Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biomed Pharmacother ; 129: 110383, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563149

RESUMO

Withaferin A (WFA), a C5,C6-epoxy steroidal lactone isolated from the medicinal plant Withania somnifera (L.) Dunal, inhibits growth of tumor cells in different cancer types. However, the mechanisms underlying the effect of WFA on tumor cells are not fully understood. In the present study, we evaluated the blockade of TASK-3 channels by WFA in TASK-3-expressing HEK-293 cells. Explore if the WFA-mediated TASK-3 blockade can be used as a pharmacological tool to decrease the cell viability in cancer cells. A combination of functional experiments (patch-clamp, gene downregulation, overexpression and pharmacological inhibition) and molecular docking analysis were used to get insights into the mechanism by which the inhibition of TASK-3 by WFA affects the growth and viability of cancer cells. Withaferin A was found to inhibit the activity of TASK-3 channels. The inhibitory effect of Withaferin A on TASK-3 potassium currents was dose-dependent and independent of voltage. Molecular modeling studies identified putative WFA-binding sites in TASK-3 channel involved the channel blockade. In agreements with the molecular modeling predictions, mutation of residues F125 to A (F125A), L197 to V (L197 V) and the double mutant F125A-L197 V markedly decreased the WFA-induced inhibition of TASK-3. Finally, the cytotoxic effect of WFA was tested in MDA-MB-231 human breast cancer cells transfected with TASK-3 or shRNA that decreases TASK-3 expression. Together, our results show that the cytotoxic effect of WFA on fully transformed MDA-MB-231 cells depends on the expression of TASK-3. Herein, we also provide insights into the mechanism of TASK-3 inhibition by WFA.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Vitanolídeos/farmacologia , Antineoplásicos Fitogênicos/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Potenciais da Membrana , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ligação Proteica , Transdução de Sinais , Vitanolídeos/metabolismo
2.
J Am Heart Assoc ; 9(10): e015751, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32390491

RESUMO

Background The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK-1; hK2P3.1) two-pore-domain potassium channel was recently shown to regulate the atrial action potential duration. In the human heart, TASK-1 channels are specifically expressed in the atria. Furthermore, upregulation of atrial TASK-1 currents was described in patients suffering from atrial fibrillation (AF). We therefore hypothesized that TASK-1 channels represent an ideal target for antiarrhythmic therapy of AF. In the present study, we tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF. Methods and Results Heterologously expressed human and porcine TASK-1 channels are blocked by A293 to a similar extent. Patch clamp measurements from isolated human and porcine atrial cardiomyocytes showed comparable TASK-1 currents. Computational modeling was used to investigate the conditions under which A293 would be antiarrhythmic. German landrace pigs underwent electrophysiological studies under general anesthesia. Paroxysmal AF was induced by right atrial burst stimulation. After induction of AF episodes, intravenous administration of A293 restored sinus rhythm within cardioversion times of 177±63 seconds. Intravenous administration of A293 resulted in significant prolongation of the atrial effective refractory period, measured at cycle lengths of 300, 400 and 500 ms, whereas the surface ECG parameters and the ventricular effective refractory period lengths remained unchanged. Conclusions Pharmacological inhibition of atrial TASK-1 currents exerts antiarrhythmic effects in vivo as well as in silico, resulting in acute cardioversion of paroxysmal AF. Taken together, these experiments indicate the therapeutic potential of A293 for AF treatment.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Sulfonamidas/farmacologia , ortoaminobenzoatos/farmacologia , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Feminino , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Estudo de Prova de Conceito , Período Refratário Eletrofisiológico/efeitos dos fármacos , Sus scrofa , Fatores de Tempo , Xenopus laevis
3.
Sci Rep ; 9(1): 12394, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455781

RESUMO

A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Mutação com Perda de Função , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
4.
Gen Comp Endocrinol ; 281: 49-57, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121162

RESUMO

Potassium channel subfamily K member 3 (KCNK3) has been reported to play important roles in membrane potential conduction, pulmonary hypertension and thermogenesis regulation in mammals. However, its roles remain largely unknown and scarce reports were seen in fish. In the present study, we for the first time identified two kcnk3 genes (kcnk3a and kcnk3b) from the carnivorous Northern snakehead (Channa argus) by molecular cloning and a genomic survey. Subsequently, their transcription changes in response to different feeding status were investigated. Full-length coding sequences of the kcnk3a and kcnk3b genes are 1203 and 1176 bp, encoding 400 and 391 amino acids, respectively. Multiple alignments, 3D-structure prediction and phylogenetic analysis further suggested that these kcnk3 genes may be highly conserved in vertebrates. Tissue distribution analysis by real-time PCR demonstrated that both the snakehead kcnk3s were widely transcribed in majority of the examined tissues but with different distribution patterns. In a short-term (24-h) fasting experiment, we observed that brain kcnk3a and kcnk3b genes showed totally opposite transcription patterns. In a long-term (2-week) fasting and refeeding experiment, we also observed differential change patterns for the brain kcnk3 genes. In summary, our findings suggest that the two kcnk3 genes are close while present different transcription responses to fasting and refeeding. They therefore can be potentially selected as novel target genes for improvement of production and quality of this economically important fish.


Assuntos
Jejum/fisiologia , Comportamento Alimentar , Peixes/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Genoma , Filogenia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sintenia/genética , Distribuição Tecidual , Peixe-Zebra/genética
5.
Mol Pharmacol ; 96(1): 26-35, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015283

RESUMO

The TASK-3 channel is a member of the K2P family that is important for the maintenance of the resting membrane potential. Previous studies have demonstrated that the TASK-3 channel is involved in several physiologic and pathologic processes, including sleep/wake control, cognition, and epilepsy. However, there is still a lack of selective pharmacological tools for TASK-3, which limits further research on channel function. In this work, using a high-throughput screen, we discovered that N-(2-((4-nitro-2-(trifluoromethyl)phenyl)amino)ethyl)benzamide (NPBA) showed excellent potency and selectivity as a novel TASK-3 activator. The molecular determinants of NPBA activation were then investigated by combining chimera and mutagenesis analysis. Two distant clusters of residues located at the extracellular end of the second transmembrane domain (A105 and A108) and the intracellular end of the third transmembrane domain (E157) were found to be critical for NPBA activation. We then compared the essentials of the actions of NPBA with inhalation anesthetics that nonselectively activate TASK-3 and found that they may activate TASK-3 channels through different mechanisms. Finally, we transplanted the three residues A105, A108, and E157 into the TASK-1 channel, which resists NPBA activation, and the constructed mutant TASK-1(G105A, V108A, A157E) showed dramatically increased activation by NPBA, confirming the importance of these two distant clusters of residues. SIGNIFICANCE STATEMENT: TASK-3 channels conduct potassium and are involved in various physiological and pathological processes. However, the lack of selective modulators has hindered efforts to increase our understanding of the physiological roles of TASK-3 channels. By using a high-throughput screen, we identified NPBA as a potent and selective TASK-3 activator, and we show that NPBA is a more potent activator than terbinafine, the only reported TASK-3 selective activator to date. We also show here that NPBA has outstanding selectivity for TAS-3 channels. These characteristics make NPBA a promising pharmacological probe for research focused on defining TASK-3 channel function(s). In addition, we identified two distant clusters of residues as determinants of NPBA activation providing new molecular clues for the understanding of the gating mechanism of K2P channels.


Assuntos
Benzamidas/farmacologia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Motivos de Aminoácidos , Anestésicos Inalatórios/farmacologia , Animais , Benzamidas/química , Sítios de Ligação , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Técnicas de Patch-Clamp , Mutação Puntual , Canais de Potássio de Domínios Poros em Tandem/genética , Bibliotecas de Moléculas Pequenas/química
6.
J Clin Invest ; 128(3): 1043-1056, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29431731

RESUMO

Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.


Assuntos
Síndrome do QT Longo/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Canais de Potássio de Domínios Poros em Tandem/genética , Potenciais de Ação , Adolescente , Adulto , Animais , Arritmias Cardíacas/metabolismo , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Exoma , Saúde da Família , Feminino , Genes Modificadores , Estudos de Associação Genética , Genoma , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Linhagem , Fenótipo , Análise de Sequência de DNA
7.
J Physiol ; 595(17): 5875-5893, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28714121

RESUMO

KEY POINTS: The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT: The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein ßγ subunit (Gßγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cß as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.


Assuntos
Acetilcolina/fisiologia , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Tálamo/fisiologia , Quinases da Família src/fisiologia , Animais , Proteína Tirosina Quinase CSK , Feminino , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Masculino , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Receptores Muscarínicos/fisiologia , Transdução de Sinais , Regulação para Cima
8.
Am J Physiol Cell Physiol ; 311(6): C884-C894, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27653983

RESUMO

In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Glândula de Sal/metabolismo , Tubarões/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Cação (Peixe)/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Xenopus laevis/genética
9.
Br J Pharmacol ; 173(10): 1639-52, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26914156

RESUMO

BACKGROUND AND PURPOSE: Aristolochic acid (AristA) is found in plants used in traditional medicines to treat pain. We investigated the action of AristA on TREK and TRESK, potassium (K2P) channels, which are potential therapeutic targets in pain. Balkan endemic nephropathy (BEN) is a renal disease associated with AristA consumption. A mutation of TASK-2 (K2P 5.1) channels (T108P) is seen in some patients susceptible to BEN, so we investigated how both this mutation and AristA affected TASK-2 channels. EXPERIMENTAL APPROACH: Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of AristA. KEY RESULTS: TREK-1- and TREK-2-mediated currents were enhanced by AristA (100 µM), whereas TRESK was inhibited. Inhibition of TRESK did not depend on the phosphorylation of key intracellular serines but was completely blocked by mutation of bulky residues in the inner pore (F145A_F352A). The TASK-2_T108P mutation markedly reduced both current density and ion selectivity. A related mutation (T108C) had similar but less marked effects. External alkalization and application of flufenamic acid enhanced TASK-2 and TASK-2_T108C current but did not affect TASK-2_T108P current. AristA (300 µM) produced a modest enhancement of TASK-2 current. CONCLUSIONS AND IMPLICATIONS: Enhancement of TREK-1 and TREK-2 and inhibition of TRESK by AristA may contribute to therapeutically useful effects of this compound in pain. Whilst AristA is unlikely to interact directly with TASK-2 channels in BEN, loss of functional TASK-2 channels may indirectly increase susceptibility to AristA toxicity.


Assuntos
Ácidos Aristolóquicos/farmacologia , Nefropatia dos Bálcãs/tratamento farmacológico , Dor/tratamento farmacológico , Extratos Vegetais/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/isolamento & purificação , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Relação Estrutura-Atividade
10.
Am J Physiol Gastrointest Liver Physiol ; 308(7): G579-90, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25634809

RESUMO

Various colonic motor activities are thought to mediate propulsion and mixing/absorption of colonic content. The Japanese traditional medicine daikenchuto (TU-100), which is widely used for postoperative ileus in Japan, accelerates colonic emptying in healthy humans. Hydroxy-α sanshool (HAS), a readily absorbable active ingredient of TU-100 and a KCNK3/KCNK9/KCNK18 blocker as well as TRPV1/TRPA1 agonist, has been investigated for its effects on colonic motility. Motility was evaluated by intraluminal pressure and video imaging of rat proximal colons in an organ bath. Distribution of KCNKs was investigated by RT-PCR, in situ hybridization, and immunohistochemistry. Current and membrane potential were evaluated with use of recombinant KCNK3- or KCNK9-expressing Xenopus oocytes and Chinese hamster ovary cells. Defecation frequency in rats was measured. HAS dose dependently induced strong propulsive "squeezing" motility, presumably as long-distance contraction (LDC). TRPV1/TRPA1 agonists induced different motility patterns. The effect of HAS was unaltered by TRPV1/TRPA1 antagonists and desensitization. Lidocaine (a nonselective KCNK blocker) and hydroxy-ß sanshool (a geometrical isomer of HAS and KCNK3 blocker) also induced colonic motility as a rhythmic propagating ripple (RPR) and a LDC-like motion, respectively. HAS-induced "LDC," but not lidocaine-induced "RPR," was abrogated by a neuroleptic agent tetrodotoxin. KCNK3 and KCNK9 were located mainly in longitudinal smooth muscle cells and in neural cells in the myenteric plexus, respectively. Administration of HAS or TU-100 increased defecation frequency in normal and laparotomy rats. HAS may evoke strong LDC possibly via blockage of the neural KCNK9 channel in the colonic myenteric plexus.


Assuntos
Colo/inervação , Ácidos Graxos Insaturados/farmacologia , Fármacos Gastrointestinais/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Músculo Liso/inervação , Plexo Mientérico/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Defecação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Potenciais da Membrana , Plexo Mientérico/metabolismo , Oócitos , Panax , Extratos Vegetais/farmacologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Pressão , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção , Gravação em Vídeo , Xenopus , Zanthoxylum , Zingiberaceae
11.
Physiol Rev ; 95(1): 179-217, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25540142

RESUMO

K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Domínios Poros em Tandem/genética
12.
Pain ; 155(12): 2534-2544, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239074

RESUMO

Two-pore domain background K(+) channels (K2p or KCNK) produce hyperpolarizing currents that control cell membrane polarity and neuronal excitability throughout the nervous system. The TREK2 channel as well as the related TREK1 and TRAAK channels are mechanical-, thermal- and lipid-gated channels that share many regulatory properties. TREK2 is one of the major background channels expressed in rodent nociceptive neurons of the dorsal root ganglia that innervate the skin and deep body tissues, but its role in somatosensory perception and nociception has remained poorly understood. We now report that TREK2 is a regulatory channel that controls the perception of non aversive warm, between 40°C and 46°C, and moderate ambient cool temperatures, between 20°C and 25°C, in mice. TREK2 controls the firing activity of peripheral sensory C-fibers in response to changes in temperature. The role of TREK2 in thermosensation is different from that of TREK1 and TRAAK channels; rather, TREK2, TREK1, and TRAAK channels appear to have complementary roles in thermosensation. TREK2 is also involved in mechanical pain perception and in osmotic pain after sensitization by prostaglandin E2. TREK2 is involved in the cold allodynia that characterizes the neuropathy commonly associated with treatments with the anticancer drug oxaliplatin. These results suggest that positive modulation of the TREK2 channel may have beneficial analgesic effects in these neuropathic conditions.


Assuntos
Regulação da Expressão Gênica/genética , Percepção da Dor/fisiologia , Limiar da Dor/psicologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sensação Térmica/genética , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/fisiologia , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Medição da Dor , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Estimulação Física , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Sensação Térmica/efeitos dos fármacos
13.
Appl Biochem Biotechnol ; 172(6): 3253-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24510464

RESUMO

TWIK-related acid-sensitive potassium channels (TASK3) are pharmacological targets of CNS inflammation induced by acidification. They function as molecular switches between survival and death of neurons. In this report, TASK3 cloned from human brain cDNA was tagged with enhanced green fluorescent protein (eGFP), and the fusion gene was transiently expressed in human neuroblastoma SH-SY5Y cells. A cell line stably expressing TASK-eGFP fusion proteins was generated from transient expression cells by using fluorescence-activated cell sorting followed by antibiotic selection. The uniform expression of TASK3 fusion proteins was further confirmed by flow cytometry. Moreover, the localization of TASK3 tagged with eGFP was checked by confocal microcopy. TASK3-eGFP fusion proteins are observed on the SH-SY5Y cell membrane. The strategies using eGFP as a fusion tag facilitate the monitoring of the TASK3 expression and enable the successful employment of FACS for screening and construction of cell lines stably expressing TASK3. The TASK3 overexpression cell line will lay a fundamental for the in vitro evaluation of TASK3 function during hypoxic/ischemic injury.


Assuntos
Expressão Gênica , Canais de Potássio de Domínios Poros em Tandem/genética , Proteínas Recombinantes de Fusão/genética , Química Encefálica , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Confocal , Neurônios/citologia , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/biossíntese , Proteínas Recombinantes de Fusão/biossíntese
14.
Life Sci ; 100(1): 18-24, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24508638

RESUMO

AIMS: To investigate the effects of n-3 polyunsaturated fatty acids on cerebral circulation, ovariectomized (OVX) rats were administered with phospholipids in krill oil (KPL) or triglycerides in fish oil (FTG); effects on the Ca(2+) regulating system in their basilar artery (BA) were then analyzed. MAIN METHODS: The rats were divided into 4 groups: control, OVX, OVX given KPL (OVXP), and OVX given FTG (OVXT) orally, daily for 2weeks. Time dependent relaxation (TDR) of contractile response to 5HT in BA was determined myographically, Na(+)/Ca(2+) exchanger (NCX) 1 mRNA expression was determined by real time PCR, and nucleotides were analyzed by HPLC. KEY FINDINGS: The level of TDR in OVX that was significantly lower in the control was inhibited by l-NAME and indomethacin; TEA inhibited TDR totally in the control but only partly in OVXP and OVXT. Relaxation induced by the addition of 5mM KCl to the BA pre-contracted with 5-HT was inhibited by TEA in the controls, OVXP and OVXT, but not in OVX. Overexpression of NCX1 mRNA in the BA from OVX was significantly inhibited by FTG. The ratio of ADP/ATP in cerebral arteries from OVX was significantly inhibited by KPL and FTG. Levels of triglyceride and arachidonic acid in the plasma of OVX increased, but were significantly inhibited by KPL and FTG. SIGNIFICANCE: Ovarian dysfunction affects Ca(2+) activated-, ATP-sensitive-K(+) channels and NCX1, which play crucial roles in the autoregulation of cerebral blood flow. Also, KPL may become as good a supplement as FTG for postmenopausal women.


Assuntos
Cálcio/metabolismo , Fármacos Cardiovasculares/farmacologia , Artérias Cerebrais/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Ácidos Graxos Ômega-3/farmacologia , Triglicerídeos/farmacologia , Tecido Adiposo/metabolismo , Animais , Artérias Cerebrais/metabolismo , Artérias Cerebrais/fisiopatologia , Córtex Cerebral/irrigação sanguínea , Avaliação Pré-Clínica de Medicamentos , Euphausiacea/química , Feminino , Expressão Gênica/efeitos dos fármacos , Homeostase , Técnicas In Vitro , NG-Nitroarginina Metil Éster/farmacologia , Ovariectomia , Pós-Menopausa , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Wistar , Serotonina/farmacologia , Serotoninérgicos/farmacologia , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação
15.
Epilepsia ; 55(2): 203-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24299204

RESUMO

OBJECTIVE: To develop a constitutively active K(+) leak channel using TREK-1 (TWIK-related potassium channel 1; TREK-M) that is resistant to compensatory down-regulation by second messenger cascades, and to validate the ability of TREK-M to silence hyperactive neurons using cultured hippocampal neurons. To test if adenoassociated viral (AAV) delivery of TREK-M could reduce the duration of status epilepticus and reduce neuronal death induced by lithium-pilocarpine administration. METHODS: Molecular cloning techniques were used to engineer novel vectors to deliver TREK-M via plasmids, lentivirus, and AAV using a cytomegalovirus (CMV)-enhanced GABRA4 promoter. Electrophysiology was used to characterize the activity and regulation of TREK-M in human embryonic kidney (HEK-293) cells, and the ability to reduce spontaneous activity in cultured hippocampal neurons. Adult male rats were injected bilaterally with self-complementary AAV particles composed of serotype 5 capsid into the hippocampus and entorhinal cortex. Lithium-pilocarpine was used to induce status epilepticus. Seizures were monitored using continuous video-electroencephalography (EEG) monitoring. Neuronal death was measured using Fluoro-Jade C staining of paraformaldehyde-fixed brain slices. RESULTS: TREK-M inhibited neuronal firing by hyperpolarizing the resting membrane potential and decreasing input resistance. AAV delivery of TREK-M decreased the duration of status epilepticus by 50%. Concomitantly it reduced neuronal death in areas targeted by the AAV injection. SIGNIFICANCE: These findings demonstrate that TREK-M can silence hyperexcitable neurons in the brain of epileptic rats and treat acute seizures. This study paves the way for an alternative gene therapy treatment of status epilepticus, and provides the rationale for studies of AAV-TREK-M's effect on spontaneous seizures in chronic models of temporal lobe epilepsy.


Assuntos
Técnicas de Transferência de Genes , Neurônios/patologia , Canais de Potássio de Domínios Poros em Tandem/genética , Estado Epiléptico/genética , Estado Epiléptico/prevenção & controle , Animais , Morte Celular/genética , Polaridade Celular/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Humanos , Masculino , Inibição Neural/genética , Neurônios/fisiologia , Canais de Potássio de Domínios Poros em Tandem/administração & dosagem , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/patologia
16.
Nat Med ; 19(9): 1161-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23933981

RESUMO

The blood-brain barrier (BBB) is an integral part of the neurovascular unit (NVU). The NVU is comprised of endothelial cells that are interconnected by tight junctions resting on a parenchymal basement membrane ensheathed by pericytes, smooth muscle cells and a layer of astrocyte end feet. Circulating blood cells, such as leukocytes, complete the NVU. BBB disruption is common in several neurological diseases, but the molecular mechanisms involved remain largely unknown. We analyzed the role of TWIK-related potassium channel-1 (TREK1, encoded by KCNK2) in human and mouse endothelial cells and the BBB. TREK1 was downregulated in endothelial cells by treatment with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Blocking TREK1 increased leukocyte transmigration, whereas TREK1 activation had the opposite effect. We identified altered mitogen-activated protein (MAP) kinase signaling, actin remodeling and upregulation of cellular adhesion molecules as potential mechanisms of increased migration in TREK1-deficient (Kcnk2(-/-)) cells. In Kcnk2(-/-) mice, brain endothelial cells showed an upregulation of the cellular adhesion molecules ICAM1, VCAM1 and PECAM1 and facilitated leukocyte trafficking into the CNS. Following the induction of experimental autoimmune encephalomyelitis (EAE) by immunization with a myelin oligodendrocyte protein (MOG)35-55 peptide, Kcnk2(-/-) mice showed higher EAE severity scores that were accompanied by increased cellular infiltrates in the central nervous system (CNS). The severity of EAE was attenuated in mice given the amyotrophic lateral sclerosis drug riluzole or fed a diet enriched with linseed oil (which contains the TREK-1 activating omega-3 fatty acid α-linolenic acid). These beneficial effects were reduced in Kcnk2(-/-) mice, suggesting TREK-1 activating compounds may be used therapeutically to treat diseases related to BBB dysfunction.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Actinas/metabolismo , Animais , Anticonvulsivantes/farmacologia , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/imunologia , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas , Regulação para Baixo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Células HEK293 , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Interferon-alfa/farmacologia , Leucócitos/metabolismo , Óleo de Semente do Linho/administração & dosagem , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Canais de Potássio de Domínios Poros em Tandem/genética , Riluzol/farmacologia , Migração Transendotelial e Transepitelial
17.
Biochim Biophys Acta ; 1818(1): 33-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21963410

RESUMO

Two-pore-domain potassium (K(2P)) channels mediate K(+) background currents that stabilize the resting membrane potential and contribute to repolarization of action potentials in excitable cells. The functional significance of K(2P) currents in cardiac electrophysiology remains poorly understood. Danio rerio (zebrafish) may be utilized to elucidate the role of cardiac K(2P) channels in vivo. The aim of this work was to identify and functionally characterize a zebrafish otholog of the human K(2P)10.1 channel. K(2P)10.1 orthologs in the D. rerio genome were identified by database analysis, and the full zK(2P)10.1 coding sequence was amplified from zebrafish cDNA. Human and zebrafish K(2P)10.1 proteins share 61% identity. High degrees of conservation were observed in protein domains relevant for structural integrity and regulation. K(2P)10.1 channels were heterologously expressed in Xenopus oocytes, and currents were recorded using two-electrode voltage clamp electrophysiology. Human and zebrafish channels mediated K(+) selective background currents leading to membrane hyperpolarization. Arachidonic acid, an activator of hK(2P)10.1, induced robust activation of zK(2P)10.1. Activity of both channels was reduced by protein kinase C. Similar to its human counterpart, zK(2P)10.1 was inhibited by the antiarrhythmic drug amiodarone. In summary, zebrafish harbor K(2P)10.1 two-pore-domain K(+) channels that exhibit structural and functional properties largely similar to human K(2P)10.1. We conclude that the zebrafish represents a valid model to study K(2P)10.1 function in vivo.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Amiodarona/farmacologia , Animais , Antiarrítmicos/farmacologia , Ácido Araquidônico/farmacologia , Sequência Conservada , DNA Complementar/biossíntese , Eletrofisiologia , Expressão Gênica , Humanos , Potenciais da Membrana/efeitos dos fármacos , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Filogenia , Plasmídeos , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Proteína Quinase C/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
18.
Pflugers Arch ; 463(1): 89-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083644

RESUMO

Modulation of the standing outward current (I (SO)) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K(+) (K(2P)) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K(+) (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K(+) (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M(1)AChR-(pirenzepine, MT-7) and M(3)AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCß (PI-PLC) inhibitors (U73122, ET-18-OCH(3)), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5'-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on I (SO). Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M(1)AChR/M(3)AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Colinérgicos/fisiologia , Transdução de Sinais/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica/genética , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/antagonistas & inibidores , Guanosina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Núcleos Laterais do Tálamo/citologia , Núcleos Laterais do Tálamo/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Técnicas de Patch-Clamp , Fosfolipase C beta/antagonistas & inibidores , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Long-Evans , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tálamo/citologia , Tionucleotídeos/farmacologia
19.
J Physiol ; 589(Pt 15): 3709-20, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21669980

RESUMO

Potassium-selective ion channels regulate cardiac and neuronal excitability by stabilizing the resting membrane potential and by modulating shape and frequency of action potentials. The delicate control of membrane voltage requires structural and functional diversity of K+ channel subunits expressed in a given cell. Here we reveal a previously unrecognized biological mechanism. Tissue-specific mRNA splicing regulates alternative translation initiation (ATI) of human K(2P)10.1 K+ background channels via recombination of 5 nucleotide motifs. ATI-dependent expression of full-length protein or truncated subunits initiated from two downstream start codons determines macroscopic current amplitudes and biophysical properties of hK(2P)10.1 channels. The interaction between hK(2P)10.1 mRNA splicing, translation and function increases K+ channel complexity and is expected to contribute to electrophysiological plasticity of excitable cells.


Assuntos
Códon de Iniciação , Iniciação Traducional da Cadeia Peptídica/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Biossíntese de Proteínas , Processamento Alternativo , Sequência de Aminoácidos , Animais , Células Cultivadas , DNA Complementar/genética , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Motivos de Nucleotídeos , Isoformas de Proteínas , Sequência de Oligopirimidina na Região 5' Terminal do RNA , Alinhamento de Sequência/métodos , Xenopus laevis
20.
Acta Physiol (Oxf) ; 202(2): 185-92, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21306568

RESUMO

AIM: Earlier studies have shown that TREK-1 and TREK-2 (TREKs), members of the two-pore domain K(+) (K(2P)) channel family that are highly expressed under pathological conditions, are activated by neuroprotective agents. Baicalein and wogonin, oriental flavonoids originating from the root of the medicinal herb Scutellaria baicalensis, are known to have beneficial effects for neuroprotection. However, little is known about the effects of baicalein and wogonin on ion channels including TREKs. We investigated whether baicalein and wogonin modulate the TREK-2 channel, which has been less studied than TREK-1. METHODS: Single-channel recordings were performed in COS-7 cells transfected with rat TREK-2 and analyzed baicalein- or wogonin-induced channel activity. RESULTS: We found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment, P < 0.05), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. CONCLUSION: These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.


Assuntos
Flavanonas/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Flavanonas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos , Riluzol/metabolismo , Riluzol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA