Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 88: 102371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593570

RESUMO

BACKGROUND: Paeonol is a representative active ingredient of the traditional Chinese medicinal herbs Cortex Moutan, which has a well-established cardioprotective effect on ischemic heart disease. However, there is little evidence of the protective effect of paeonol, and its pharmacological mechanism is also unclear. This study aims to explore the protective effect and mechanism of Paeonol on myocardial infarction rat and hypoxic H9c2 cells. METHODS: Myocardial ischemia/reperfusion (I/R) was induced by occlusion of the left anterior descending coronary artery for 1 h followed by 3 h of reperfusion, and then gavage with Paeonol for 7 days. H9c2 cells were applied for the in vitro experiments and hypoxia/reoxygenation (H/R) model was established. CKIP-1 expression was evaluated by qPCR and western blot. The expression of genes involved in apoptosis, inflammation and ion channel was measured by western blot. The currents levels of Nav1.5 and Kir2.1 were measured by whole-cell patch-clamp recording. RESULTS: CKIP-1 expression was decreased in H/R-induced H9c2 cells, which was inversely increased after Paeonol treatment. Paeonol treatment could increase the viability of H/R-induced H9c2 cells and diminish the apoptosis and inflammation of H/R-induced H9c2 cells, while si-CKIP-1 treatment inhibited the phenomena. Moreover, the currents levels of Nav1.5 and Kir2.1 were reduced in H/R-induced H9c2 cells, which were inhibited after Paeonol treatment. Intragastric Paeonol can reduce the ventricular arrhythmias in rats with myocardial infarction. CONCLUSIONS: The protective effects of Paeonol on myocardial infarction rats and hypoxic H9c2 cells were achieved by up-regulating CKIP-1.


Assuntos
Acetofenonas , Hipóxia Celular , Regulação para Cima , Acetofenonas/farmacologia , Animais , Ratos , Regulação para Cima/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Canais Iônicos/metabolismo , Canais Iônicos/genética , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley
2.
Biochem Pharmacol ; 222: 116050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354960

RESUMO

The side effects of high-dose dexamethasone in anti-infection include increased ROS production and immune cell apoptosis. Dexamethasone effectively activates serum/glucocorticoid-regulated kinase 1 (SGK1), which upregulates various ion channels by activating store-operated calcium entry (SOCE), leading to Ca2+ oscillations. PIEZO1 plays a crucial role in macrophages' immune activity and function, but whether dexamethasone can regulate PIEZO1 by enhancing SOCE via SGK1 activation remains unclear. The effects of dexamethasone were assessed in a mouse model of sepsis, and primary BMDMs and the RAW264.7 were treated with overexpression plasmids, siRNAs, or specific activators or inhibitors to examine the relationships between SGK1, SOCE, and PIEZO1. The functional and phenotypic changes of mouse and macrophage models were detected. The results indicate that high-dose dexamethasone upregulated SGK1 by activating the macrophage glucocorticoid receptor, which enhanced SOCE and subsequently activated PIEZO1. Activation of PIEZO1 resulted in Ca2+ influx and cytoskeletal remodelling. The increase in intracellular Ca2+ mediated by PIEZO1 further increased the activation of SGK1 and ORAI1/STIM1, leading to intracellular Ca2+ peaks. In the context of inflammation, activation of PIEZO1 suppressed the activation of TLR4/NFκB p65 in macrophages. In RAW264.7 cells, PIEZO1 continuous activation inhibited the change in mitochondrial membrane potential, accelerated ROS accumulation, and induced autophagic damage and cell apoptosis in the late stage. CaMK2α was identified as a downstream mediator of TLR4 and PIEZO1, facilitating high-dose dexamethasone-induced macrophage immunosuppression and apoptosis. PIEZO1 is a new glucocorticoid target to regulate macrophage function and activity. This study provides a theoretical basis for the rational use of dexamethasone.


Assuntos
Glucocorticoides , Proteínas Serina-Treonina Quinases , Humanos , Glucocorticoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 4 Toll-Like/metabolismo , Macrófagos/metabolismo , Apoptose , Inflamação , Dexametasona/farmacologia , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais Iônicos/genética
3.
Cell Mol Life Sci ; 80(8): 205, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450052

RESUMO

Dietary intake and nutrient composition regulate animal growth and development; however, the underlying mechanisms remain elusive. Our previous study has shown that either the mammalian deafness homolog gene tmc-1 or its downstream acetylcholine receptor gene eat-2 attenuates Caenorhabditis elegans development in a chemically defined food CeMM (C. elegans maintenance medium) environment, but the underpinning mechanisms are not well-understood. Here, we found that, in CeMM food environment, for both eat-2 and tmc-1 fast-growing mutants, several fatty acid synthesis and elongation genes were highly expressed, while many fatty acid ß-oxidation genes were repressed. Accordingly, dietary supplementation of individual fatty acids, such as monomethyl branch chain fatty acid C17ISO, palmitic acid and stearic acid significantly promoted wild-type animal development on CeMM, and mutations in either C17ISO synthesis gene elo-5 or elo-6 slowed the rapid growth of eat-2 mutant. Tissue-specific rescue experiments showed that elo-6 promoted animal development mainly in the intestine. Furthermore, transcriptome and metabolome analyses revealed that elo-6/C17ISO regulation of C. elegans development may be correlated with up-regulating expression of cuticle synthetic and hedgehog signaling genes, as well as promoting biosynthesis of amino acids, amino acid derivatives and vitamins. Correspondingly, we found that amino acid derivative S-adenosylmethionine and its upstream metabolite methionine sulfoxide significantly promoted C. elegans development on CeMM. This study demonstrated that C17ISO, palmitic acid, stearic acid, S-adenosylmethionine and methionine sulfoxide inhibited or bypassed the TMC-1 and EAT-2-mediated attenuation of development via metabolic remodeling, and allowed the animals to adapt to the new nutritional niche.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácidos Graxos , Nutrientes , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Animais , Ingestão de Alimentos , Nutrientes/metabolismo , Músculos Faríngeos/metabolismo , Ácidos Graxos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
4.
Nat Commun ; 14(1): 1167, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859399

RESUMO

Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.


Assuntos
Síndrome de Angelman , Canais Iônicos , Ácido Linoleico , Animais , Feminino , Humanos , Masculino , Camundongos , Alelos , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Modelos Animais de Doenças , Deficiência Intelectual , Canais Iônicos/genética , Ácido Linoleico/farmacologia
5.
Front Endocrinol (Lausanne) ; 13: 918652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865309

RESUMO

Electroacupuncture (EA) is considered to have a therapeutic effect in the relief of irritable bowel syndrome (IBS)-associated visceral hypersensitivity via the reduction of the level of 5-hydroxytryptamine (5-HT) and 5-HT3 receptors (5-HT3R). However, whether Epac1/Piezo2, as the upstream of 5-HT, is involved in this process remains unclear. We investigated whether EA at the ST36 and ST37 acupoints alleviated visceral and somatic hypersensitivity in a post-inflammatory IBS (PI-IBS) model mice via the Epac1-Piezo2 axis. In this study, we used 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced PI-IBS as a mouse model. Visceral sensitivity was assessed by the abdominal withdrawal reflex test. Somatic sensitivity was evaluated by the hind paw withdrawal threshold. Quantitative real-time PCR, immunofluorescence staining, ELISA, and Western blotting were performed to examine the expressions of Epac1, Piezo2, 5-HT, and 5-HT3R from the mouse distal colon/L5-S2 dorsal root ganglia (DRG). Our results showed that EA improved the increased visceral sensation and peripheral mechanical hyperalgesia in PI-IBS model mice, and the effects of EA were superior to the sham EA. EA significantly decreased the protein and mRNA levels of Epac1 and Piezo2, and reduced 5-HT and 5-HT3R expressions in the distal colon. Knockdown of colonic Piezo2 eliminated the effect of EA on somatic hypersensitivity. Combined knockdown of colonic Epac1 and Piezo2 synergized with EA in relieving visceral hypersensitivity and blocked the effect of EA on somatic hypersensitivity. Additionally, protein levels of Epac1 and Piezo2 were also found to be decreased in the L5-S2 DRGs after EA treatment. Taken together, our study suggested that EA at ST36 and ST37 can alleviate visceral and somatic hypersensitivity in PI-IBS model mice, which is closely related to the regulation of the Epac1-Piezo2 axis.


Assuntos
Eletroacupuntura , Fatores de Troca do Nucleotídeo Guanina , Canais Iônicos , Síndrome do Intestino Irritável , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/terapia , Canais Iônicos/genética , Síndrome do Intestino Irritável/terapia , Camundongos , Serotonina/metabolismo
6.
J Mol Cell Cardiol ; 166: 107-115, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247375

RESUMO

The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.


Assuntos
MicroRNAs , Arritmias Cardíacas/metabolismo , Técnicas Eletrofisiológicas Cardíacas , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo
7.
Life Sci ; 297: 120470, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283177

RESUMO

The brain is the softest organ in the body, and any change in the mechanical properties of the tissue induces the activation of glial cells, astrocytes and microglia. Amyloid plaques, one of the main pathological features of Alzheimer's disease (AD), are substantially harder than the surrounding brain tissue and can activate astrocytes and microglia resulting in the glial engulfment of plaques. Durotaxis, a migratory preference towards stiffer tissue, is prompting microglia to form a mechanical barrier around plaques reducing amyloid ß (Aß) induced neurotoxicity. Mechanoreceptors are highly expressed in the brain, particularly in microglia. The large increase in the expression of the mechanoreceptor Piezo1 was observed in the brains from AD animal models and AD patients in plaque encompassing glia. Importantly, Piezo1 function is regulated via force-from-lipids through the lipid composition of the membrane and membranous incorporation of polyunsaturated fatty acids (PUFAs) can affect the function of Piezo1 altering mechanosensitive properties of the cell. On the other hand, PUFAs dietary supplementation can alter microglial polarization, the envelopment of amyloid plaques, and immune response and Piezo1 activity was implicated in the similar modulations of microglia behavior. Finally, PUFAs treatment is currently in use in medical trials as the therapy for sickle cell anemia, a disease linked with the mutations in Piezo1. Further studies are needed to elucidate the connection between PUFAs, Piezo1 expression, and microglia behavior in the AD brain. These findings could open new possibilities in harnessing microglia in AD and in developing novel therapeutic strategies.


Assuntos
Doença de Alzheimer , Ácidos Graxos , Canais Iônicos , Microglia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia
8.
Nat Commun ; 13(1): 73, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013278

RESUMO

In flowering plants, hydration of desiccated pollen grains on stigma is a prerequisite for pollen germination, during which pollen increase markedly in volume through water uptake, requiring them to survive hypoosmotic shock to maintain cellular integrity. However, the mechanisms behind the adaptation of pollen to this hypoosmotic challenge are largely unknown. Here, we identify the Qc-SNARE protein SYP72, which is specifically expressed in male gametophytes, as a critical regulator of pollen survival upon hypoosmotic shock during hydration. SYP72 interacts with the MSCS-LIKE 8 (MSL8) and is required for its localization to the plasma membrane. Intraspecies and interspecies genetic complementation experiments reveal that SYP72 paralogs and orthologs from green algae to angiosperms display conserved molecular functions and rescue the defects of Arabidopsis syp72 mutant pollen facing hypoosmotic shock following hydration. Our findings demonstrate a critical role for SYP72 in pollen resistance to hypoosmotic shock through the MSL8 cascade during pollen hydration.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Pressão Osmótica , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Fenômenos Químicos , Fertilidade , Canais Iônicos/genética , Desenvolvimento Vegetal , Plantas Geneticamente Modificadas , Pólen/genética , Polinização , Proteínas Qa-SNARE/genética , Água/metabolismo
9.
Curr Neuropharmacol ; 20(4): 662-674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33882809

RESUMO

Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Animais , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 2/genética
10.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6533-6540, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604901

RESUMO

Piezo1 channel is a mechanosensitive ion channel that opens in response to shear stress, tension, torsion and a series of mechanical stimulation and turns them into biological signals. It plays an important role in vascular development, vasoconstriction and vasodilation, formation of arterial and venous valves, blood pressure regulation and red blood cell homeostasis, and thus is closely related to cardiovascular system. Recent studies have shown that traditional Chinese medicine(TCM) compounds and their active components can affect Ca~(2+) influx and endothelial cell and platelet function by mediating Piezo1 channel, and regulate thrombosis and endothelial homeostasis, thereby treating cardiovascular diseases. This study mainly reviewed the role of Piezo1 channel in cardiovascular diseases and the prevention and treatment of cardiovascular diseases based on Piezo1 channel in TCM, in order to provide effective reference for the further research of Piezo1 channel in the field of TCM.


Assuntos
Doenças Cardiovasculares , Trombose , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Canais Iônicos/genética , Medicina Tradicional Chinesa , Células Endoteliais
11.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299303

RESUMO

Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.


Assuntos
Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Proteínas de Homeodomínio/genética , Modelos Cardiovasculares , Fatores de Transcrição/genética , Animais , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/genética , Remodelamento Atrial/fisiologia , Padronização Corporal/genética , Simulação por Computador , Genes Homeobox , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Coração/embriologia , Proteínas de Homeodomínio/fisiologia , Humanos , Canais Iônicos/genética , Canais Iônicos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Fatores de Transcrição/fisiologia , Proteína Homeobox PITX2
12.
Lung Cancer ; 158: 29-39, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111567

RESUMO

OBJECTIVES: Abnormal expressions of ion channel genes are associated with the occurrence and progression of tumors. At present, their roles in the carcinogenesis of lung adenocarcinoma (LUAD) are not clear. MATERIALS AND METHODS: Differentially expressed (DE) genes in the tumorigenesis were identified from 328 ion channel genes in 102 LUAD and paired adjacent normal samples. Similar analyses were performed between 177 metastatic and 286 non-metastatic LUAD samples to identify DE ion channel genes in the progression of LUAD. Independent prognostic factors selected from DE ion channel genes were used to construct a prognostic model. Correlation analysis and drugs-drug targets interaction network were used to screen the potential drugs for LUAD patients stratified by GJB2 or SCNN1B. RESULTS: Six ion channel genes (GJB2, CACNA1D, KCNQ1, SCNN1B, SCNN1G and TRPV6) were continuous differentially expressed in the tumorigenesis and progression of LUAD. The survival analysis in four datasets with 522 LUAD samples showed that GJB2 and SCNN1B were independent prognostic biomarkers. Patients with overexpression of GJB2 or underexpression of SCNN1B had shorter overall survival. Moreover, multi-omics analysis showed that hypomethylation of GJB2 and hypermethylation of SCNN1B in the promoter region may contribute to their aberrant expressions. KEGG enrichment analysis showed that the overexpressed genes in the group with high GJB2 or low SCNN1B were enriched in cancer-related pathways, while the underexpressed genes were enriched in metabolism-related pathways. The prognostic model with GJB2 and SCNN1B can stratify all LUAD patients into two groups with significantly different survival. Correlation analysis and drugs-drug targets interaction network suggested that GJB2 and SCNN1B expression might have indicative therapeutic values for LUAD patients. Finally, pan-cancer analysis in other eight cancer types showed that GJB2 and SCNN1B might be also potential prognostic factors for KIRC. CONCLUSIONS: GJB2 and SCNN1B were identified as prognostic biomarkers and therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Conexina 26/genética , Canais Epiteliais de Sódio/genética , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Canais Iônicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico
13.
Sci Rep ; 11(1): 5654, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707655

RESUMO

We hypothesized that an appropriate ratio of cardiomyocytes, fibroblasts, endothelial cells, and extracellular matrix (ECM) factors would be required for the development of three-dimensional cardiac tissues (3D-CTs) as drug screening systems. To verify this hypothesis, ECM-coated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), ECM-coated cardiac fibroblasts (CFs), and uncoated cardiac endothelial cells (CEs) were mixed in the following ratios: 10:0:0 (10CT), 7:2:1 (7CT), 5:4:1 (5CT), and 2:7:1 (2CT). The expression of cardiac-, fibroblasts-, and endothelial-specific markers was assessed by FACS, qPCR, and immunostaining while that of ECM-, cell adhesion-, and ion channel-related genes was examined by qPCR. Finally, the contractile properties of the tissues were evaluated in the absence or presence of E-4031 and isoproterenol. The expression of ECM- and adhesion-related genes significantly increased, while that of ion channel-related genes significantly decreased with the CF proportion. Notably, 7CT showed the greatest contractility of all 3D-CTs. When exposed to E-4031 (hERG K channel blocker), 7CT and 5CT showed significantly decreased contractility and increased QT prolongation. Moreover, 10CT and 7CT exhibited a stronger response to isoproterenol than did the other 3D-CTs. Finally, 7CT showed the highest drug sensitivity among all 3D-CTs. In conclusion, 3D-CTs with an appropriate amount of fibroblasts/endothelial cells (7CT in this study) are suitable drug screening systems, e.g. for the detection of drug-induced arrhythmia.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Coração/diagnóstico por imagem , Imageamento Tridimensional , Animais , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Isoproterenol/farmacologia , Camundongos , Contração Miocárdica/fisiologia , Piperidinas/farmacologia , Piridinas/farmacologia
14.
Cereb Cortex ; 31(7): 3194-3212, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33675359

RESUMO

Thalamocortical neurons (TCNs) play a critical role in the maintenance of thalamocortical oscillations, dysregulation of which can result in certain types of seizures. Precise control over firing rates of TCNs is foundational to these oscillations, yet the transcriptional mechanisms that constrain these firing rates remain elusive. We hypothesized that Shox2 is a transcriptional regulator of ion channels important for TCN function and that loss of Shox2 alters firing frequency and activity, ultimately perturbing thalamocortical oscillations into an epilepsy-prone state. In this study, we used RNA sequencing and quantitative PCR of control and Shox2 knockout mice to determine Shox2-affected genes and revealed a network of ion channel genes important for neuronal firing properties. Protein regulation was confirmed by Western blotting, and electrophysiological recordings showed that Shox2 KO impacted the firing properties of a subpopulation of TCNs. Computational modeling showed that disruption of these conductances in a manner similar to Shox2's effects modulated frequency of oscillations and could convert sleep spindles to near spike and wave activity, which are a hallmark for absence epilepsy. Finally, Shox2 KO mice were more susceptible to pilocarpine-induced seizures. Overall, these results reveal Shox2 as a transcription factor important for TCN function in adult mouse thalamus.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/metabolismo , Proteínas de Homeodomínio/biossíntese , Neurônios/metabolismo , Convulsões/metabolismo , Tálamo/metabolismo , Animais , Proteínas de Homeodomínio/genética , Canais Iônicos/biossíntese , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/metabolismo , Convulsões/genética , Convulsões/prevenção & controle , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
16.
Int J Mol Sci ; 20(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540178

RESUMO

Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.


Assuntos
Canais Iônicos/metabolismo , Dor/etiologia , Dor/metabolismo , Animais , Suscetibilidade a Doenças , Descoberta de Drogas , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Dor/tratamento farmacológico
17.
Cell Physiol Biochem ; 52(6): 1361-1380, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075188

RESUMO

BACKGROUND/AIMS: Human Dental Pulp Stem Cells (hDPSCs) are one of the most promising types of cells to regenerate nerve tissues. Standard DMEM+10% fetal bovine serum (FBS) culture medium allows a fast expansion of hDPSC as a surface-adherent cell monolayer. However, the use of FBS also compromises the clinical use of these protocols, and its longterm presence favors hDPSCs differentiation toward mesenchymal cell-derived lineages, at the expense of a reduced capability to generate neural cells. The objective of this work was to characterize the role of neurotrophin signaling on hDPSCs using a serum-free culture protocol, and to assess the neurogenic and gliogenic capacity of hDPSCs for future nerve tissue bioengineering and regeneration. METHODS: We compared the different expression of neurotrophin receptors by RT-PCR, Q-PCR, and IF of hDPSCs cultured with different growth media in the presence or absence of serum. Moreover, we assessed the response of hDPSCs to stimulation of neurotransmitter receptors by live cell calcium imaging under these different media. Finally, we compared the osteogenic potential of hDPSCs by Alizarin red staining, and the differentiation to gliogenic/neurogenic fates by immunostaining for Schwann lineage and neuronal lineage markers. We tested a commercial serum-free medium designed for the growth of mesenchymal stem cells: StemPro MSCTM (STP). RESULTS: hDPSCs cultured in STP generated small non-adherent floating dentospheres that showed very low proliferation rates, in contrast to standard FBS-containing medium. We found that hDPSCs grown in STP conditions overexpressed neurotrophin receptor genes NTRK2 (TrkB) and NTRK3 (TrkC). Interestingly, the stimulation of these receptors by adding their respective ligands BDNF and NT-3 to STP medium enhanced the neural crest (NC) progenitor features of cultured hDPSCs. We observed a 10 to 100-fold increase of migratory NC cell markers HNK1 and P75NTR, and a significant overexpression of pluripotency core factors SOX2, OCT4 and NANOG. Moreover, hDPSCs cultured in BDNF/NT-3 supplemented STP showed a largely increased potential to differentiate towards neuronal and Schwann glial lineage cells, assessed by positive immunostaining for DCX, NeuN and S100ß, p75NTR markers, respectively. CONCLUSION: Our results demonstrate that the use of BDNF and NT-3 combined with STP induced the partial reprogramming of ectomesenchymal hDPSCs to generate early NC progenitor cells, which are far more competent for neuronal and glial differentiation than hDPSCs grown in the presence of FBS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Reprogramação Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Fatores de Crescimento Neural/farmacologia , Adolescente , Adulto , Antígenos CD57/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/citologia , Neurogênese/efeitos dos fármacos , Neurotrofina 3 , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adulto Jovem
18.
Nat Commun ; 10(1): 1200, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867417

RESUMO

Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell's response to mechanical cues.


Assuntos
Anemia Hemolítica Congênita/dietoterapia , Gorduras na Dieta/metabolismo , Hidropisia Fetal/dietoterapia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Anemia Hemolítica Congênita/genética , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Mutação com Ganho de Função , Células HEK293 , Humanos , Hidropisia Fetal/genética , Canais Iônicos/genética , Metabolismo dos Lipídeos/fisiologia , Camundongos , Microscopia de Força Atômica , Técnicas de Patch-Clamp
19.
Cephalalgia ; 39(13): 1683-1699, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30922081

RESUMO

OBJECTIVE: To review and discuss the literature on the role of cortical structure and function in migraine. DISCUSSION: Structural and functional findings suggest that changes in cortical morphology and function contribute to migraine susceptibility by modulating dynamic interactions across cortical and subcortical networks. The involvement of the cortex in migraine is well established for the aura phase with the underlying phenomenon of cortical spreading depolarization, while increasing evidence suggests an important role for the cortex in perception of head pain and associated sensations. As part of trigeminovascular pain and sensory processing networks, cortical dysfunction is likely to also affect initiation of attacks. CONCLUSION: Morphological and functional changes identified across cortical regions are likely to contribute to initiation, cyclic recurrence and chronification of migraine. Future studies are needed to address underlying mechanisms, including interactions between cortical and subcortical regions and effects of internal (e.g. genetics, gender) and external (e.g. sensory inputs, stress) modifying factors, as well as possible clinical and therapeutic implications.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Circulação Cerebrovascular , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Modelos Animais de Doenças , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Canais Iônicos/genética , Canais Iônicos/fisiologia , Meninges/fisiopatologia , Camundongos , Camundongos Mutantes , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/patologia , Enxaqueca com Aura/diagnóstico por imagem , Enxaqueca com Aura/fisiopatologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Neuroimagem , Plasticidade Neuronal , Nociceptividade/fisiologia , Percepção da Dor/fisiologia , Sintomas Prodrômicos , Tálamo/fisiopatologia , Gânglio Trigeminal/fisiopatologia , Vasodilatação
20.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669290

RESUMO

Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.


Assuntos
Calmodulina/genética , Calmodulina/metabolismo , Suscetibilidade a Doenças , Canais Iônicos/genética , Canais Iônicos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/química , Regulação da Expressão Gênica , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Sensibilidade e Especificidade , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA