Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952941

RESUMO

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Assuntos
Cálcio , Dinoprostona , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Adjuvante de Freund/toxicidade , Adjuvante de Freund/metabolismo , Gânglios Espinais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dor
2.
Clin Exp Immunol ; 211(3): 233-238, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36571199

RESUMO

We aimed to compare a transient receptor potential vanilloid 2 (TRPV2) agonist with a TNF inhibitor, and to test the potential of their combination in collagen-induced arthritis (CIA) as a potential future strategy for rheumatoid arthritis (RA). Following the onset of CIA DBA1/j mice were started on treatment with either vehicle, etanercept (8 mg/kg three times a week), the TRPV2 agonist O1821 (20-30 mg/kg/day), or a combination of both. Mice were scored over a 61-day period. Synovial tissues were obtained for RNA sequencing. Mice on monotherapy with either O1821 or etanercept developed milder clinical disease. The O1821 protection was observed at an earlier time-point than in the etanercept group. The combination therapy group achieved a more robust and sustained reduction in disease severity than either monotherapy group. All treatment groups had reduced scores for synovial inflammation, synovial hyperplasia, and erosive changes, compared with controls, with the combination group achieving the most significant protection. RNA sequencing and pathway analyses of synovial tissues identified pathways and processes regulated by the TRPV2 agonist, such as chemotaxis and cytokine receptor signaling, including IL6R. The combination therapy affected additional pathways not seen in the monotherapy groups. In conclusion, the TRPV2 agonist achieved an overall similar reduction in arthritis severity and histology scores as etanercept, but the combination therapy achieved a more sustained disease control and more pronounced reduction in joint damage, suggesting a potential future option for improving disease control in RA. RNA sequencing analyses identified new pathways regulated by TRPV2, and also by the combination treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Etanercepte/metabolismo , Inibidores do Fator de Necrose Tumoral , Artrite Reumatoide/patologia , Membrana Sinovial/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Gravidade do Paciente , Canais de Cálcio/metabolismo , Canais de Cálcio/uso terapêutico , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/uso terapêutico
3.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234730

RESUMO

Cardiac and hepatotoxicities are major concerns in the development of new drugs. Better alternatives to other treatments are being sought to protect these vital organs from the toxicities of these pharmaceuticals. In this regard, a preclinical study is designed to investigate the histopathological effects of a new succinimide derivative (Comp-1) on myocardial and liver tissues, and the biochemical effects on selected cardiac biomarkers, hepatic enzymes, and lipid profiles. For this, an initially lethal/toxic dose was determined, followed by a grouping of selected albino rats into five groups (each group had n = 6). The control group received daily oral saline for 8 days. The 5-FU (5-Fluorouracil) group received oral saline daily for 8 days, added with the administration of a single dose of 5-FU (150 mg/kg I.P.) on day 5 of the study. The atenolol group received oral atenolol (20 mg/kg) for 8 days and 5-FU (150 mg/kg I.P.) on day 5 of the protocol. Similarly, two groups of rats treated with test compound (Comp-1) were administered with 5 mg/kg I.P. and 10 mg/kg I.P. for 8 days, followed by 5-FU (150 mg/kg I.P.) on day 5. Toxicity induced by 5-FU was manifested by increases in the serum creatinine kinase myocardial band (CK-MB), troponin I (cTnI) and lactate dehydrogenase (LDH), lipid profile, and selected liver enzymes, including ALP (alkaline phosphatase), ALT (alanine transaminase), AST (aspartate aminotransferase), BT (bilirubin total), and BD (direct bilirubin). These biomarkers were highly significantly decreased after the administration of the mentioned doses of the test compound (5 mg/kg and 10 mg/kg). Similarly, histological examination revealed cardiac and hepatic tissue toxicity by 5-FU. However, those toxic effects were also significantly recovered/improved after the administration of Comp-1 at the said doses. This derivative showed dose-dependent effects and was most effective at a dose of 10 mg/kg body weight. Binding energy data computed via docking simulations revealed that our compound interacts toward the human beta2-adrenergic G protein-coupled receptor (S = -7.89 kcal/mol) with a slight stronger affinity than the calcium channel T-type (S = -7.07 kcal/mol). In conclusion, the histological and biochemical results showed that the test compound (Comp-1) had prominent cardioprotective, hepatoprotective, and lipolytic effects against 5-FU-induced toxicity in the subjected animal model.


Assuntos
Fosfatase Alcalina , Troponina I , Animais , Humanos , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Alanina Transaminase , Fosfatase Alcalina/metabolismo , Aspartato Aminotransferases , Atenolol , Bilirrubina/metabolismo , Biomarcadores/metabolismo , Canais de Cálcio/metabolismo , Creatinina/metabolismo , Fluoruracila/farmacologia , Lactato Desidrogenases/metabolismo , Lipídeos/farmacologia , Fígado , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Succinimidas/metabolismo , Troponina I/metabolismo , Ratos
4.
Toxins (Basel) ; 14(9)2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36136568

RESUMO

Mesobuthus martensii, a famous and important Traditional Chinese Medicine has a long medical history and unique functions. It is the first scorpion species whose whole genome was sequenced worldwide. In addition, it is the most widespread and infamous poisonous animal in northern China with complex habitats. It possesses several kinds of toxins that can regulate different ion channels and serve as crucial natural drug resources. Extensive and in-depth studies have been performed on the structures and functions of toxins of M. martensii. In this research, we compared the morphology of M. martensii populations from different localities and calculated the COI genetic distance to determine intraspecific variations. Transcriptome sequencing by RNA-sequencing of the venom glands of M. martensii from ten localities and M. eupeus from one locality was analyzed. The results revealed intraspecific variation in the expression of sodium channel toxin genes, potassium channel toxin genes, calcium channel toxin genes, chloride channel toxin genes, and defensin genes that could be related to the habitats in which these populations are distributed, except the genetic relationships. However, it is not the same in different toxin families. M. martensii and M. eupeus exhibit sexual dimorphism under the expression of toxin genes, which also vary in different toxin families. The following order was recorded in the difference of expression of sodium channel toxin genes: interspecific difference; differences among different populations of the same species; differences between sexes in the same population, whereas the order in the difference of expression of potassium channel toxin genes was interspecific difference; differences between both sexes of same populations; differences among the same sex in different populations of the same species. In addition, there existed fewer expressed genes of calcium channel toxins, chloride channel toxins, and defensins (no more than four members in each family), and their expression differences were not distinct. Interestingly, the expression of two calcium channel toxin genes showed a preference for males and certain populations. We found a difference in the expression of sodium channel toxin genes, potassium channel toxin genes, and chloride channel toxin genes between M. martensii and M. eupeus. In most cases, the expression of one member of the toxin gene clusters distributed in series on the genome were close in different populations and genders, and the members of most clusters expressed in same population and gender tended to be the different. Twenty-one toxin genes were found with the MS/MS identification evidence of M. martensii venom. Since scorpions were not subjected to electrical stimulation or other special treatments before conducting the transcriptome extraction experiment, the results suggested the presence of intraspecific variation and sexual dimorphism of toxin components which revealed the expression characteristics of toxin and defensin genes in M. martensii. We believe this study will promote further in-depth research and use of scorpions and their toxin resources, which in turn will be helpful in standardizing the identification and medical applications of Quanxie in traditional Chinese medicine.


Assuntos
Venenos de Escorpião , Escorpiões , Sequência de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Defensinas/genética , Feminino , Masculino , Canais de Potássio/genética , RNA/metabolismo , Venenos de Escorpião/química , Escorpiões/genética , Escorpiões/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética , Espectrometria de Massas em Tandem , Transcriptoma
5.
Nature ; 607(7919): 534-539, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794475

RESUMO

Precise signalling between pollen tubes and synergid cells in the ovule initiates fertilization in flowering plants1. Contact of the pollen tube with the ovule triggers calcium spiking in the synergids2,3 that induces pollen tube rupture and sperm release. This process, termed pollen tube reception, entails the action of three synergid-expressed proteins in Arabidopsis: FERONIA (FER), a receptor-like kinase; LORELEI (LRE), a glycosylphosphatidylinositol-anchored protein; and NORTIA (NTA), a transmembrane protein of unknown function4-6. Genetic analyses have placed these three proteins in the same pathway; however, it remains unknown how they work together to enable synergid-pollen tube communication. Here we identify two pollen-tube-derived small peptides7 that belong to the rapid alkalinization factor (RALF) family8 as ligands for the FER-LRE co-receptor, which in turn recruits NTA to the plasma membrane. NTA functions as a calmodulin-gated calcium channel required for calcium spiking in the synergid. We also reconstitute the biochemical pathway in which FER-LRE perceives pollen-tube-derived peptides to activate the NTA calcium channel and initiate calcium spiking, a second messenger for pollen tube reception. The FER-LRE-NTA trio therefore forms a previously unanticipated receptor-channel complex in the female cell to recognize male signals and trigger the fertilization process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sinalização do Cálcio , Cálcio , Proteínas de Ligação a Calmodulina , Glicoproteínas de Membrana , Fosfotransferases , Tubo Polínico , Pólen , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Membrana Celular/metabolismo , Fertilização , Glicoproteínas de Membrana/metabolismo , Óvulo Vegetal/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo
6.
Plant Physiol Biochem ; 185: 101-111, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667317

RESUMO

Uranium, a heavy metal and primordial radionuclide, is present in surface waters and soils both naturally and due to industrial activities. Uranium is known to be toxic to plants and its uptake and toxicity can be influenced by multiple factors such as pH and the presence of different ions. However, the precise role of the different ions in uranium uptake is not yet known. Here we investigated whether calcium influences uranium uptake and toxicity in the terrestrial plant Arabidopsis thaliana. To this end, A. thaliana plants were exposed to different calcium and uranium concentrations and furthermore, calcium channels were blocked using the calcium channel blocker lanthanum chloride (LaCl3). Fresh weight, relative growth rate, concentration of nutrients and uranium and gene expression of oxidative stress-related genes and calcium transporters were determined in roots and shoots. Calcium affected plant growth and oxidative stress in both control (no uranium) and uranium-exposed plants. In shoots, this was influenced by the total calcium concentration, but not by the different tested uranium concentrations. Uranium in turn did influence calcium uptake and distribution. Uranium-exposed plants grown in a medium with a higher calcium concentration showed an increase in gene expression of NADPH oxidases RBOHC and RBOHE and calcium transporter CAX7 after uranium exposure. In roots, these calcium-dependent responses in gene expression were not observed. This indicates that calcium indeed affects uranium toxicity, but only in shoots. In addition, a clear influence of uranium and LaCl3 (separately and combined) on the expression of calcium transporters was observed.


Assuntos
Arabidopsis , Cálcio , Urânio , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lantânio/farmacologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Urânio/toxicidade
7.
Biomed Pharmacother ; 150: 112905, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421787

RESUMO

4-hydroxybenzaldehyde (4HB), known as ρ-hydroxybenzaldehyde, is commonly present in traditional Chinese medicine herb, most frequently used for hypertension treatment. This research aims to determine the potency of 4HB's vasorelaxant action. In the study, the vasodilation effect of 4HB was evaluated using in vitro isolated rat aortic rings assay. The aortic rings were pre-incubated with respective antagonists before being pre-contracted with phenylephrine (PE) and challenged with various concentrations of 4HB for mechanistic action studies. Rmax (maximal vasodilation) and pEC50 (negative logarithm of half-maximal effective concentration) values of each experiment were determined for comparison purposes. 4HB caused vasodilation on endothelium-intact aortic rings which pre-contracted with PE (pEC50 = 3.53 ± 0.05, Rmax = 100.95 ± 4.25%) or potassium chloride (pEC50 = 2.96 ± 0.13, Rmax = 72.13 ± 4.93%). The vasodilation effect of 4HB was significantly decreased in the absence of an endothelium (pEC50 = 2.21 ± 0.25, Rmax = 47.96 ± 4.16%). The atropine, 4-aminopyridine, Nω-nitro-L-arginine methyl ester, glibenclamide, and propranolol significantly reduced the vasorelaxation effect of 4HB. Besides that, 4HB blocked the voltage-operated calcium channel (VOCC) and regulated the intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the aortic ring. Thus, the results indicated that 4HB exerted its vasodilatory effect via cGMP and ß2 pathways, M3-dependent PLC/IP3 pathways, and potassium and calcium channels.


Assuntos
Fatores Relaxantes Dependentes do Endotélio , Vasodilatação , Animais , Aorta Torácica , Benzaldeídos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Endotélio , Endotélio Vascular , Fatores Relaxantes Dependentes do Endotélio/metabolismo , Fatores Relaxantes Dependentes do Endotélio/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Vasodilatadores/farmacologia
8.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209100

RESUMO

Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Animais , Agonistas dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/química , Canais de Cálcio/classificação , Canais de Cálcio/genética , Estudos Clínicos como Assunto , Gerenciamento Clínico , Suscetibilidade a Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Resultado do Tratamento
9.
Neurosci Lett ; 771: 136467, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35063502

RESUMO

The inflammatory response related to surgery is considered surgical inflammation. Most anesthetic agents directly or indirectly suppress the immune response. However, the intravenous anesthetics pentobarbital and ketamine were reported to inhibit the lipopolysaccharide-induced inflammatory response such as cytokines formation. Neurogenic inflammation is inflammation originating from the local release of inflammatory mediators, such as substance P (SP), by primary afferent neurons after noxious stimuli like surgery. Thus, in this study, we examined whether pentobarbital and ketamine suppress SP release from cultured dorsal root ganglion (DRG) neurons. DRG cells were dissected from male Wistar rats. Released SP was measured by radioimmunoassay. We demonstrated that higher concentrations of pentobarbital (100-1,000 µM) significantly inhibited capsaicin (100 nM)-induced, but not high K+ (50 mM)-induced, SP release from DRG cells, although a high concentration of ketamine (1 mM) did not. This study revealed that pentobarbital functions between the activation of vanilloid receptor subtype 1 (TRPV1) receptors, to which capsaicin selectively binds, and the opening of voltage-operated Ca2+ channels (VOCC) in the nerve endings. Therefore, the anti-inflammatory action of pentobarbital is mediated through different mechanisms than those of ketamine. Thus, the inhibitory effect of pentobarbital on SP release from peripheral terminals may protect against neurogenic inflammation after surgery.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação Neurogênica/tratamento farmacológico , Pentobarbital/uso terapêutico , Nervos Periféricos/metabolismo , Substância P/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Canais de Cálcio/metabolismo , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ketamina/farmacologia , Masculino , Inflamação Neurogênica/metabolismo , Pentobarbital/farmacologia , Nervos Periféricos/efeitos dos fármacos , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/metabolismo
10.
Pflugers Arch ; 474(3): 293-302, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997297

RESUMO

Dietary fibers have been shown to increase the intestinal absorption of calcium (Ca2+) and magnesium (Mg2+). However, the mechanisms that explain the enhanced electrolyte absorption remain unknown. Therefore, this study aims to investigate the short-term and long-term effects of 5% (w/w) sodium butyrate (Na-butyrate), an important end-metabolite of bacterial fermentation of dietary fibers, on Ca2+ and Mg2+ homeostasis in mice. Serum Ca2+ levels were only significantly increased in mice treated with Na-butyrate for 1 day. This was associated with a twofold increase in the mRNA expression levels of Trpv6 in the proximal and distal colon. Contrary, Na-butyrate did not affect serum Mg2+ concentrations at either of the intervention periods. However, we observed a reduction in urinary Mg2+ excretion, although not significantly, after 1 day of treatment. A significant reduction of 2.5-fold in urinary Mg2+ excretion was observed after 14 days of treatment. Indeed, 14-day Na-butyrate supplementation increased colonic Trpm7 expression by 1.2-fold compared to control mice. In conclusion, short-term Na-butyrate supplementation increases serum Ca2+ levels in mice. This was associated with increased mRNA expression levels of Trpv6 in the colon, suggesting that Na-butyrate regulates the expression of genes involved in active intestinal Ca2+ absorption.


Assuntos
Sódio na Dieta , Canais de Cátion TRPM , Animais , Ácido Butírico/farmacologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Colo , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Sódio na Dieta/metabolismo , Sódio na Dieta/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
FASEB J ; 36(2): e22169, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35084775

RESUMO

The role of mitochondria in enamel, the most mineralized tissue in the body, is poorly defined. Enamel is formed by ameloblast cells in two main sequential stages known as secretory and maturation. Defining the physiological features of each stage is essential to understand mineralization. Here, we analyzed functional features of mitochondria in rat primary secretory and maturation-stage ameloblasts focusing on their role in Ca2+ signaling. Quantification of the Ca2+ stored in the mitochondria by trifluoromethoxy carbonylcyanide phenylhydrazone stimulation was comparable in both stages. The release of endoplasmic reticulum Ca2+ pools by adenosine triphosphate in rhod2AM-loaded cells showed similar mitochondrial Ca2+ (m Ca2+ ) uptake. However, m Ca2+ extrusion via Na+ -Li+ -Ca2+ exchanger was more prominent in maturation. To address if m Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) played a role in cytosolic Ca2+ (c Ca2+ ) buffering, we stimulated Ca2+ influx via the store-operated Ca2+ entry (SOCE) and blocked MCU with the inhibitor Ru265. This inhibitor was first tested using the enamel cell line LS8 cells. Ru265 prevented c Ca2+ clearance in permeabilized LS8 cells like ruthenium red, and it did not affect ΔΨm in intact cells. In primary ameloblasts, SOCE stimulation elicited a significantly higher m Ca2+ uptake in maturation ameloblasts. The uptake of Ca2+ into the mitochondria was dramatically decreased in the presence of Ru265. Combined, these results suggest an increased mitochondrial Ca2+ handling in maturation but only upon stimulation of Ca2+ influx via SOCE. These functional studies provide insights not only on the role of mitochondria in ameloblast Ca2+ physiology, but also advance the concept that SOCE and m Ca2+ uptake are complementary processes in biological mineralization.


Assuntos
Ameloblastos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Gene ; 808: 145994, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626722

RESUMO

The involvement of store-operated calcium channels (SOCCs) in tumor initiation and metastatic dissemination has been extensively studied, but how its member ORAI3 influences tumor progression is still elusive. The present study aimed to evaluate the prognostic value of ORAI3 expression and examine the correlation between ORAI3 expression and immune cell infiltration within the tumor microenvironment (TME) in human muscle-invasive bladder cancer (MIBC). We examined the expression profile of ORAI3 in MIBC using data from two databases; analyzed the correlation between ORAI3 expression and patient survival; explored cellular pathways related to ORAI3 expression by Gene Set Enrichment Analysis (GSEA); and predicted potential drugs using Connectivity Map (CMap). ORAI3 was significantly lower expressed in tumor mass compared to normal samples in MIBC, with a higher level of methylation at the promoter region in tumor than in normal tissue, indicating that ORAI3 is suppressed during cancer progression. Survival analysis showed that higher expression of ORAI3 correlated with good prognosis in MIBC. GSEA demonstrated that ORAI3 expression inversely correlated with cell differentiation, development and gene silencing, with differential expression of genes involved in epidermal and keratinocyte differentiation pathways and inflammatory responses. RNA sequencing of an ORAI3-silenced human bladder cancer cell line (T24 cells) corroborated enhancement of pro-neoplastic pathways in absence of ORAI3. Western blottingMoreover, ORAI3 facilitated the recruitment of Th17 cells and natural killer cells, whereas hampered Th2 and macrophage infiltration. Our results revealed 4 molecules with potential to be beneficial as adjuvant drugs in MIBC treatment. We concluded that high ORAI3 expression correlates with increased survival in human MIBC.


Assuntos
Canais de Cálcio/genética , Perfilação da Expressão Gênica/métodos , Neoplasias da Bexiga Urinária/genética , Biomarcadores Tumorais/genética , Canais de Cálcio/metabolismo , China , Bases de Dados Genéticas , Progressão da Doença , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Humanos , Invasividade Neoplásica/genética , Prognóstico , Análise de Sobrevida , Transcriptoma/genética , Microambiente Tumoral/imunologia , Bexiga Urinária/patologia
13.
J Ethnopharmacol ; 282: 114660, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547419

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Marjoram (Origanum majorana L.) is an herb traditionally used as a medicine in different countries, as Morocco and Iran, because of its beneficial cardiovascular effects. Some studies suggest that these effects are due, at least in part, to the presence of phenolic compounds such as rosmarinic acid (RA) and luteolin. AIM OF THE STUDY: To analyze the possible cardiprotective effects of a marjoram extract (ME) reducing myocardial damage after coronary ischemia-reperfusion (IR) and its possible antihypertensive effects reducing the response of aorta segments to the vasoconstrictors noradrenaline (NA) and endothelin-1 (ET-1). MATERIALS AND METHODS: Male Wistar rats (300g) were used. After sacrifice, the heart was immediately removed and mounted in a perfusion system (Langendorff). The aorta was carefully dissected and cut in 2 mm segments to perform vascular reactivity experiments. RESULTS: In the heart, ME perfusion after IR reduced heart rate and prevented IR-induced decrease of cardiac contractility, possibly through vasodilation of coronary arteries and through the upregulation of antioxidant markers in the myocardium that led to reduced apoptosis of cardiomyocytes. In the aorta, ME decreased the vasoconstrictor response to NA and ET-1 and exerted a potent anti-inflammatory and antioxidant effect. Neither RA nor 6-hydroxi-luteolin-O-glucoside, major compounds of this ME, were effective in improving cardiac contractility after IR or attenuating vasoconstriction to NA and ET-1 in aorta segments. CONCLUSION: In conclusion, ME reduces the myocardial damage induced by IR and the contractile response to vasoconstrictors in the aorta. Thus, it may be useful for the treatment of cardiovascular diseases such as myocardial infarction and hypertension.


Assuntos
Isquemia Miocárdica/tratamento farmacológico , Origanum/química , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Vasoconstrição/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Endotelina-1 , Glibureto/farmacologia , Masculino , Isquemia Miocárdica/complicações , Norepinefrina , Extratos Vegetais/química , Ratos , Ratos Wistar
14.
Planta Med ; 88(11): 881-890, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34359084

RESUMO

The root Rhynchosia volubilis was widely used for contraception in folk medicine, although its molecular mechanism on antifertility has not yet been revealed. In human sperm, it was reported that the cation channel of sperm, an indispensable cation channel for the fertilization process, could be regulated by various steroid-like compounds in plants. Interestingly, these nonphysiological ligands would also disturb the activation of the cation channel of sperm induced by progesterone. Therefore, this study aimed to explore whether the compounds in R. volubilis affect the physiological regulation of the cation channel of sperm. The bioguided isolation of the whole herb of R. volubilis has resulted in the novel discovery of five new prenylated isoflavonoids, rhynchones A - E (1:  - 5: ), a new natural product, 5'-O-methylphaseolinisoflavan (6: ) (1H and 13C NMR data, Supporting Information), together with twelve known compounds (7:  - 18: ). Their structures were established by extensive spectroscopic analyses and drawing a comparison with literature data, while their absolute configurations were determined by electronic circular dichroism calculations. The experiments of intracellular Ca2+ signals and patch clamping recordings showed that rhynchone A (1: ) significantly reduced cation channel of sperm activation by competing with progesterone. In conclusion, our findings indicat that rhynchone A might act as a contraceptive compound by impairing the activation of the cation channel of sperm and thus prevent fertilization.


Assuntos
Progesterona , Motilidade dos Espermatozoides , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Masculino , Progesterona/análise , Progesterona/metabolismo , Progesterona/farmacologia , Sementes , Espermatozoides/química , Espermatozoides/metabolismo
15.
STAR Protoc ; 2(4): 100979, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877549

RESUMO

The mitochondrial calcium uniporter, which mediates mitochondrial Ca2+ uptake, regulates key cellular functions, including intracellular Ca2+ signaling, cell-fate determination, and mitochondrial bioenergetics. Here, we describe two complementary strategies to quantify the uniporter's transport activity. First, we detail a mitochondrial Ca2+ radionuclide uptake assay in cultured cell lines. Second, we describe electrophysiological recordings of the uniporter expressed in Xenopus oocytes. These approaches enable a detailed kinetic analysis of the uniporter to link its molecular properties to physiological functions. For complete details on the use and execution of this protocol, please refer to Tsai and Tsai (2018) and Phillips et al. (2019).


Assuntos
Canais de Cálcio , Cálcio/metabolismo , Eletrofisiologia/métodos , Oócitos , Animais , Canais de Cálcio/análise , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus
16.
Oxid Med Cell Longev ; 2021: 3260789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367461

RESUMO

The consumption of hypercaloric diets is related to the development of obesity, favoring the etiology of gastrointestinal disorders. In this context, Spirulina platensis (SP), some blue-green algae with antioxidant action, appears as a potential therapeutic alternative to prevent obesity and associated intestinal disorders. Thus, the present study is aimed at evaluating the deleterious effects of the hypercaloric diet on the contractile and relaxing reactivity of the ileum of rats, as well as the possible preventive mechanisms of dietary supplementation with SP. Wistar rats were divided into three groups: fed a standard diet (SD), a hypercaloric diet (HCD), and/or supplemented with 25 mg/kg SP (HCD + SP25) for 8 weeks. The hypercaloric diet was effective in promoting obesity in rats, as well as decreasing potency and ileal relaxing and contractile efficacy. In contrast, dietary supplementation with SP was able to prevent some of the parameters of experimental obesity. In addition, SP prevented the reduction of intestinal reactivity, possibly due to a positive modulation of voltage-gated calcium channels (CaV) and negative regulation of muscarinic receptors (M3). Thus, food supplementation with Spirulina platensis becomes a promising alternative in the prevention of gastrointestinal diseases induced and/or aggravated by obesity.


Assuntos
Antioxidantes/farmacologia , Canais de Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Obesidade/prevenção & controle , Receptor Muscarínico M3/metabolismo , Spirulina/fisiologia , Animais , Canais de Cálcio/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Ratos , Ratos Wistar , Receptor Muscarínico M3/genética , Spirulina/química
17.
Nat Commun ; 12(1): 4871, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381056

RESUMO

The heteromeric complex between PKD1L3, a member of the polycystic kidney disease (PKD) protein family, and PKD2L1, also known as TRPP2 or TRPP3, has been a prototype for mechanistic characterization of heterotetrametric TRP-like channels. Here we show that a truncated PKD1L3/PKD2L1 complex with the C-terminal TRP-fold fragment of PKD1L3 retains both Ca2+ and acid-induced channel activities. Cryo-EM structures of this core heterocomplex with or without supplemented Ca2+ were determined at resolutions of 3.1 Å and 3.4 Å, respectively. The heterotetramer, with a pseudo-symmetric TRP architecture of 1:3 stoichiometry, has an asymmetric selectivity filter (SF) guarded by Lys2069 from PKD1L3 and Asp523 from the three PKD2L1 subunits. Ca2+-entrance to the SF vestibule is accompanied by a swing motion of Lys2069 on PKD1L3. The S6 of PKD1L3 is pushed inward by the S4-S5 linker of the nearby PKD2L1 (PKD2L1-III), resulting in an elongated intracellular gate which seals the pore domain. Comparison of the apo and Ca2+-loaded complexes unveils an unprecedented Ca2+ binding site in the extracellular cleft of the voltage-sensing domain (VSD) of PKD2L1-III, but not the other three VSDs. Structure-guided mutagenic studies support this unconventional site to be responsible for Ca2+-induced channel activation through an allosteric mechanism.


Assuntos
Canais de Cálcio/química , Cálcio/metabolismo , Receptores de Superfície Celular/química , Canais de Cátion TRPP/química , Aminoácidos , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Ativação do Canal Iônico , Camundongos , Mutagênese , Conformação Proteica , Domínios Proteicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
18.
Cells ; 10(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34440724

RESUMO

The etiology of human asthenozoospermia is multifactorial. The need to unveil molecular mechanisms underlying this state of infertility is, thus, impelling. Circular RNAs (circRNAs) are involved in microRNA (miRNA) inhibition by a sponge activity to protect mRNA targets. All together they form the competitive endogenous RNA network (ceRNET). Recently, we have identified differentially expressed circRNAs (DE-circRNAs) in normozoospermic and asthenozoospermic patients, associated with high-quality (A-spermatozoa) and low-quality (B-spermatozoa) sperm. Here, we carried out a differential analysis of CRISP2, CATSPER1 and PATE1 mRNA expression in good quality (A-spermatozoa) and low quality (B-spermatozoa) sperm fractions collected from both normozoospermic volunteers and asthenozoospermic patients. These sperm fractions are usually separated on the basis of morphology and motility parameters by a density gradient centrifugation. B-spermatozoa showed low levels of mRNAs. Thus, we identified the possible ceRNET responsible for regulating their expression by focusing on circTRIM2, circEPS15 and circRERE. With the idea that motility perturbations could be rooted in quantitative changes of transcripts in sperm, we evaluated circRNA and mRNA modulation in A-spermatozoa and B-spermatozoa after an oral amino acid supplementation known to improve sperm motility. The profiles of CRISP2, CATSPER1 and PATE1 proteins in the same fractions of sperm well matched with the transcript levels. Our data may strengthen the role of circRNAs in asthenozoospermia and shed light on the molecular pathways linked to sperm motility regulation.


Assuntos
Astenozoospermia/metabolismo , Canais de Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Membrana/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Adulto , Aminoácidos/administração & dosagem , Astenozoospermia/diagnóstico , Astenozoospermia/tratamento farmacológico , Astenozoospermia/genética , Canais de Cálcio/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Suplementos Nutricionais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
19.
J Neurophysiol ; 126(2): 561-574, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232785

RESUMO

Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here, we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp, and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance that results from the interaction of the slow inactivation of the low-threshold calcium current IT with the passive properties of the membrane. We also show that the hyperpolarization-activated cationic current Ih is not involved in the generation of resonance; instead it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current IKir by a mechanism that hinges on its strong voltage-dependent inward rectification (i.e., a negative slope conductance region). Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to IKir as a new potential target for therapeutic intervention.NEW & NOTEWORTHY Our study expands the repertoire of ionic mechanisms known to be involved in the generation and control of resonance and provides the first experimental proof of previous theoretical predictions on resonance amplification mediated by regenerative hyperpolarizing currents. In thalamocortical neurons, we confirmed that the calcium current IT generates resonance, determined that the large steady conductance of the cationic current Ih curtails resonance, and demonstrated that the inward rectifier potassium current IKir amplifies resonance.


Assuntos
Potenciais de Ação , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Tálamo/fisiologia , Animais , Canais de Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Camundongos , Modelos Neurológicos , Neurônios/metabolismo , Canais de Sódio/metabolismo , Tálamo/citologia , Tálamo/metabolismo
20.
Cells ; 10(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064835

RESUMO

TRPA1 (transient receptor potential ankyrin 1), the lone member of the mammalian ankyrin TRP subfamily, is a Ca2+-permeable, non-selective cation channel. TRPA1 channels are localized to the plasma membranes of various cells types, including sensory neurons and vascular endothelial cells. The channel is endogenously activated by byproducts of reactive oxygen species, such as 4-hydroxy-2-noneal, as well as aromatic, dietary molecules including allyl isothiocyanate, a derivative of mustard oil. Several studies have implicated TRPA1 as a regulator of vascular tone that acts through distinct mechanisms. First, TRPA1 on adventitial sensory nerve fibers mediates neurogenic vasodilation by stimulating the release of the vasodilator, calcitonin gene-related peptide. Second, TRPA1 is expressed in the endothelium of the cerebral vasculature, but not in other vascular beds, and its activation results in localized Ca2+ signals that drive endothelium-dependent vasodilation. Finally, TRPA1 is functionally present on brain capillary endothelial cells, where its activation orchestrates a unique biphasic propagation mechanism that dilates upstream arterioles. This response is vital for neurovascular coupling and functional hyperemia in the brain. This review provides a brief overview of the biophysical and pharmacological properties of TRPA1 and discusses the importance of the channel in vascular control and pathophysiology.


Assuntos
Regulação da Expressão Gênica , Canal de Cátion TRPA1/genética , Aldeídos/farmacologia , Animais , Calcitonina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sistema Cardiovascular/metabolismo , Crotalus , Células Endoteliais/metabolismo , Humanos , Hipertensão , Inflamação , Isotiocianatos/farmacologia , Conformação Molecular , Mostardeira/química , Proteínas do Tecido Nervoso/metabolismo , Óleos de Plantas/química , Conformação Proteica , Domínios Proteicos , Acidente Vascular Cerebral , Canal de Cátion TRPA1/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA