based on the neuronal soma size. These data provide a new insight for the laminar structure of mouse A1.
Assuntos
Córtex Auditivo/citologia , Neurônios/citologia , Animais , Córtex Auditivo/metabolismo , Imunofluorescência , Fatores de Transcrição Forkhead/metabolismo , Colículos Inferiores/citologia , Masculino , Camundongos Endogâmicos , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Córtex Somatossensorial/citologia , Tálamo/citologia , Proteínas Supressoras de Tumor/metabolismo , Córtex Visual/citologiaRESUMO
Plasticity of thalamocortical (TC) synapses is robust during early development and becomes limited in the adult brain. We previously reported that a short duration of deafening strengthens TC synapses in the primary visual cortex (V1) of adult mice. Here, we demonstrate that deafening restores NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of TC synapses onto principal neurons in V1 layer 4 (L4), which is accompanied by an increase in NMDAR function. In contrast, deafening did not recover long-term depression (LTD) at TC synapses. Potentiation of TC synapses by deafening is absent in parvalbumin-positive (PV+) interneurons, resulting in an increase in feedforward excitation to inhibition (E/I) ratio. Furthermore, we found that a brief duration of deafening adult mice recovers rapid ocular dominance plasticity (ODP) mainly by accelerating potentiation of the open-eye responses. Our results suggest that cross-modal sensory deprivation promotes adult cortical plasticity by specifically recovering TC-LTP and increasing the E/I ratio.
Assuntos
Percepção Auditiva , Potenciação de Longa Duração , Tálamo/fisiologia , Córtex Visual/fisiologia , Percepção Visual , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Privação Sensorial , Tálamo/citologia , Córtex Visual/citologiaRESUMO
Detecting the direction of motion of an object is essential for our representation of the visual environment. The visual cortex is one of the main stages in the mammalian nervous system in which the direction of motion may be computed de novo. Experiments and theories indicate that cortical neurons respond selectively to motion direction by combining inputs that provide information about distinct spatial locations with distinct time delays. Despite the importance of this spatiotemporal offset for direction selectivity, its origin and cellular mechanisms are not fully understood. We show that approximately 80 ± 10 thalamic neurons, which respond with distinct time courses to stimuli in distinct locations, excite mouse visual cortical neurons during visual stimulation. The integration of thalamic inputs with the appropriate spatiotemporal offset provides cortical neurons with a primordial bias for direction selectivity. These data show how cortical neurons selectively combine the spatiotemporal response diversity of thalamic neurons to extract fundamental features of the visual world.
Assuntos
Sinapses/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Movimento (Física) , Neurônios/fisiologia , Estimulação Luminosa , Fatores de TempoRESUMO
Loss or gain of copy number of the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2) leads to neurodevelopmental disorders (Rett and MeCP2 duplication syndrome), indicating that precisely regulated MeCP2 expression during development is critical for mental health. Consistent with this idea, MeCP2 null mutants exhibit synaptic regression in the dorsal lateral geniculate nucleus (dLGN), the visual relay center in the thalamus, a phenotype resembling that of animals reared in the dark during the visual sensitive period. It remains unclear how MeCP2 expression is regulated during circuit formation and maturation, especially in excitatory and inhibitory populations of neurons. We found that, concomitant with the initiation of the dark-rearing sensitive period, MeCP2 protein levels were elevated in glutamatergic but not GABAergic neurons of the dLGN. Moreover, MeCP2 expression in glutamatergic populations was selectively reduced by dark-rearing. Therefore, we propose that visual experience-dependent MeCP2 induction in glutamatergic populations is essential for synaptic maturation within the dLGN.
Assuntos
Regulação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/metabolismo , Tálamo/citologia , Córtex Visual/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima , Córtex Visual/fisiologiaRESUMO
KEY POINTS: Neuronal oscillations observed in sensory systems are physiological carriers of information about stimulus features. Rhythm in the infra-slow range, originating from the retina, was previously found in the firing of subcortical visual system nuclei involved in both image and non-image forming functions. The present study shows that the firing of neurons in the lateral geniculate nucleus is also governed by gamma oscillation (â¼35 Hz) time-locked to high phase of infra-slow rhythm that codes the intensity of transient light stimulation. We show that both physiological rhythms are synchronized within and between ipsilateral nuclei of the subcortical visual system and are dependent on retinal activity. The present study shows that neurophysiological oscillations characterized by various frequencies not only coexist in the subcortical visual system, but also are subjected to complex interference and synchronization processes. ABSTRACT: The physiological function of rhythmic firing in the neuronal networks of sensory systems has been linked with information coding. Also, neuronal oscillations in different frequency bands often change as a signature of brain state or sensory processing. Infra-slow oscillation (ISO) in the neuronal firing dependent on the retinal network has been described previously in the structures of the subcortical visual system. In the present study, we show for the first time that firing of ISO neurons in the lateral geniculate nucleus is also characterized by a harmonic discharge pattern (i.e. action potentials are separated by the intervals governed by fundamental frequency in the gamma range: â¼35 Hz). A similar phenomenon was recently described in the suprachiasmatic nuclei of the hypothalamus: the master biological clock. We found that both gamma and ISO rhythms were synchronized within and between ipsilateral nuclei of the subcortical visual system and were dependent on the retinal activity of the contralateral eye. These oscillatory patterns were differentially influenced by transient and prolonged light stimulation with respect to both frequency change direction and sustainability. The results of the present study show that the firing pattern of neurons in the subcortical visual system is shaped by oscillations from infra-slow and gamma frequency bands that are plausibly generated by the retinal network. Additionally, the results demonstrate that both rhythms are not a distinctive feature of image or non-image forming visual systems but, instead, they comprise two channels carrying distinctive properties of photic information.
Assuntos
Potenciais de Ação , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Retina/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Corpos Geniculados/citologia , Masculino , Neurônios/citologia , Ratos , Ratos Wistar , Retina/citologia , Tálamo/citologia , Córtex Visual/citologiaRESUMO
The Ntsr1-Cre GN220 mouse expresses Cre-recombinase in corticothalamic (CT) neurons in neocortical layer 6. It is not known if the other major types of pyramidal neurons in this layer also express this enzyme. By electrophysiological recordings in slices and histological analysis of the uptake of retrogradely transported beads we show that Cre-positive neurons are CT and not corticocortical or corticoclaustral types. Furthermore, we show that Ntsr1-Cre-positive cells are immuno-positive for the nuclear transcription factor Forkhead box protein P2 (FoxP2). We conclude that Cre-expression is limited to a specific type of pyramidal neuron: CT. However, it appears as not all CT neurons are Cre-expressing; there are indications that the penetrance of the gene is about 90%. We demonstrate the utility of assigning a specific identity to individual neurons by determining that the CT neurons are potently modulated by acetylcholine acting on both nicotinic and muscarinic acetylcholine receptors. These results corroborate the suggested function of these neurons in regulating the gain of thalamocortical transfer of sensory information depending on attentional demand and state of arousal.
Assuntos
Acetilcolina/farmacologia , Agonistas Colinérgicos/farmacologia , Neurônios/efeitos dos fármacos , Receptores de Neurotensina/genética , Tálamo/citologia , Córtex Visual/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Integrases/genética , Integrases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estatísticas não Paramétricas , Tálamo/fisiologia , Córtex Visual/fisiologiaRESUMO
OBJECTIVES: Nuclear factor erythroid 2-related factor (Nrf2) in astrocyte plays important roles in brain homeostasis. Fermented papaya preparation (FPP) has anti-oxidative, anti-inflammatory, immunoregulatory properties. The present study investigated the effects of FPP on activation of Nrf2 and release of Nrf2-regulated neuroprotective antioxidants and detoxifying molecules. METHODS: Primary cultured astrocytes from rat embryos were treated with FPP for 6 or 24 hours. The expression levels of nuclear Nrf2 and cytoplasmic Nrf2-regulated molecules were determined by western blot analysis and immunohistochemistry. Glutathione levels were measured in cells and medium. Dopaminergic neurons were exposed 6-hydroxydopamine (6-OHDA) with/without pre-treatment with FPP astrocytes. Mice were treated orally with FPP for 2 weeks. RESULTS: FPP increased nuclear translocation of Nrf2 in striatal astrocytes, induced up-regulation of NAD(P)H quinine oxidoreductase-1, glutathione-S transferase and hemeoxygenase-1, and increased glutathione level and the percentage of metallothionein-expressing astrocytes. Moreover, FPP suppressed 6-OHDA-induced dopaminergic neuronal loss in not only neuron-astrocyte mixed culture, but also neuron-rich cultures pre-treated with glial conditioned medium. Two-week oral treatment of mice with FPP resulted in Nrf2 activation and increase in glutathione level in striatum. DISCUSSION: The results indicated that FPP enhances the anti-oxidative capacity through activation of Nrf2 in astrocytes, suggesting it may provide neuroprotection in oxidative stress-related neurodegenerative diseases.