Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 325(2): F177-F187, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318990

RESUMO

High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.


Assuntos
Hipertensão , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Ratos , Ratos Endogâmicos Dahl , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Pressão Sanguínea/fisiologia , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Eletrólitos/metabolismo
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(8): 1099-1107, 2022 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36097778

RESUMO

OBJECTIVES: Epilepsy is a syndrome of central nervous system dysfunction caused by many reasons, which is mainly characterized by abnormal discharge of neurons in the brain. Therefore, finding new targets for epilepsy therapy has always been the focus and hotspot in neurological research field. Studies have found that 2-deoxy-D-glucose (2-DG) exerts anti-epileptic effect by up-regulation of KATP channel subunit Kir6.1, Kir6.2 mRNA and protein. By using the database of TargetScan and miRBase to perform complementary pairing analysis on the sequences of miRNA and related target genes, it predicted that miR-194 might be the upstream signaling molecule of KATP channel. This study aims to explore the mechanism by which 2-DG exerts its anti-epileptic effect by regulating KATP channel subunits Kir6.1 and Kir6.2 via miR-194. METHODS: A magnesium-free epilepsy model was established and randomly divided into a control group, an epilepsy group (EP group), an EP+2-DG group, and miR-194 groups (including EP+miR-194 mimic, EP+miR-194 mimic+2-DG, EP+miR-194 mimic control, EP+miR-194 inhibitor, EP+miR-194 inhibitor+2-DG, and EP+miR-194 inhibitor control groups). The 2-DG was used to intervene miR-194 mimics, patch-clamp method was used to detect the spontaneous recurrent epileptiform discharges, real-time PCR was used to detect neuronal miR-194, Kir6.1, and Kir6.2 expressions, and the protein levels of Kir6.1 and Kir6.2were detected by Western blotting. RESULTS: Compared with the control group, there was no significant difference in the amplitude of spontaneous discharge potential in the EP group (P>0.05), but the frequency of spontaneous discharge was increased (P<0.05). Compared with the EP group, the frequency of spontaneous discharge was decreased (P<0.05). Compared with the EP+miR-194 mimic control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 mimic group were down-regulated (all P<0.05). Compared with the EP+miR-194 inhibitor control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor group were up-regulated (all P<0.05). After pretreatment with miR-194 mimics, the mRNA and protein expression levels of KATP channel subunits Kir6.1 and Kir6.2 were decreased (all P<0.05). Compared with the EP+2-DG group, the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 mimic+2-DG group were down-regulated (all P<0.05) and the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor+2-DG group were up-regulated (all P<0.05). CONCLUSIONS: The 2-DG might play an anti-epilepsy effect by up-regulating KATP channel subunits Kir6.1 and Kir6.2via miR-194.


Assuntos
Epilepsia , MicroRNAs , Canais de Potássio Corretores do Fluxo de Internalização , Trifosfato de Adenosina , Anticonvulsivantes , Desoxiglucose/farmacologia , Epilepsia/genética , Glucose , Humanos , MicroRNAs/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
3.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833905

RESUMO

Here, we identified the mechanisms of action of antidiabetic activity of novel compounds isolated from Cassia fistula stem bark in STZ-diabetic animals. Novel triterpenoid compounds (C1, C2 and C3) were treated to STZ-administered diabetic animals at a concentration of 20mg/kg body weight orally for 60 days to assess their effects on plasma glucose, plasma insulin/C-peptide, serum lipid markers and the enzymes of carbohydrate metabolism, glucose oxidation and insulin signaling molecules. Oral administration of novel triterpenoid compounds to STZ-diabetic animals significantly decreased (p < 0.05) the plasma glucose concentration on the 7th, 15th, 30th, 45th and 60th daysin a duration-dependent manner (p < 0.05). Plasma insulin (p < 0.0001)/C-peptide (p < 0.0006), tissue glycogen (p < 0.0034), glycogen phosphorylase (p < 0.005), glucose 6-phosphatase (p < 0.0001) and lipid markers were significantly increased (p < 0.0001) in diabetic rats, whereas glucokinase (p < 0.0047), glycogen synthase (p < 0.003), glucose oxidation (p < 0.001), GLUT4 mRNA (p < 0.0463), GLUT4 protein (p < 0.0475) and the insulin-signaling molecules IR mRNA (p < 0.0195), IR protein (p < 0.0001), IRS-1 mRNA (p < 0.0478), p-IRS-1Tyr612 (p < 0.0185), Akt mRNA (p < 0.0394), p-AktSer473 (p < 0.0162), GLUT4 mRNA (p < 0.0463) and GLUT4 (p < 0.0475) were decreased in the gastrocnemius muscle. In silico analysis of C1-C3 with IRK and PPAR-γ protein coincided with in vivo findings. C1-C3 possessed promising antidiabetic activity by regulating insulin signaling mechanisms and carbohydrate metabolic enzymes.


Assuntos
Cassia/química , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Triterpenos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peptídeo C/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Glucoquinase/metabolismo , Glucose-6-Fosfatase/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , PPAR gama/metabolismo , Casca de Planta/química , Plantas Medicinais/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química , Triterpenos/isolamento & purificação
4.
J Neurophysiol ; 126(2): 561-574, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232785

RESUMO

Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here, we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp, and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance that results from the interaction of the slow inactivation of the low-threshold calcium current IT with the passive properties of the membrane. We also show that the hyperpolarization-activated cationic current Ih is not involved in the generation of resonance; instead it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current IKir by a mechanism that hinges on its strong voltage-dependent inward rectification (i.e., a negative slope conductance region). Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to IKir as a new potential target for therapeutic intervention.NEW & NOTEWORTHY Our study expands the repertoire of ionic mechanisms known to be involved in the generation and control of resonance and provides the first experimental proof of previous theoretical predictions on resonance amplification mediated by regenerative hyperpolarizing currents. In thalamocortical neurons, we confirmed that the calcium current IT generates resonance, determined that the large steady conductance of the cationic current Ih curtails resonance, and demonstrated that the inward rectifier potassium current IKir amplifies resonance.


Assuntos
Potenciais de Ação , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Tálamo/fisiologia , Animais , Canais de Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Camundongos , Modelos Neurológicos , Neurônios/metabolismo , Canais de Sódio/metabolismo , Tálamo/citologia , Tálamo/metabolismo
5.
Assay Drug Dev Technol ; 19(1): 27-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164547

RESUMO

Phenotypic screening is a neoclassical approach for drug discovery. We conducted phenotypic screening for insulin secretion enhancing agents using INS-1E insulinoma cells as a model system for pancreatic beta-cells. A principal regulator of insulin secretion in beta-cells is the metabolically regulated potassium channel Kir6.2/SUR1 complex. To characterize hit compounds, we developed an assay to quantify endogenous potassium channel activity in INS-1E cells. We quantified ligand-regulated potassium channel activity in INS-1E cells using fluorescence imaging and thallium flux. Potassium channel activity was metabolically regulated and coupled to insulin secretion. The pharmacology of channel opening agents (diazoxide) and closing agents (sulfonylureas) was used to validate the applicability of the assay. A precise high-throughput assay was enabled, and phenotypic screening hits were triaged to enable a higher likelihood of discovering chemical matter with novel and useful mechanisms of action.


Assuntos
Diazóxido/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Secretagogos/farmacologia , Compostos de Sulfonilureia/farmacologia , Receptores de Sulfonilureias/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Imagem Óptica , Fenótipo
6.
PLoS Comput Biol ; 16(4): e1007749, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251469

RESUMO

The renal outer medullary potassium (ROMK) channel is essential for potassium transport in the kidney, and its dysfunction is associated with a salt-wasting disorder known as Bartter syndrome. Despite its physiological significance, we lack a mechanistic understanding of the molecular defects in ROMK underlying most Bartter syndrome-associated mutations. To this end, we employed a ROMK-dependent yeast growth assay and tested single amino acid variants selected by a series of computational tools representative of different approaches to predict each variants' pathogenicity. In one approach, we used in silico saturation mutagenesis, i.e. the scanning of all possible single amino acid substitutions at all sequence positions to estimate their impact on function, and then employed a new machine learning classifier known as Rhapsody. We also used two additional tools, EVmutation and Polyphen-2, which permitted us to make consensus predictions on the pathogenicity of single amino acid variants in ROMK. Experimental tests performed for selected mutants in different classes validated the vast majority of our predictions and provided insights into variants implicated in ROMK dysfunction. On a broader scope, our analysis suggests that consolidation of data from complementary computational approaches provides an improved and facile method to predict the severity of an amino acid substitution and may help accelerate the identification of disease-causing mutations in any protein.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/genética , Substituição de Aminoácidos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Biologia Computacional/métodos , Humanos , Rim/metabolismo , Rim/patologia , Mutação , Mutação de Sentido Incorreto/genética , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Saccharomyces cerevisiae/genética
7.
Mol Pain ; 15: 1744806919838947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845882

RESUMO

BACKGROUND: Memantine is one of the important clinical medications in treating moderate to severe Alzheimer disease. The effect of memantine on preventing or treating punctate allodynia has been thoroughly studied but not on the induction of dynamic allodynia. The aim of this study is to investigate whether memantine could prevent the induction of dynamic allodynia and its underlying spinal mechanisms. RESULTS: (1) In in vivo spared nerve injury pain model, pretreatment with memantine at a lower dose (10 nmol, intrathecal; memantine-10) selectively prevented the induction of dynamic allodynia but not the punctate allodynia. (2) Pretreatment with either MK801-10 (MK801-10 nmol, intrathecal) or higher dose of memantine (30 nmol, intrathecal; memantine-30) prevented the induction of both dynamic and punctate allodynia. (3) Memantine-10 showed significant effect on the inhibition of the spared nerve injury-induced overactivation of microglia in spinal dorsal horn. (4) In contrast, in complete freund's adjuvant (CFA) model, memantine-10 neither affected the CFA injection-induced activation of microglia in spinal dorsal horn nor the induction of dynamic allodynia. (5) Immunohistological studies showed Kir2.1 channel distributed widely and co-localized with microglia in the spinal dorsal horn of mice. (6) Pretreatment with either minocycline, a microglia inhibitor, or ML133, a Kir2.1 inhibitor, both selectively prevented the overactivation of microglia in spinal dorsal horn and the induction of dynamic allodynia following spared nerve injury. CONCLUSION: The selective inhibitory effect on the induction of dynamic allodynia in spared nerve injury model by low dose of the memantine (memantine-10) was tightly correlated with the blockade of microglia Kir2.1 channel to suppress the microglia activation.


Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Memantina/uso terapêutico , Microglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Corno Dorsal da Medula Espinal/efeitos dos fármacos
8.
J Vet Med Sci ; 81(1): 35-41, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30429409

RESUMO

Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) inhibits protein translation through the phosphorylation of its specific substrate, eEF2. We previously demonstrated that eEF2K expression increases in superior mesenteric artery from spontaneously hypertensive rats (SHR) and that eEF2K mediates development of hypertension in SHR. In addition, we recently revealed that A484954, a selective eEF2K inhibitor induced relaxation via opening smooth muscle inward rectifier K+ (Kir) channel in rat isolated superior mesenteric artery. Here, we further examined the effects of A484954 on contractility and blood pressure (BP) in rats. Isometric contraction of rat isolated superior mesenteric artery was measured. BP was measured by a carotid cannulation method. A484954 (10 µM) inhibited noradrenaline (NA)-induced contraction in a biphasic manner (magnitude of inhibition higher at high dose NA). A484954 also inhibited an α1-receptor agonist, phenylephrine-induced contraction, while it was not biphasic. Specifically, a ß-receptor antagonist, propranolol (1 µM) prevented the A484954-mediated inhibition of NA (high-dose)-induced contraction. A484954 (10 µM) potentiated a ß-receptor agonist, isoproterenol-induced relaxation, which was completely prevented by BaCl2 (1 mM), a Kir channel blocker. In vivo, A484954 (122 µg/kg) inhibited NA-induced increase of BP in rats. Another eEF2K inhibitor, NH125 (22 µg/kg) also inhibited the NA-induced BP increase in rats. In summary, it was concluded that A484954 lowers NA-induced BP rise perhaps through activation of ß2-receptor-Kir channel and subsequent vasorelaxation via inhibiting eEF2K activity.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Ciclopropanos/farmacologia , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirrolidinas/farmacologia , Animais , Contração Isométrica/efeitos dos fármacos , Masculino , Norepinefrina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Piridinas , Ratos Endogâmicos SHR , Ratos Wistar , Vasodilatação/efeitos dos fármacos
9.
J Neurol Surg A Cent Eur Neurosurg ; 80(1): 53-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29972856

RESUMO

BACKGROUND: It is very rare for a choroid plexus tumor to occur intraparenchymally in the absence of a relation to the choroid plexus. CLINICAL PRESENTATION: A case of cerebral intraparenchymal choroid plexus tumor in a 30-year-old woman presenting with left hemiparesis is described. Brain magnetic resonance imaging depicted a large cystic mass in the right frontal lobe. Tumor resection was performed by right frontal craniotomy. No connection with the choroid plexus was observed during the operation. Histologically, the tumor exhibited a glandular structure with a papillary pattern suggesting a neoplasm of epithelial origin. Immunohistochemical analyses revealed the tumor as an atypical choroid plexus papilloma. CONCLUSION: Immunohistochemical findings, especially regarding Kir7.1, are very important for the differential diagnosis of cerebral intraparenchymal choroid plexus tumors from metastatic tumors. The present case reveals that an atypical choroid plexus papilloma can occur intraparenchymally without an association with the choroid plexus. Intraparenchymal atypical choroid plexus papillomas may have previously been diagnosed incorrectly as metastatic adenocarcinomas of unknown origin.


Assuntos
Papiloma do Plexo Corióideo/diagnóstico , Papiloma do Plexo Corióideo/metabolismo , Adulto , Craniotomia , Diagnóstico Diferencial , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Humanos , Imageamento por Ressonância Magnética , Papiloma do Plexo Corióideo/cirurgia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
10.
JCI Insight ; 3(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232268

RESUMO

Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.


Assuntos
Síndrome de Brugada/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Células CHO , Cricetulus , Proteínas da Matriz do Complexo de Golgi , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo
11.
PLoS One ; 13(8): e0201092, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110354

RESUMO

We screened a library of botanical compounds purified from plants of Vietnam for modulators of the activity of a two-pore domain K+ channel, TREK-1, and we identified a hydroxycoumarin-related compound, ostruthin, as an activator of this channel. Ostruthin increased whole-cell TREK-1 channel currents in 293T cells at a low concentration (EC50 = 5.3 µM), and also activity of the TREK-2 channel (EC50 = 3.7 mM). In contrast, ostruthin inhibited other K+ channels, e.g. human ether-à-go-go-related gene (HERG1), inward-rectifier (Kir2.1), voltage-gated (Kv1.4), and two-pore domain (TASK-1) at higher concentrations, without affecting voltage-gated potassium channel (KCNQ1 and 3). We tested the effect of this compound on mouse anxiety- and depression-like behaviors and found anxiolytic activity in the open-field, elevated plus maze, and light/dark box tests. Of note, ostruthin also showed antidepressive effects in the forced swim and tail suspension tests, although previous studies reported that inhibition of TREK-1 channels resulted in an antidepressive effect. The anxiolytic and antidepressive effect was diminished by co-administration of a TREK-1 blocker, amlodipine, indicating the involvement of TREK-1 channels. Administration of ostruthin suppressed the stress-induced increase in anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in other mood disorder-related nuclei, e.g. the amygdala, paraventricular nuclei, and dorsal raphe nucleus. Ostruthin may exert its anxiolytic and antidepressive effects through a different mechanism from current drugs.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Canais de Potássio de Domínios Poros em Tandem/agonistas , Umbeliferonas/farmacologia , Anlodipino/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.4/antagonistas & inibidores , Canal de Potássio Kv1.4/metabolismo , Masculino , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/farmacologia , Compostos Fitoquímicos/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/metabolismo
12.
Front Biosci (Landmark Ed) ; 23(11): 2166-2176, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29772553

RESUMO

A useful animal model of intestinal injury is pivotal for studying its pathogenesis and developing nutritional interventions (e.g., amino acid supplementation). Here, we propose the use of indomethacin (IDMT) to induce intestinal inflammation in neonatal pigs. Fourteen-day-old piglets fed a milk replacer diet receive intraperitoneal administration of IDMT (5 mg/kg body weight) for 3 consecutive days. On day 4, blood and intestinal samples are obtained for physiological and biochemical analyses. IDMT increases blood DAO activity, I-FABP concentration, neutrophil and eosinophil numbers; intestinal MMP3 mRNA levels, MPO activity, and MDA concentration; but reduces the plasma concentration of citrulline (synthesized exclusively by enterocytes of the small intestine), intestinal GSH-Px activity, and mRNA levels for villin, I-FABP, TRPV6, AQP10, and KCNJ13. Moreover, extensive hemorrhagic spots, thinned intestinal wall, and ulcers in the distal jejunum and ileum are observed in IDMT-challenged piglets. Furthermore, IDMT decreases intestinal villus height and villus surface area in the piglet jejunum. Collectively, this work establishes a porcine model of intestinal injury for designing novel nutritional means to improve gut function in pigs and humans.


Assuntos
Modelos Animais de Doenças , Enterócitos/metabolismo , Enteropatias/metabolismo , Intestino Delgado/metabolismo , Animais , Animais Recém-Nascidos , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indometacina , Enteropatias/induzido quimicamente , Enteropatias/genética , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Malondialdeído/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Suínos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
13.
Bioelectromagnetics ; 39(4): 299-311, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29446477

RESUMO

Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (KATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (KATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 39:299-311, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Aorta/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Canais KATP/metabolismo , Campos Magnéticos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Vasoconstrição , Animais , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Canais KATP/genética , Masculino , Músculo Liso Vascular/fisiopatologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
14.
Pestic Biochem Physiol ; 141: 41-49, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28911739

RESUMO

The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Kir) channels, is overexpressed in the Drosophila salivary gland by 32-fold when compared to the whole body mRNA transcripts. Therefore, we aimed to test the hypothesis that pharmacological and genetic depletion of salivary gland specific Kir channels alters the efficiency of the gland and reduced feeding capabilities using the fruit fly Drosophila melanogaster as a model organism that could predict similar effects in arthropod disease vectors. Exposure to VU041, a selective Kir channel blocker, reduced the volume of sucrose consumption by up to 3.2-fold and was found to be concentration-dependent with an EC50 of 68µM. Importantly, the inactive analog, VU937, was shown to not influence feeding, suggesting the reduction in feeding observed with VU041 is due to Kir channel inhibition. Next, we performed a salivary gland specific knockdown of Kir1 to assess the role of these channels specifically in the salivary gland. The genetically depleted fruit flies had a reduction in total volume ingested and an increase in the time spent feeding, both suggestive of a reduction in salivary gland function. Furthermore, a compensatory mechanism appears to be present at day 1 of RNAi-treated fruit flies, and is likely to be the Na+-K+-2Cl- cotransporter and/or Na+-K+-ATPase pumps that serve to supplement the inward flow of K+ ions, which highlights the functional redundancy in control of ion flux in the salivary glands. These findings suggest that Kir channels likely provide, at least in part, a principal potassium conductance pathway in the Drosophila salivary gland that is required for sucrose feeding.


Assuntos
Proteínas de Drosophila/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Glândulas Salivares/metabolismo , Ração Animal , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Inseticidas/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândulas Salivares/efeitos dos fármacos , Açúcares
15.
J Pharmacol Sci ; 134(2): 75-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615142

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes hold great potentials to predict pro-arrhythmic risks in preclinical cardiac safety screening, although the hiPSC cardiomyocytes exhibit rather immature functional and structural characteristics, including spontaneous activity. Our physiological characterization and mathematical simulation showed that low expression of the inward-rectifier potassium (IK1) channel is a determinant of spontaneous activity. To understand impact of the low IK1 expression on the pharmacological properties, we tested if transduction of hiPSC-derived cardiomyocytes with KCNJ2, which encodes the IK1 channel, alters pharmacological response to cardiac repolarization processes. The transduction of KCNJ2 resulted in quiescent hiPSC-derived cardiomyocytes, which need pacing to elicit action potentials. Significant prolongation of paced action potential duration in KCNJ2-transduced hiPSC-derived cardiomyocytes was stably measured at 0.1 µM E-4031, although the same concentration of E-4031 ablated firing of non-treated hiPSC-derived cardiomyocytes. These results in single cells were confirmed by mathematical simulations. Using the hiPSC-derived cardiac sheets with KCNJ2-transduction, we also investigated effects of a range of drugs on field potential duration recorded at 1 Hz. The KCNJ2 overexpression in hiPSC-derived cardiomyocytes may contribute to evaluate a part of QT-prolonging drugs at toxicological concentrations with high accuracy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/efeitos adversos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/efeitos adversos , Piridinas/efeitos adversos
16.
J Membr Biol ; 250(5): 425-432, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28660286

RESUMO

Gain of function in mutations, D172N and E299V, of Kir2.1 will induce type III short QT syndrome. In our previous work, we had identified that a mixture of traditional Chinese medicine, styrax, is a blocker of Kir2.1. Here, we determined a monomer, hydrocinnamic acid (HA), as the effective component from 18 compounds of styrax. Our data show that HA can inhibit the currents of Kir2.1 channel in both excised inside-out and whole-cell patch with the IC50 of 5.21 ± 1.02 and 10.08 ± 0.46 mM, respectively. The time course of HA blockage and washout are 2.3 ± 0.6 and 10.5 ± 2.6 s in the excised inside-out patch. Moreover, HA can also abolish the currents of D172N and E299V with the IC50 of 6.66 ± 0.57 and 5.81 ± 1.10 mM for D172N and E299V, respectively. Molecular docking results determine that HA binds with Kir2.1 at K182, K185, and K188, which are phosphatidylinositol 4,5-bisphosphate (PIP2) binding residues. Our results indicate that HA competes with PIP2 to bind with Kir2.1 and inhibits the currents.


Assuntos
Arritmias Cardíacas , Sistema de Condução Cardíaco/anormalidades , Cardiopatias Congênitas , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação , Fenilpropionatos , Canais de Potássio Corretores do Fluxo de Internalização , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células HEK293 , Sistema de Condução Cardíaco/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
17.
Am J Physiol Renal Physiol ; 312(6): F1044-F1055, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274925

RESUMO

Deficiency of cyclooxygenase-2 (COX-2) activity in the early postnatal period causes impairment of kidney development leading to kidney insufficiency. We hypothesize that impaired NaCl reabsorption during the first days of life is a substantial cause for nephrogenic defects observed in COX-2-/- mice and that salt supplementation corrects these defects. Daily injections of NaCl (0.8 mg·g-1·day-1) for the first 10 days after birth ameliorated impaired kidney development in COX-2-/- pups resulting in an increase in glomerular size and fewer immature superficial glomeruli. However, impaired renal subcortical growth was not corrected. Increasing renal tubular flow by volume load or injections of KCl did not relieve the renal histomorphological damage. Administration of torsemide and spironolactone also affected nephrogenesis resulting in diminished glomeruli and cortical thinning. Treatment of COX-2-/- pups with NaCl/DOCA caused a stronger mitigation of glomerular size and induced a slight but significant growth of cortical tissue mass. After birth, renal mRNA expression of NHE3, NKCC2, ROMK, NCCT, ENaC, and Na+/K+-ATPase increased relative to postnatal day 2 in wild-type mice. However, in COX-2-/- mice, a significantly lower expression was observed for NCCT, whereas NaCl/DOCA treatment significantly increased NHE3 and ROMK expression. Long-term effects of postnatal NaCl/DOCA injections indicate improved kidney function with normalization of pathologically enhanced creatinine and urea plasma levels; also, albumin excretion was observed. In summary, we present evidence that salt supplementation during the COX-2-dependent time frame of nephrogenesis partly reverses renal morphological defects in COX-2-/- mice and improves kidney function.


Assuntos
Ciclo-Oxigenase 2/deficiência , Rim/efeitos dos fármacos , Cloreto de Sódio na Dieta/administração & dosagem , Anormalidades Urogenitais/tratamento farmacológico , Animais , Animais Recém-Nascidos , Ciclo-Oxigenase 2/genética , Acetato de Desoxicorticosterona/administração & dosagem , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Rim/anormalidades , Rim/enzimologia , Rim/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Morfogênese , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Espironolactona/administração & dosagem , Sulfonamidas/administração & dosagem , Torasemida , Anormalidades Urogenitais/enzimologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/fisiopatologia
18.
Sci Rep ; 7: 41154, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145461

RESUMO

Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Engenharia de Proteínas/métodos , Receptor Muscarínico M2/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acetilcolina/farmacologia , Regulação Alostérica , Animais , Dopamina/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes de Fusão/metabolismo , Xenopus
19.
Methods Mol Biol ; 1439: 197-206, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27316997

RESUMO

The FLIPR (Fluorescent Imaging Plate Reader) system has been extensively used in the early stages of drug discovery for the identification of small molecules as a starting point for drug development, and for the pharmacological characterization of compounds. The main application of the system has been the measurement of intracellular Ca(2+) signals using fluorescent calcium indicators.This chapter describes the application of a protocol for the study and characterization of state-dependent blockers of Voltage-Gated Calcium Channels (VGCC) on the FLIPR(TETRA).The cell line suitable for the application of the protocol, and described hereafter, co-expresses the human CaV1.2 channel and the human inward rectifier K(+) channel Kir2.3. The presence of Kir2.3 allows the modulation of the plasma membrane potential and consequently of the state of the CaV1.2 channel by changing the extracellular K(+) concentration. In this way, CaV1.2 activity can be measured at different membrane voltages, corresponding to either the resting or partial inactivated state, by loading the cells with a calcium probe in extracellular low or high potassium buffer.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Imagem Óptica/métodos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores
20.
Sci Rep ; 6: 22864, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26960267

RESUMO

Microglial activation is implicated in the pathogenesis of Parkinson's disease (PD). Although the etiology of PD remains unclear, age and male gender are known PD risk factors. By comparing microglia and dopaminergic (DA) neurons in the substantia nigra (SN) of male and female mice of different ages, we found that the degrees of microglial activation and DA neuron loss increased with age in both genders, but were more pronounced in males, as were peripheral lipopolysaccharide (LPS)-induced microglial activation and DA neuron loss. A bilateral ovariectomy (OVX) eliminated the female-associated protection against age- and LPS-induced microglial activation, which suggests that ovary hormones are involved in gender-specific responses. Treating female mice with 17ß-estradiol supplements reduced the age-associated microglial activation in OVX mice. Moreover, pretreating mouse BV2 microglial cells with 17ß-estradiol inhibited LPS-induced elevation of Toll-like receptor 4, phosphorylated p38, and TNF-α levels. We then examined the effect of 17ß-estradiol on inward-rectifier K(+) channel Kir2.1, a known regulator of microglial activation. We found that 17ß-estradiol inhibited the Kir2.1 activity of BV2 cells by reducing the probability that the channel would be open. We conclude that age- and inflammation-associated microglial activation is attenuated by ovarian estrogen, because it inhibits Kir2.1.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Microglia/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Fatores Etários , Animais , Contagem de Células , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Ovariectomia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Fatores Sexuais , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA