Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598031

RESUMO

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cloreto de Cálcio , Estresse Salino/genética , Etanolamina , Etanolaminas , Proteínas de Fluorescência Verde
2.
Microbiol Spectr ; 10(5): e0086222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036637

RESUMO

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.


Assuntos
Antifúngicos , Bleomicina , Cryptococcus neoformans , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bleomicina/farmacologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Diglicerídeos de Citidina Difosfato/metabolismo , Etanolaminas/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
3.
J Biol Chem ; 294(7): 2329-2339, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602568

RESUMO

Phospholipids are an integral part of the cellular membrane structure and can be produced by a de novo biosynthetic pathway and, alternatively, by the Kennedy pathway. Studies in several yeast species have shown that the phospholipid phosphatidylserine (PS) is synthesized from CDP-diacylglycerol and serine, a route that is different from its synthesis in mammalian cells, involving a base-exchange reaction from preexisting phospholipids. Fungal-specific PS synthesis has been shown to play an important role in fungal virulence and has been proposed as an attractive drug target. However, PS synthase, which catalyzes this reaction, has not been studied in the human fungal pathogen Cryptococcus neoformans Here, we identified and characterized the PS synthase homolog (Cn Cho1) in this fungus. Heterologous expression of Cn CHO1 in a Saccharomyces cerevisiae cho1Δ mutant rescued the mutant's growth defect in the absence of ethanolamine supplementation. Moreover, an Sc cho1Δ mutant expressing Cn CHO1 had PS synthase activity, confirming that the Cn CHO1 encodes PS synthase. We also found that PS synthase in C. neoformans is localized to the endoplasmic reticulum and that it is essential for mitochondrial function and cell viability. Of note, its deficiency could not be complemented by ethanolamine or choline supplementation for the synthesis of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) via the Kennedy pathway. These findings improve our understanding of phospholipid synthesis in a pathogenic fungus and indicate that PS synthase may be a useful target for antifungal drugs.


Assuntos
Cryptococcus neoformans/metabolismo , Retículo Endoplasmático/metabolismo , Viabilidade Microbiana , Fosfatidilserinas/biossíntese , Animais , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cryptococcus neoformans/genética , Diglicerídeos de Citidina Difosfato/genética , Diglicerídeos de Citidina Difosfato/metabolismo , Retículo Endoplasmático/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Fosfatidilserinas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
PLoS One ; 11(4): e0153119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055010

RESUMO

The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Exocitose , Oryza/crescimento & desenvolvimento , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Mutação , Organelas/metabolismo , Oryza/enzimologia , Oryza/genética , Pectinas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Stroke ; 46(10): 2943-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26374481

RESUMO

BACKGROUND AND PURPOSE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. METHODS: Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. RESULTS: n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. CONCLUSIONS: n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/efeitos dos fármacos , Fosfatidilserinas/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/patologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Técnicas de Silenciamento de Genes , Hipóxia-Isquemia Encefálica/patologia , Técnicas In Vitro , Neurônios/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
6.
Biochim Biophys Acta ; 1851(11): 1428-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303578

RESUMO

The phospholipid (PL) requirement in fish is revealed by enhanced performance when larvae are provided PL-enriched diets. To elucidate the molecular mechanism underlying PL requirement in Atlantic salmon, Salmo salar, were fed a minimal PL diet and tissue samples from major lipid metabolic sites were dissected from fry and parr. In silico analysis and cloning techniques demonstrated that salmon possess a full set of enzymes for the endogenous production of PL. The gene expression data indicated that major PL biosynthetic genes of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns) display lower expression in intestine during the early developmental stage (fry). This is consistent with the hypothesis that the intestine of salmon is immature at the early developmental stage with limited capacity for endogenous PL biosynthesis. The results also indicate that intact PtdCho, PtdEtn and PtdIns are required in the diet at this stage. PtdCho and sphingomyelin constitute the predominant PL in chylomicrons, involved in the transport of dietary lipids from the intestine to the rest of the body. As sphingomyelin can be produced from PtdCho in intestine of fry, our findings suggest that supplementation of dietary PtdCho alone during early developmental stages of Atlantic salmon would be sufficient to promote chylomicron formation. This would support efficient transport of dietary lipids, including PL precursors, from the intestine to the liver where biosynthesis of PtdEtn, PtdSer, and PtdIns is not compromised as in intestine facilitating efficient utilisation of dietary energy and the endogenous production of membrane PL for the rapidly growing and developing animal.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Gorduras na Dieta/metabolismo , Proteínas de Peixes/metabolismo , Salmo salar/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Quilomícrons/biossíntese , Gorduras na Dieta/administração & dosagem , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/metabolismo , Intestinos/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Fosfatidilinositóis/biossíntese , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Alinhamento de Sequência , Esfingomielinas/biossíntese
7.
Planta ; 237(1): 15-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22956125

RESUMO

In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Oryza/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Sequência de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/classificação , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Giberelinas/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Fosfatidilserinas/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
8.
Plant J ; 67(4): 648-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554450

RESUMO

Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.


Assuntos
Arabidopsis/enzimologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Fosfatidilserinas/metabolismo , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Nucléolo Celular/metabolismo , DNA Complementar/genética , Retículo Endoplasmático/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/ultraestrutura , Pólen/enzimologia , Pólen/genética , Pólen/ultraestrutura , Regiões Promotoras Genéticas/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Deleção de Sequência
9.
J Bacteriol ; 190(24): 8197-203, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931122

RESUMO

The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.


Assuntos
Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Fosfatidiletanolaminas/biossíntese , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucelose/microbiologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , DNA Bacteriano/genética , Feminino , Técnicas de Inativação de Genes , Genes Bacterianos , Células HeLa , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fosfatidilcolinas/biossíntese , Plasmídeos , Virulência
10.
Eukaryot Cell ; 6(11): 2092-101, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17905925

RESUMO

To investigate the contributions of phosphatidylserine to the growth and morphogenesis of the rod-shaped fission yeast Schizosaccharomyces pombe, we have characterized the single gene in this organism, pps1, encoding a predicted phosphatidylserine synthase. S. pombe pps1Delta mutants grow slowly in rich medium and are inviable in synthetic minimal medium. They do not produce detectable phosphatidylserine in vivo and possess negligible in vitro phosphatidylserine synthase activity, indicating that pps1 encodes the major phosphatidylserine synthase activity in S. pombe. Supplementation of growth medium with ethanolamine partially suppresses the growth-defective phenotype of pps1Delta cells, reflecting the likely importance of phosphatidylserine as a precursor for phosphatidylethanolamine in S. pombe. In medium lacking ethanolamine, pps1Delta mutants exhibit striking cell morphology, cytokinesis, actin cytoskeleton, and cell wall remodeling and integrity defects. Overexpression of pps1 likewise leads to defects in cell morphology and cytokinesis, thus implicating phosphatidylserine as a dosage-dependent regulator of these processes. During log-phase growth, green fluorescent protein-Pps1p fusion proteins are concentrated at the cell and nuclear peripheries as well as presumptive endoplasmic reticulum membranes, while in stationary-phase cells, they are redistributed to unusual cytoplasmic structures of unknown origin. Moreover, stationary-phase pps1Delta cultures retain very poor viability relative to wild-type S. pombe cells, even in medium containing ethanolamine, demonstrating a role for phosphatidylserine in the physiological adaptations required for stationary-phase survival. Our findings reveal novel cellular functions for phosphatidylserine and emphasize the usefulness of S. pombe as a model organism for elucidating potentially conserved biological and molecular functions of this phospholipid.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Actinas/metabolismo , Sequência de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , Parede Celular/efeitos dos fármacos , Parede Celular/enzimologia , Colina/farmacologia , Clonagem Molecular , Citocinese/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/enzimologia , Etanolamina/farmacologia , Deleção de Genes , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Fenótipo , Transporte Proteico/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/química , Homologia de Sequência de Aminoácidos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
11.
Mol Microbiol ; 53(4): 1243-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15306025

RESUMO

Phosphatidylglycerolphosphate synthase (Pgs1p) catalyses the committed step in the synthesis of cardiolipin (CL). This is the only step of CL synthesis that is regulated by inositol. We have shown previously that Pgs1p enzyme activity is decreased within minutes after supplementation with inositol, but PGS1 expression is unaltered. We utilized an epitope-tagged Pgs1p to determine if the rapid decrease in activity following inositol was because of degradation or inactivation of the protein. In this report, we show that, in response to inositol, the decrease in CL content and Pgs1p enzyme activity are associated with increased phosphorylation of Pgs1p, but not with degradation or mislocalization of the protein. This is the first evidence of phosphorylation of a phospholipid biosynthetic enzyme in response to inositol and identifies a new mechanism of inositol-mediated regulation.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Regulação Fúngica da Expressão Gênica , Inositol/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Meios de Cultura , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
12.
J Bacteriol ; 186(6): 1667-77, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14996797

RESUMO

In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Fosfatidiletanolaminas/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Colina/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Lipídeos/análise , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Sinorhizobium meliloti/química , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética
13.
Biochem J ; 342 ( Pt 1): 57-64, 1999 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10432300

RESUMO

Phosphatidylserine (PtdSer) is synthesized in mammalian cells by two base-exchange enzymes: PtdSer synthase (PSS)-1 primarily uses phosphatidylcholine as a substrate for exchange with serine, whereas PSS2 uses phosphatidylethanolamine (PtdEtn). We previously expressed murine PSS1 in McArdle hepatoma cells. The activity of PSS1 in vitro and the synthesis of PtdSer and PtdSer-derived PtdEtn were increased, whereas PtdEtn synthesis from the CDP-ethanolamine pathway was inhibited [Stone, Cui and Vance (1998) J. Biol. Chem. 273, 7293-7302]. We have now cloned and stably expressed a murine PSS2 cDNA in McArdle cells and M.9.1.1 cells [which are ethanolamine-requiring mutant Chinese hamster ovary (CHO) cells defective in PSS1]. Expression of the PSS2 in M.9.1.1 cells reversed the ethanolamine auxotrophy. However, the PtdEtn content was not normalized unless the culture medium was supplemented with ethanolamine. In both M.9.1.1 and hepatoma cells transfected with PSS2 cDNA the rate of synthesis of PtdSer and PtdSer-derived PtdEtn did not exceed that in parental CHO cells or control McArdle cells respectively, in contrast to cells expressing similar levels of murine PSS1. These observations suggest that PtdSer synthesis via murine PSS2, but not PSS1, is regulated by end-product inhibition. Moreover, expression of murine PSS2 in McArdle cells did not inhibit PtdEtn synthesis via the CDP-ethanolamine pathway, whereas expression of similar levels of PSS1 activity inhibited this pathway by approx. 50%. We conclude that murine PSS1 and PSS2, which are apparently derived from different genes, independently modulate phospholipid metabolism. In addition, mRNAs encoding the two synthases are differentially expressed in several murine tissues, supporting the idea that PSS1 and PSS2 might perform unique functions.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Regulação Enzimológica da Expressão Gênica , Fígado/enzimologia , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , Células CHO , Divisão Celular , Clonagem Molecular , Cricetinae , Cistina Difosfato/análogos & derivados , Cistina Difosfato/metabolismo , Etanolaminas/metabolismo , Cinética , Fígado/citologia , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos , Serina/metabolismo , Células Tumorais Cultivadas
14.
J Biol Chem ; 274(11): 7082-8, 1999 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-10066765

RESUMO

We describe the cloning of a wheat cDNA (TaPSS1) that encodes a phosphatidylserine synthase (PSS) and provides the first strong evidence for the existence of this enzyme in a higher eukaryotic cell. The cDNA was isolated on its ability to confer increased resistance to aluminum toxicity when expressed in yeast. The sequence of the predicted protein encoded by TaPSS1 shows homology to PSS from both yeast and bacteria but is distinct from the animal PSS enzymes that catalyze base-exchange reactions. In wheat, Southern blot analysis identified the presence of a small family of genes that cross-hybridized to TaPSS1, and Northern blots showed that aluminum induced TaPSS1 expression in root apices. Expression of TaPSS1 complemented the yeast cho1 mutant that lacks PSS activity and altered the phospholipid composition of wild type yeast, with the most marked effect being increased abundance of phosphatidylserine (PS). Arabidopsis thaliana leaves overexpressing TaPSS1 showed a marked enhancement in PSS activity, which was associated with increased biosynthesis of PS at the expense of both phosphatidylinositol and phosphatidylglycerol. Unlike mammalian cells where PS accumulation is tightly regulated even when the capacity for PS biosynthesis is increased, plant cells accumulated large amounts of PS when TaPSS1 was overexpressed. High levels of TaPSS1 expression in Arabidopsis and tobacco (Nicotiana tabacum) led to the appearance of necrotic lesions on leaves, which may have resulted from the excessive accumulation of PS. The cloning of TaPSS1 now provides evidence that the yeast pathway for PS synthesis exists in some plant tissues and provides a tool for understanding the pathways of phospholipid biosynthesis and their regulation in plants.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Fosfolipídeos/metabolismo , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Clonagem Molecular , Primers do DNA , DNA Complementar , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Triticum/enzimologia
15.
J Bacteriol ; 180(1): 100-6, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9422599

RESUMO

The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456-7461, 1994). Introduction of a plasmid containing the psd gene into temperature-sensitive Escherichia coli psd-2 mutant cells allowed growth at otherwise restrictive temperature. Phosphatidylserine was not detected in the psd-2 mutant cells harboring the plasmid; it accumulated in the mutant up to 29% of the total phospholipids without the plasmid. An enzyme activity that catalyzes decarboxylation of 14C-labeled phosphatidylserine to form phosphatidylethanolamine was detected in E. coli psd-2 cells harboring a Bacillus psd plasmid. E. coli cells harboring the psd plasmid, the expression of which was under the control of the T7phi10 promoter, produced proteins of 32 and 29 kDa upon induction. A pulse-labeling experiment suggested that the 32-kDa protein is the primary translation product and is processed into the 29-kDa protein. The psd gene, together with pss, was located by Southern hybridization to the 238- to 306-kb SfiI-NotI fragment of the chromosome. A B. subtilis strain harboring an interrupted psd allele, psd1::neo, was constructed. The null psd mutant contained no phosphatidylethanolamine and accumulated phosphatidylserine. It grew well without supplementation of divalent cations which are essential for the E. coli pssA null mutant lacking phosphatidylethanolamine. In both the B. subtilis null pss and psd mutants, glucosyldiacylglycerol content increased two- to fourfold. The results suggest that the lack of phosphatidylethanolamine in the B. subtilis membrane may be compensated for by the increases in the contents of glucosyldiacylglycerols by an unknown mechanism.


Assuntos
Bacillus subtilis/genética , Carboxiliases/genética , Genes Bacterianos/genética , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Sequência de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Carboxiliases/química , Carboxiliases/metabolismo , Clonagem Molecular , Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Peso Molecular , Fosfolipídeos/análise , Processamento de Proteína Pós-Traducional , Mapeamento por Restrição , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura
16.
Genetics ; 137(1): 55-65, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8056324

RESUMO

The isolation of the dep1 mutant of Saccharomyces cerevisiae is reported. The mutant was identified by its disability to regulate expression of structural genes involved in phospholipid biosynthesis, INO1, CHO1 and OPI3, in response to supplementation with soluble lipid precursors. Expression of the INO1, CHO1 and OPI3 genes was not fully derepressed in the absence of soluble lipid precursors, inositol and choline in the dep1 mutant, as compared to wild type. The mutant also exhibited incomplete repression of these same genes in the presence of inositol and choline. Repression by phosphate of the PHO5 gene was reduced in the mutant, as was derepression of this gene in the absence of phosphate. In addition, we show that expression of INO1 and OPI3 structural genes is strongly dependent on the growth phase both in wild-type and dep1 mutant strains. However, in the mutant, elevated basal steady-state mRNA levels were reached in the late stationary growth phase, independent of supplementation conditions. The dep1 mutation represents a new complementation group with respect to phospholipid synthesis and was mapped to a position of about 12 cM distal from the centromere on the left arm of chromosome I. Deficiencies in transcription activation and repression of metabolically unrelated genes, as well as reduced mating efficiency and lack of sporulation of homozygous diploid dep1/dep1 mutants indicate a pleiotropic regulatory function of the DEP1 gene product. Thus, Dep1p appears to be a new member of a class of transcriptional modulators, including Rpd1p/Sin3p/Ume4p/Sdi1p/Gam3p, Rpd3p, Spt10p and Spt21p.


Assuntos
Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Mapeamento Cromossômico , Cromossomos Fúngicos , Genes Fúngicos , Teste de Complementação Genética , Metiltransferases/genética , Mio-Inositol-1-Fosfato Sintase/genética , Fosfatidiletanolamina N-Metiltransferase , Fosfolipídeos/biossíntese , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos , Ativação Transcricional , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
17.
J Biochem ; 104(6): 894-900, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2854123

RESUMO

A Saccharomyces cerevisiae mutant that lacked phosphatidylserine synthase [EC 2.7.8.8] (CDP-1,2-diacyl-sn-glycerol: L-serine O-phosphatidyltransferase) completely was constructed by disrupting its structural gene, CHO1. Over two-thirds of its coding region, from the starting to the 200th codon, was replaced with a LEU2 DNA fragment. This new cho1 mutant showed no detectable synthesis of phosphatidylserine but grew slowly in a medium that contained either ethanolamine or choline. These results indicate that phosphatidylserine synthase and most probably phosphatidylserine are dispensable in S. cerevisiae but necessary for its optimal growth. Additional supplementation with myo-inositol raised the cellular content of phosphatidylinositol and improved the growth of the mutant, suggesting the importance of the negative charges of the membrane surface. The CHO1-disrupted mutant, when grown on choline, accumulated phosphatidylethanolamine to a significant level even after extensive dilution of the initial culture. It segregated prototrophic revertants that could synthesize phosphatidylethanolamine without recovery of phosphatidylserine synthesis. These results imply the presence of a route(s) for the formation of ethanolamine or its phosphorylated derivative in S. cerevisiae.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Genes Fúngicos , Fosfotransferases/genética , Saccharomyces cerevisiae/metabolismo , Southern Blotting , Genes , Inositol/farmacologia , Mutação , Fenótipo , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
18.
J Bacteriol ; 163(2): 560-7, 1985 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2991194

RESUMO

chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. As expected, when chol mutants were starved for ethanolamine, the rates of synthesis of the phospholipids phosphatidylethanolamine and PC declined rapidly. Surprisingly, however, coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. The results obtained suggest that the slowing of PC biosynthesis in ethanolamine-starved chol cells leads to a coordinated decrease in the synthesis of all phospholipids. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Mutação , Fosfolipídeos/biossíntese , Fosfotransferases/genética , Saccharomyces cerevisiae/genética , Colina/metabolismo , Etanolamina , Etanolaminas/metabolismo , Genótipo , Cinética , Fosfolipídeos/isolamento & purificação , Radioisótopos de Fósforo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade da Espécie
19.
J Bacteriol ; 161(3): 1086-92, 1985 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2982784

RESUMO

Escherichia coli K-12 derivatives with a common genetic background carrying, either alone or in combination, the pss-1 allele coding for a temperature-sensitive phosphatidylserine synthase (A. Ohta and I. Shibuya, J. Bacteriol. 132:434-443, 1977) and cls- for a defective cardiolipin synthase (G. Pluschke et al., J. Biol. Chem. 253:5048-5055, 1978) were constructed. The phospholipid polar headgroup compositions of these strains were significantly different from each other depending on their genotypes and growth temperature, whereas other membrane characteristics such as the total phospholipid content, fatty acid composition, membrane protein profile, and lipopolysaccharide content were practically the same, suggesting that the phenotypes of these strains were the direct consequences of abnormalities in membrane phospholipid composition. The cls pss-1 double mutation caused an unusual accumulation of phosphatidylglycerol with an extremely low content of cardiolipin. The cls mutation alone was found to give a growth defect, and its introduction into a pss-1 mutant resulted in an enhanced temperature sensitivity of growth. Addition to a broth medium of a proper concentration of sucrose, NaCl, Mg2+, or Ca2+ allowed the growth of a pss-1 mutant at otherwise nonpermissive temperature, but a pss-1 cls double mutant required the combined addition of sucrose or NaCl and MgCl2 for full growth at 42 degrees C. The possible mechanisms for these physiological consequences of the mutations are discussed on a molecular basis. The remedial effects of culture supplements allowed the pss-1 mutants to grow at 42 degrees C resulting in enhanced abnormalities of membrane phospholipid composition.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Escherichia coli/genética , Lipídeos de Membrana/fisiologia , Proteínas de Membrana , Fosfolipídeos/fisiologia , Fosfotransferases/genética , Transferases (Outros Grupos de Fosfato Substituídos) , Cardiolipinas/biossíntese , Ácidos Graxos/metabolismo , Mutação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA