RESUMO
Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamental question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function. In particular, the fractional anisotropy (FA) of auditory and visual system thalamocortical and interhemispheric corticocortical connections was estimated using probabilistic tractography analyses. Sensory processing and sensory system FA were both reduced in older animals compared with younger adults. Corticocortical FA was significantly reduced only in white matter of the auditory system of aged monkeys, while thalamocortical FA was lower only in visual system white matter of the same animals. Importantly, these structural alterations were significantly associated with sensory function within each domain. Together, these results indicate that age-associated deficits in auditory and visual processing emerge in part from microstructural alterations to specific sensory white matter tracts, and not from general differences in white matter condition across the aging brain.SIGNIFICANCE STATEMENT Age-associated deficits in sensory processing arise from structural and functional alterations to both peripheral sensory organs and central brain regions. It remains unclear whether different sensory systems undergo similar or distinct trajectories in function across the lifespan. To provide novel insights into this question, this study combines electrophysiological assessments of auditory and visual function with diffusion MRI in aged macaques. The results suggest that age-related sensory processing deficits in part result from factors that impact the condition of specific white matter tracts, and not from general decreases in connectivity between sensory brain regions. Such anatomic specificity argues for a framework aimed at understanding vulnerabilities with relatively local influence and brain region specificity.
Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/fisiologia , Estimulação Acústica , Animais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Tálamo/fisiologiaRESUMO
Since the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex. We discuss how visual circuit development leads to precise connectivity and identify synaptic loci, which can be altered by activity or experience. Plasticity extends to visual features beyond ocular dominance, involving subcortical and cortical regions, and connections between cortical inhibitory interneurons. Experience-dependent plasticity contributes to the alignment of networks spanning retina to thalamus to cortex. Disruption of this plasticity may underlie aberrant sensory processing in some neurodevelopmental disorders.
Assuntos
Dominância Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Retina/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Animais , Período Crítico Psicológico , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/fisiologia , Núcleos Laterais do Tálamo/crescimento & desenvolvimento , Núcleos Laterais do Tálamo/fisiologia , Camundongos , Transtornos do Neurodesenvolvimento/fisiopatologia , Retina/crescimento & desenvolvimento , Colículos Superiores/crescimento & desenvolvimento , Colículos Superiores/fisiologia , Núcleo Supraquiasmático/crescimento & desenvolvimento , Núcleo Supraquiasmático/fisiologia , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Visão Binocular/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologiaRESUMO
Brain development is likely impacted by micronutrients. This is supported by the effects of the ω-3 fatty acid docosahexaenoic acid (DHA) during early neuronal differentiation, when it increases neurite growth. Aiming to delineate DHA roles in postnatal stages, we selected the visual cortex due to its stereotypic maturation. Immunohistochemistry showed that young mice that received dietary DHA from birth exhibited more abundant presynaptic and postsynaptic specializations. DHA also increased density and size of synapses in a dose-dependent manner in cultured neurons. In addition, dendritic arbors of neurons treated with DHA were more complex. In agreement with improved connectivity, DHA enhanced physiological parameters of network maturation in vitro, including bursting strength and oscillatory behavior. Aiming to analyze functional maturation of the cortex, we performed in vivo electrophysiological recordings from awake mice to measure responses to patterned visual inputs. Dietary DHA robustly promoted the developmental increase in visual acuity, without altering light sensitivity. The visual acuity of DHA-supplemented animals continued to improve even after their cortex had matured and DHA abolished the acuity plateau. Our findings show that the ω-3 fatty acid DHA promotes synaptic connectivity and cortical processing. These results provide evidence that micronutrients can support the maturation of neuronal networks.
Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/crescimento & desenvolvimento , Animais , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/citologia , Acuidade Visual/fisiologiaRESUMO
Cortical plasticity peaks early in life and tapers in adulthood, as exemplified in the primary visual cortex (V1), wherein brief loss of vision in one eye reduces cortical responses to inputs from that eye during the critical period but not in adulthood. The synaptic locus of cortical plasticity and the cell-autonomous synaptic factors determining critical periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits V1 plasticity. Loss of SynCAM 1 selectively reduces the number of thalamocortical inputs onto parvalbumin (PV+) interneurons, impairing the maturation of feedforward inhibition in V1. SynCAM 1 acts in PV+ interneurons to actively restrict cortical plasticity, and brief PV+-specific knockdown of SynCAM 1 in adult visual cortex restores juvenile-like plasticity. These results identify a synapse-specific, cell-autonomous mechanism for thalamocortical visual circuit maturation and closure of the visual critical period.
Assuntos
Molécula 1 de Adesão Celular/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Parvalbuminas/genética , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologiaRESUMO
GABA released from presynaptic sites induces short-lived phasic inhibition mediated by synaptic GABAA receptors (GABAARs) and longer-duration tonic inhibition mediated by extrasynaptic GABAA or GABAB receptors (GABABRs). A number of studies have found that contactin-associated protein 2 (Cntnap2) knockout (KO) mice, a well-established mouse model of autism, exhibit reduced interneuron numbers and aberrant phasic inhibition. However, little is known about whether tonic inhibition is disrupted in Cntnap2 KO mice and when the disruption of inhibition begins to occur during postnatal development. We examined tonic and phasic inhibition in layer 2/3 pyramidal cells of primary visual cortex of Cntnap2 KO at two different developmental stages, three to four and six to eight weeks of age. We found that both phasic inhibition and GABAAR but not GABABR-mediated tonic inhibition was reduced in pyramidal cells from six- to eight-week-old Cntnap2 KO mice, while in three- to four-week-old mice, no significant effects of genotype on tonic or phasic inhibition was observed. We further found that activation of tonic currents mediated by δ-subunit-containing GABAARs reduced neural excitability, an effect that was attenuated by loss of Cntnap2. While the relative contribution of tonic versus phasic inhibition to autism-related symptoms remains unclear, our data suggest that reduced tonic inhibition may play an important role, and δ-subunit-containing GABAARs may be a useful target for therapeutic intervention in autism.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Inibição Neural/genética , Células Piramidais/fisiologia , Receptores de GABA-A/metabolismo , Córtex Visual/citologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Feminino , GABAérgicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Córtex Visual/crescimento & desenvolvimento , Ácido gama-Aminobutírico/farmacologiaRESUMO
Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added.
Assuntos
Modelos Neurológicos , Inibição Neural/fisiologia , Orientação/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Algoritmos , Animais , Simulação por Computador , Neurônios/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologiaRESUMO
Recent evidence suggests that synaptic refinement, the reorganization of synapses and connections without significant change in their number or strength, is important for the development of the visual system of juvenile rodents. Other evidence in rodents and humans shows that there is a marked drop in sleep slow-wave activity (SWA) during adolescence. Slow waves reflect synchronous transitions of neuronal populations between active and inactive states, and the amount of SWA is influenced by the connection strength and organization of cortical neurons. In this study, we investigated whether synaptic refinement could account for the observed developmental drop in SWA. To this end, we employed a large-scale neural model of primary visual cortex and sections of the thalamus, capable of producing realistic slow waves. In this model, we reorganized intralaminar connections according to experimental data on synaptic refinement: during prerefinement, local connections between neurons were homogenous, whereas in postrefinement, neurons connected preferentially to neurons with similar receptive fields and preferred orientations. Synaptic refinement led to a drop in SWA and to changes in slow-wave morphology, consistent with experimental data. To test whether learning can induce synaptic refinement, intralaminar connections were equipped with spike timing-dependent plasticity. Oriented stimuli were presented during a learning period, followed by homeostatic synaptic renormalization. This led to activity-dependent refinement accompanied again by a decline in SWA. Together, these modeling results show that synaptic refinement can account for developmental changes in SWA. Thus sleep SWA may be used to track noninvasively the reorganization of cortical connections during development.
Assuntos
Ondas Encefálicas , Modelos Neurológicos , Sono , Potenciais Sinápticos , Animais , Humanos , Neurogênese , Neurônios/fisiologia , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologiaRESUMO
Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices.
Assuntos
Córtex Auditivo/fisiopatologia , Perda Auditiva/fisiopatologia , Audição , Plasticidade Neuronal , Tálamo/fisiopatologia , Córtex Visual/fisiopatologia , Estimulação Acústica , Adaptação Fisiológica , Fatores Etários , Animais , Córtex Auditivo/crescimento & desenvolvimento , Vias Auditivas/fisiopatologia , Percepção Auditiva , Gatos , Modelos Animais de Doenças , Perda Auditiva/induzido quimicamente , Perda Auditiva/psicologia , Canamicina , Técnicas de Rastreamento Neuroanatômico , Estimulação Luminosa , Tálamo/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Percepção VisualRESUMO
Rhythmic sound or music is known to improve cognition in animals and humans. We wanted to evaluate the effects of prenatal repetitive music stimulation on the remodelling of the auditory cortex and visual Wulst in chicks. Fertilized eggs (0 day) of white leghorn chicken (Gallus domesticus) during incubation were exposed either to music or no sound from embryonic day 10 until hatching. Auditory and visual perceptual learning and synaptic plasticity, as evident by synaptophysin and PSD-95 expression, were done at posthatch days (PH) 1, 2 and 3. The number of responders was significantly higher in the music stimulated group as compared to controls at PH1 in both auditory and visual preference tests. The stimulated chicks took significantly lesser time to enter and spent more time in the maternal area in both preference tests. A significantly higher expression of synaptophysin and PSD-95 was observed in the stimulated group in comparison to control at PH1-3 both in the auditory cortex and visual Wulst. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results suggest facilitation of postnatal perceptual behaviour and synaptic plasticity in both auditory and visual systems following prenatal stimulation with complex rhythmic music.
Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/crescimento & desenvolvimento , Percepção Auditiva/fisiologia , Música , Córtex Visual/crescimento & desenvolvimento , Percepção Visual/fisiologia , Fatores Etários , Animais , Western Blotting , Embrião de Galinha , Guanilato Quinases/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Estatísticas não Paramétricas , Sinaptofisina/metabolismoRESUMO
In the standard model of central visual processing, orientation tuned responses in cortex are built from untuned thalamic inputs. But recent studies in the mouse show orientation selectivity in thalamic neurons, and address their potential source and possible roles in cortical computation.
Assuntos
Neurônios/fisiologia , Visão Ocular , Vias Visuais/fisiologia , Animais , Camundongos , Orientação , Estimulação Luminosa , Tálamo/crescimento & desenvolvimento , Tálamo/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologiaRESUMO
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.
Assuntos
Rede Nervosa/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Animais , Colforsina/análogos & derivados , Colforsina/farmacologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Rede Nervosa/efeitos dos fármacos , Neurônios Retinianos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologiaRESUMO
Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age.
Assuntos
Córtex Visual/química , Córtex Visual/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Haplorrinos , Macaca , Macaca mulatta , Masculino , Vias Neurais/química , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Tálamo/química , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Córtex Visual/citologiaRESUMO
Recently, we put forward a redox molecular hypothesis involving the natural biophysical substrate of visual perception and imagery. Here, we explicitly propose that the feedback and feedforward iterative operation processes can be interpreted in terms of a homunculus looking at the biophysical picture in our brain during visual imagery. We further propose that the brain can use both picture-like and language-like representation processes. In our interpretation, visualization (imagery) is a special kind of representation i.e., visual imagery requires a peculiar inherent biophysical (picture-like) mechanism. We also conjecture that the evolution of higher levels of complexity made the biophysical picture representation of the external visual world possible by controlled redox and bioluminescent nonlinear (iterative) biochemical reactions in the V1 and V2 areas during visual imagery. Our proposal deals only with the primary level of visual representation (i.e. perceived "scene").
Assuntos
Retroalimentação Fisiológica/fisiologia , Fótons , Retina/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Percepção Visual/fisiologia , Animais , Humanos , Proteínas Luminescentes/análise , Estimulação Luminosa/métodos , Retina/química , Córtex Visual/química , Vias Visuais/química , Vias Visuais/crescimento & desenvolvimentoRESUMO
NrCAM is a neural cell adhesion molecule of the L1 family that has been linked to autism spectrum disorders, a disease spectrum in which abnormal thalamocortical connectivity may contribute to visual processing defects. Here we show that NrCAM interaction with neuropilin-2 (Npn-2) is critical for semaphorin 3F (Sema3F)-induced guidance of thalamocortical axon subpopulations at the ventral telencephalon (VTe), an intermediate target for thalamic axon sorting. Genetic deletion of NrCAM or Npn-2 caused contingents of embryonic thalamic axons to misproject caudally in the VTe. The resultant thalamocortical map of NrCAM-null mutants showed striking mistargeting of motor and somatosensory thalamic axon contingents to the primary visual cortex, but retinogeniculate targeting and segregation were normal. NrCAM formed a molecular complex with Npn-2 in brain and neural cells, and was required for Sema3F-induced growth cone collapse in thalamic neuron cultures, consistent with a vital function for NrCAM in Sema3F-induced axon repulsion. NrCAM-null mice displayed reduced responses to visual evoked potentials recorded from layer IV in the binocular zone of primary visual cortex (V1), particularly when evoked from the ipsilateral eye, indicating abnormal visual acuity and ocularity. These results demonstrate that NrCAM is required for normal maturation of cortical visual acuity, and suggest that the aberrant projection of thalamic motor and somatosensory axons to the visual cortex in NrCAM-null mutant mice impairs cortical functions.
Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Córtex Motor/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Tálamo/ultraestrutura , Acuidade Visual , Córtex Visual/ultraestrutura , Animais , Moléculas de Adesão Celular/genética , Potenciais Evocados Visuais , Feminino , Cones de Crescimento/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Córtex Motor/embriologia , Córtex Motor/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Neuropilina-2/genética , Neuropilina-2/fisiologia , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento , Córtex Visual/embriologia , Córtex Visual/crescimento & desenvolvimentoRESUMO
The integration of multisensory information is essential to forming meaningful representations of the environment. Adults benefit from related multisensory stimuli but the extent to which the ability to optimally integrate multisensory inputs for functional purposes is present in children has not been extensively examined. Using a cross-sectional approach, high-density electrical mapping of event-related potentials (ERPs) was combined with behavioral measures to characterize neurodevelopmental changes in basic audiovisual (AV) integration from middle childhood through early adulthood. The data indicated a gradual fine-tuning of multisensory facilitation of performance on an AV simple reaction time task (as indexed by race model violation), which reaches mature levels by about 14 years of age. They also revealed a systematic relationship between age and the brain processes underlying multisensory integration (MSI) in the time frame of the auditory N1 ERP component (â¼ 120 ms). A significant positive correlation between behavioral and neurophysiological measures of MSI suggested that the underlying brain processes contributed to the fine-tuning of multisensory facilitation of behavior that was observed over middle childhood. These findings are consistent with protracted plasticity in a dynamic system and provide a starting point from which future studies can begin to examine the developmental course of multisensory processing in clinical populations.
Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/crescimento & desenvolvimento , Percepção Auditiva/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Percepção Visual/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Envelhecimento/psicologia , Córtex Auditivo/anatomia & histologia , Mapeamento Encefálico/métodos , Criança , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Neocórtex/anatomia & histologia , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/anatomia & histologia , Estimulação Luminosa/métodos , Córtex Visual/anatomia & histologia , Adulto JovemRESUMO
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain.
Assuntos
Plasticidade Neuronal/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Adulto , Animais , Lesões Encefálicas/fisiopatologia , Efrinas/metabolismo , Humanos , Imuno-Histoquímica , Neocórtex/fisiologia , Primatas , Recuperação de Função Fisiológica/fisiologia , Tálamo/fisiologia , Córtex Visual/embriologiaRESUMO
In this study of reading development, children (ages 7-10) and adults (ages 18-32) performed overt single-word reading and aural repetition tasks on high-frequency word stimuli during functional magnetic resonance imaging. Most regions showed similar activity across age groups. These widespread regions of similarity indicate that children and adults use largely overlapping mechanisms when processing high-frequency words. Significant task-related differences included greater activity in occipital cortex for the read task, and greater activity in temporal cortex for the repeat task; activity levels in these regions were similar for adults and children. However, age group differences were found in several posterior regions, including a set of regions implicated in adult reading: the left supramarginal gyrus, the left angular gyrus, and bilateral anterior extrastriate cortex. The angular and supramarginal gyrus regions, hypothesized to play a role in phonology, showed decreased activity in adults relative to children for high-frequency words. The extrastriate regions had significant activity for both the visual read task and auditory repeat task in children, but just for the read task in adults, showing significant task and age interactions. These results are consistent with decreasing reliance on phonological processing, and increasing tuning of visual mechanisms, with age.
Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/fisiologia , Leitura , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Criança , Estudos Transversais , Lateralidade Funcional/fisiologia , Humanos , Estimulação Luminosa , Fala , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologiaRESUMO
The objective of this study was to examine the neural correlates of phonological inconsistency (relationship of spelling to sound) and orthographic inconsistency (relationship of sound to spelling) in visual word processing using functional magnetic resonance imaging (fMRI). Children (9- to 15-year-old) performed a rhyming and spelling task in which two words were presented sequentially in the visual modality. Consistent with previous studies in adults, higher phonological inconsistency was associated with greater activation in several regions including left inferior frontal gyrus and medial frontal gyrus/anterior cingulate cortex. We additionally demonstrated an effect of orthographic inconsistency in these same areas, suggesting that these regions are involved in the integration of orthographic and phonological information and, with respect to the medial frontal/anterior cingulate, greater demands on executive function. Higher phonological and orthographic consistency was associated with greater activation in precuneus/posterior cingulate cortex, the putative steady state system active during resting, suggesting lower demands on cognitive resources for consistent items. Both consistency effects were larger for the rhyming compared with the spelling task suggesting greater demands of integrating spelling and sound in the former task. Finally, accuracy on the rhyming task was negatively correlated with the consistency effect in left fusiform gyrus. In particular, this region showed insensitivity to consistency in low performers, sensitivity to inconsistency (higher activity) in moderate performers, and sensitivity to inconsistency (high activation) and to consistency (deactivation). In general, these results show that the influence of spelling-sound (and sound-spelling) correspondences on processing in fusiform gyrus develops as a function of skill.
Assuntos
Encéfalo/crescimento & desenvolvimento , Idioma , Reconhecimento Visual de Modelos/fisiologia , Leitura , Percepção da Fala/fisiologia , Comportamento Verbal/fisiologia , Estimulação Acústica , Adolescente , Aprendizagem por Associação/fisiologia , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Criança , Estudos de Coortes , Feminino , Lateralidade Funcional/fisiologia , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/crescimento & desenvolvimento , Estimulação Luminosa , Lobo Temporal/anatomia & histologia , Lobo Temporal/crescimento & desenvolvimento , Córtex Visual/anatomia & histologia , Córtex Visual/crescimento & desenvolvimentoRESUMO
Developmental differences (9- to 15-year-olds) in effective connectivity in left hemisphere regions were examined using dynamic causal modeling (DCM) of functional magnetic resonance imaging (fMRI) data. Children completed spelling tasks in the visual and auditory modalities in which they were asked to determine if two words were spelled the same from the first vowel onwards. Intrinsic (anatomical) connections were strongest from primary cortical regions to unimodal association areas - from Heschl's gyrus to superior temporal gyrus for the auditory spelling task and from calcarine to fusiform gyrus for the visual spelling task. The modulatory (experimental) effect for the visual spelling task from calcarine to superior temporal gyrus was stronger than all other effects from calcarine and this effect showed a developmental increase, suggesting automatic activation of phonology that increased with age. The modulatory effect from Heschl's gyrus to dorsal inferior frontal gyrus also showed a developmental increase, suggesting age-related increases in phonological segmentation in verbal working memory. All together, these results suggest that there are developmental increases in automatic access into brain regions involved in phonological processing in tasks that require orthographic processing.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Percepção da Fala/fisiologia , Comportamento Verbal/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Envelhecimento/fisiologia , Córtex Auditivo/anatomia & histologia , Córtex Auditivo/crescimento & desenvolvimento , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Criança , Vias Eferentes/anatomia & histologia , Vias Eferentes/crescimento & desenvolvimento , Feminino , Lobo Frontal/anatomia & histologia , Lobo Frontal/crescimento & desenvolvimento , Lateralidade Funcional/fisiologia , Humanos , Idioma , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Rede Nervosa/anatomia & histologia , Fonética , Estimulação Luminosa , Córtex Visual/anatomia & histologia , Córtex Visual/crescimento & desenvolvimentoRESUMO
The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex.