Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 12(1): 4871, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381056

RESUMO

The heteromeric complex between PKD1L3, a member of the polycystic kidney disease (PKD) protein family, and PKD2L1, also known as TRPP2 or TRPP3, has been a prototype for mechanistic characterization of heterotetrametric TRP-like channels. Here we show that a truncated PKD1L3/PKD2L1 complex with the C-terminal TRP-fold fragment of PKD1L3 retains both Ca2+ and acid-induced channel activities. Cryo-EM structures of this core heterocomplex with or without supplemented Ca2+ were determined at resolutions of 3.1 Å and 3.4 Å, respectively. The heterotetramer, with a pseudo-symmetric TRP architecture of 1:3 stoichiometry, has an asymmetric selectivity filter (SF) guarded by Lys2069 from PKD1L3 and Asp523 from the three PKD2L1 subunits. Ca2+-entrance to the SF vestibule is accompanied by a swing motion of Lys2069 on PKD1L3. The S6 of PKD1L3 is pushed inward by the S4-S5 linker of the nearby PKD2L1 (PKD2L1-III), resulting in an elongated intracellular gate which seals the pore domain. Comparison of the apo and Ca2+-loaded complexes unveils an unprecedented Ca2+ binding site in the extracellular cleft of the voltage-sensing domain (VSD) of PKD2L1-III, but not the other three VSDs. Structure-guided mutagenic studies support this unconventional site to be responsible for Ca2+-induced channel activation through an allosteric mechanism.


Assuntos
Canais de Cálcio/química , Cálcio/metabolismo , Receptores de Superfície Celular/química , Canais de Cátion TRPP/química , Aminoácidos , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Ativação do Canal Iônico , Camundongos , Mutagênese , Conformação Proteica , Domínios Proteicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
2.
Semin Cell Dev Biol ; 110: 139-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32475690

RESUMO

Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cílios/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Canais de Cátion TRPP/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adulto , Corpos Basais/efeitos dos fármacos , Corpos Basais/metabolismo , Corpos Basais/patologia , Criança , Cílios/efeitos dos fármacos , Cílios/patologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Expressão Gênica , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mutação , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia , Receptores de Superfície Celular/deficiência , Transdução de Sinais , Canais de Cátion TRPP/deficiência
3.
Biochem Biophys Res Commun ; 529(4): 1186-1194, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819584

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder which manifests progressive renal cyst formation and leads to end-stage kidney disease. Around 85% of cases are caused by PKD1 heterozygous mutations, exhibiting relatively poorer renal outcomes than those with mutations in other causative gene PKD2. Although many disease models have been proposed for ADPKD, the pre-symptomatic pathology of the human disease remains unknown. To unveil the mechanisms of early cytogenesis, robust and genetically relevant human models are needed. Here, we report a novel ADPKD model using kidney organoids derived from disease-specific human induced pluripotent stem cells (hiPSCs). Importantly, we found that kidney organoids differentiated from gene-edited heterozygous PKD1-mutant as well as ADPKD patient-derived hiPSCs can reproduce renal cysts. Further, we demonstrated the possibility of ADPKD kidney organoids serving as drug screening platforms. This newly developed model will contribute to identifying novel therapeutic targets, extending the field of ADPKD research.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Rim/patologia , Modelos Biológicos , Organoides/patologia , Rim Policístico Autossômico Dominante/patologia , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colforsina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mutação/genética , Fenótipo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
4.
Mol Biol Rep ; 45(5): 1515-1521, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30073588

RESUMO

Multiple distinct mutations in the protein polycystin 1 (PC1) cause autosomal dominant polycystic kidney disease (ADPKD), a common cause of end stage renal disease. Growing evidence supports the theory that the severity and rate of progression of kidney cysts is correlated with the level of functional PC1 expressed in the primary cilia. Factors that regulate trafficking of PC1 to cilia are thus of great interest both as potential causes of ADPKD, but also as possible modifiable factors to treat ADPKD. Cysteine palmitoylation is a common post-translational modification that frequently alters protein trafficking, localization, and expression levels. Here, using multiple complementary approaches, we show that PC1 is palmitoylated, likely at a single cysteine in the carboxyl terminal fragment that is generated by autoproteolysis of PC1. Additional data suggest that protein palmitoylation is important for PC1 localization and expression levels. These data together identify palmitoylation as a novel post-translational modification of PC1 and a possible pharmacologic target to augment PC1 expression in cilia.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Processamento de Proteína Pós-Traducional , Canais de Cátion TRPP/metabolismo , Animais , Linhagem Celular , Cílios/metabolismo , Cisteína/metabolismo , Rim/metabolismo , Lipoilação/fisiologia , Camundongos , Rim Policístico Autossômico Dominante/genética , Transporte Proteico , Suínos , Canais de Cátion TRPP/genética
5.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 289-296, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29126879

RESUMO

The L-type calcium channel (LTCC) is an important determinant of cardiac contractility. Therefore, changes in LTCC activity or protein levels could be expected to affect cardiac function. Several studies describing LTCC regulation are available, but only a few examine LTCC protein stability. Polycystin-1 (PC1) is a mechanosensor that regulates heart contractility and is involved in mechanical stretch-induced cardiac hypertrophy. PC1 was originally described as an unconventional Gi/o protein-coupled receptor in renal cells. We recently reported that PC1 regulates LTCC stability in cardiomyocytes under stress; however, the mechanism underlying this effect remains unknown. Here, we use cultured neonatal rat ventricular myocytes and hypo-osmotic stress (HS) to model mechanical stretch. The model shows that the Cavß2 subunit is necessary for LTCC stabilization in cardiomyocytes during mechanical stretch, acting through an AKT-dependent mechanism. Our data also shows that AKT activation depends on the G protein-coupled receptor activity of PC1, specifically its G protein-binding domain, and the associated Gßγ subunit of a heterotrimeric Gi/o protein. In fact, over-expression of the human PC1 C-terminal mutant lacking the G protein-binding domain blunted the AKT activation-induced increase in Cav1.2 protein in cardiomyocytes. These findings provide novel evidence that PC1 is involved in the regulation of cardiac LTCCs through a Gißγ-AKT-Cavß2 pathway, suggesting a new mechanism for regulation of cardiac function.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Mecânico , Canais de Cátion TRPP/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Canais de Cátion TRPP/genética
6.
Sci China Life Sci ; 60(11): 1251-1259, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28667515

RESUMO

TRPP2, a Ca2+-permeable non-selective cation channel, has been shown to negatively regulate cell cycle, but the mechanism underlying this regulation is unknown. Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine extensively involved in immune system regulation, cell proliferation and cell survival. However, the effects and mechanisms for the role of TNF-α in laryngeal cancer remain unclear. Here, we demonstrated using western blot analyses and intracellular Ca2+ concentration measurements that TNF-α treatment suppressed both TRPP2 expression and ATP-induced Ca2+ release in a laryngeal cancer cell line (Hep-2). Knockdown of TRPP2 by a specific siRNA significantly decreased ATP-induced Ca2+ release and abolished the effect of TNF-α on the ATP-induced Ca2+ release. TNF-α treatment also enhanced Hep-2 cell proliferation and growth, as determined using cell counting and flow cytometry cell cycle assays. Moreover, TNF-α treatment down-regulated phosphorylated protein kinase R-like endoplasmic reticulum kinase (p-PERK) and phosphorylated eukaryotic translation initiation factor (p-eIF2α) expression levels, without affecting PERK and eIF2α expression levels in Hep-2 cells. We concluded that suppressing TRPP2 expression and TRPP2-mediated Ca2+ signaling may be one mechanism underlying TNF-α-enhanced Hep-2 cell proliferation. These results offer new insights into the mechanisms of TNF-α-mediated laryngeal cancer cell proliferation, and provide evidences showing a potential role of TNF-α in the development of laryngeal cancer.


Assuntos
Cálcio/metabolismo , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Canais de Cátion TRPP/genética , Fator de Necrose Tumoral alfa/farmacologia , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Neoplasias Laríngeas , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPP/efeitos dos fármacos
7.
Kidney Int ; 92(4): 922-933, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28545714

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common hereditary renal disease with no currently available targeted therapies. Based on the established connection between ß-catenin signaling and renal ciliopathies, and on data from our and other laboratories showing striking similarities of this disease and cancer, we evaluated the use of an orally bioavailable small molecule, KPT-9274 (a dual inhibitor of the protein kinase PAK4 and nicotinamide phosphoribosyl transferase), for treatment of ADPKD. Treatment of PKD-derived cells with this compound not only reduces PAK4 steady-state protein levels and regulates ß-catenin signaling, but also inhibits nicotinamide phosphoribosyl transferase, the rate-limiting enzyme in a key NAD salvage pathway. KPT-9274 can attenuate cellular proliferation and induce apoptosis associated with a decrease in active (phosphorylated) PAK4 and ß-catenin in several Pkd1-null murine cell lines, with a less pronounced effect on the corresponding phenotypically normal cells. Additionally, KPT-9274 shows inhibition of cystogenesis in an ex vivo model of cyclic AMP-induced cystogenesis as well as in the early stage Pkd1flox/flox:Pkhd1-Cre mouse model, the latter showing confirmation of specific anti-proliferative, apoptotic, and on-target effects. NAD biosynthetic attenuation by KPT-9274, while critical for highly proliferative cancer cells, does not appear to be important in the slower growing cystic epithelial cells during cystogenesis. KPT-9274 was not toxic in our ADPKD animal model or in other cancer models. Thus, this small molecule inhibitor could be evaluated in a clinical trial as a viable therapy of ADPKD.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Citocinas/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Quinases Ativadas por p21/metabolismo , Acrilamidas/uso terapêutico , Aminopiridinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais , Feminino , Humanos , Rim/citologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Fosforilação , Rim Policístico Autossômico Dominante/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPP/genética , beta Catenina/metabolismo
8.
PLoS One ; 11(5): e0155790, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27213553

RESUMO

Rationale for dietary advice in polycystic kidney disease (PKD) is based in part on animal studies that have examined non-orthologous models with progressive development of cystic disease. Since no model completely mimics human PKD, the purpose of the current studies was to examine the effects of dietary soy protein (compared to casein) or oils enriched in omega-3 fatty acids (fish or flax oil compared to soy oil) on early disease progression in two orthologous models of PKD. The models studied were Pkd2WS25/- mice as a model of autosomal dominant PKD, and PCK rats as a model of autosomal recessive PKD. After 13 weeks of feeding, dietary fish (but not flax) oil resulted in larger kidneys and greater kidney water content in female Pkd2WS25/- compared to control mice. After 12 weeks of feeding male PCK compared to control rats, both fish and flax compared to soy oil resulted in enlarged kidneys and livers, greater kidney water content and higher kidney cyst area in diseased rats. Dietary soy protein compared to casein had no effects in Pkd2WS25/- compared to control mice. In PCK rats, kidney and liver histology were not improved, but lower proteinuria and higher urine pH suggest that soy protein could be beneficial in the long term. Therefore, in contrast to studies in non-orthologous models during the progressive development phase, these studies in orthologous PKD models do not support dietary advice to increase soy protein or oils enriched in omega-3 oils in early PKD.


Assuntos
Caseínas/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Doenças Renais Policísticas/dietoterapia , Canais de Cátion TRPP/genética , Animais , Caseínas/farmacologia , Gorduras Insaturadas na Dieta/farmacologia , Modelos Animais de Doenças , Intervenção Médica Precoce , Feminino , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacologia , Linho , Humanos , Rim/patologia , Fígado/patologia , Masculino , Mutação , Tamanho do Órgão/efeitos dos fármacos , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Ratos , Resultado do Tratamento
9.
Kidney Int ; 89(4): 949-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924047

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal disease. The molecular pathogenesis of ADPKD is not completely known, and there is no approved therapy. To date, there is limited knowledge concerning the molecular consequences of specific disease-causing mutations. Here we show that the ADPKD missense variant TRPP2(D511V) greatly reduces TRPP2 protein stability, and that TRPP2(D511V) function can be rescued in vivo by small molecules targeting the TRPP2 degradation pathway. Expression of the TRPP2(D511V) protein was significantly reduced compared to wild-type TRPP2. Inhibition of lysosomal degradation of TRPP2(D511V) by the US Food and Drug Administration (FDA)-approved drug chloroquine strongly increased TRPP2 protein levels in vitro. The validation of these results in vivo requires appropriate animal models. However, there are currently no mouse models harboring human PKD2 missense mutations, and screening for chemical rescue of patient mutations in rodent models is time-consuming and expensive. Therefore, we developed a Drosophila melanogaster model expressing the ortholog of TRPP2(D511V) to test chemical rescue of mutant TRPP2 in vivo. Notably, chloroquine was sufficient to improve the phenotype of flies expressing mutant TRPP2. Thus, this proof-of-concept study highlights the potential of directed therapeutic approaches for ADPKD, and provides a rapid-throughput experimental model to screen PKD2 patient mutations and small molecules in vivo.


Assuntos
Antirreumáticos/uso terapêutico , Cloroquina/uso terapêutico , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Animais , Antirreumáticos/farmacologia , Cloroquina/farmacologia , Drosophila melanogaster , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Mutação de Sentido Incorreto , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Estabilidade Proteica , Canais de Cátion TRPP/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-25512022

RESUMO

The CD1-pcy/pcy mouse model of nephronophthisis displays reduced renal docosahexaenoic acid (DHA) levels and alterations in renal cyclooxygenase and lipoxygenase oxylipins derived from n-6 fatty acids. Since dietary flax oil ameliorates disease progression, its effect on renal fatty acids and oxylipins was examined. Sixteen weeks of feeding resulted in reduced disease progression and enrichment of renal phospholipid α-linolenic acid (ALA) and eicosapentaenoic acid, reduction in arachidonic acid (AA), but no change in linoleic acid (LA) or DHA. In diseased kidneys, flax oil feeding mitigated the elevated levels of renal cyclooxygenase derived oxylipins formed from AA and the lowered lipoxygenase and cytochrome P450 derived oxylipins formed from ALA and DHA. Increased DHA oxylipins occurred with flax feeding despite not altering DHA levels. Dietary flax oil may therefore reduce disease progression via mitigation of oxylipin abnormalities. This study also provides evidence of in vivo ALA conversion to DHA in amounts necessary to restore DHA oxylipin levels.


Assuntos
Doenças Renais Císticas/congênito , Rim/metabolismo , Ácido Linoleico/administração & dosagem , Óleo de Semente do Linho/química , Oxilipinas/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Rim/enzimologia , Rim/patologia , Doenças Renais Císticas/dietoterapia , Doenças Renais Císticas/patologia , Óleo de Semente do Linho/administração & dosagem , Masculino , Camundongos , Prostaglandina-Endoperóxido Sintases/metabolismo , Canais de Cátion TRPP/genética , Resultado do Tratamento
11.
PLoS One ; 9(12): e115146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517939

RESUMO

The flower buds of Daphne genkwa Sieb. et Zucc. have been used as a traditional Chinese medicine although their functional mechanisms have not been discovered yet. We have studied the potential effects of the plant extracts on natural killer (NK) cell activation, and isolated an active fraction. Genkwadaphnin (GD-1) displayed a potent efficacy to induce IFN-γ transcription in NK cells with concentration- and time-dependent manners. GD-1 treatment triggered the phosphorylation of PKD1, a member of PKC family, MEK and ERK, resulting in IKK activation to induce IκB degradation, and the nuclear localization of p65, an NF-κB subunit, which regulates IFN-γ transcription. GD-1 effect on IFN-γ production was blocked by the addition of Rottlerin, a PKC inhibitor, CID 755673, a PKD inhibitor, or Bay11-7082, an IKKα inhibitor. The nuclear localization of p65 was also inhibited by the kinase inhibitors. Secreted IFN-γ activates STAT1 phosphorylation as autocrine-loops to sustain its secretion. GD-1 induced the phosphorylation of STAT1 probably through the increase of IFN-γ. STAT1 inhibitor also abrogated the sustained IFN-γ secretion. These results suggest that GD-1 is involved in the activation of PKD1 and/or ERK pathway, which activate NK-κB triggering IFN-γ production. As positive feedback loops, secreted IFN-γ activates STAT1 and elongates its production in NK-92 cells.


Assuntos
Diterpenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interferon gama/genética , Células Matadoras Naturais/efeitos dos fármacos , Linfoma/tratamento farmacológico , NF-kappa B/metabolismo , Fator de Transcrição STAT1/metabolismo , Canais de Cátion TRPP/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Linfoma/metabolismo , Linfoma/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Canais de Cátion TRPP/antagonistas & inibidores , Canais de Cátion TRPP/genética , Células Tumorais Cultivadas
12.
Br J Clin Pharmacol ; 76(4): 524-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23594398

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and results from mutations in PKD1 or PKD2. Cyst initiation and expansion arise from a combination of abnormal cell proliferation, fluid secretion and extracellular matrix defects and results in kidney enlargement and interstitial fibrosis. Since its first description over 200 years ago, ADPKD has been considered an untreatable condition and its management is limited to blood pressure reduction and symptomatic treatment of disease complications. Results of the recently reported TEMPO 3/4 trial thus represent a paradigm shift in demonstrating for the first time that cystic disease and loss of renal function can be slowed in humans. In this paper, we review the major therapeutic strategies currently being explored in ADPKD including a range of novel approaches in preclinical models. It is anticipated that the clinical management of ADPKD will undergo a revolution in the next decade with the translation of new treatments into routine clinical use.


Assuntos
Terapia de Alvo Molecular/métodos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Função Renal , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA