Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118217, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641072

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The natural anodyne Ligustilide (Lig), derived from Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort., has been traditionally employed for its analgesic properties in the treatment of dysmenorrhea and migraine, and rheumatoid arthritis pain. Despite the existing reports on the correlation between TRP channels and the analgesic effects of Lig, a comprehensive understanding of their underlying mechanisms of action remains elusive. AIM OF THE STUDY: The objective of this study is to elucidate the mechanism of action of Lig on the analgesic target TRPA1 channel. METHODS: The therapeutic effect of Lig was evaluated in a rat acute soft tissue injury model. The analgesic target was identified through competitive inhibition of TRP channel agonists at the animal level, followed by Fluo-4/Ca2+ imaging on live cells overexpressing TRP proteins. The potential target was verified through in-gel imaging, colocalization using a Lig-derived molecular probe, and a drug affinity response target stability assay. The binding site of Lig was identified through protein spectrometry and further analyzed using molecular docking, site-specific mutation, and multidisciplinary approaches. RESULTS: The administration of Lig effectively ameliorated pain and attenuated oxidative stress and inflammatory responses in rats with soft tissue injuries. Moreover, the analgesic effects of Lig were specifically attributed to TRPA1. Mechanistic studies have revealed that Lig directly activates TRPA1 by interacting with the linker domain in the pre-S1 region of TRPA1. Through metabolic transformation, 6,7-epoxyligustilide (EM-Lig) forms a covalent bond with Cys703 of TRPA1 at high concentrations and prolonged exposure time. This irreversible binding prevents endogenous electrophilic products from entering the cysteine active center of ligand-binding pocket of TRPA1, thereby inhibiting Ca2+ influx through the channel opening and ultimately relieving pain. CONCLUSIONS: Lig selectively modulates the TRPA1 channel in a bimodal manner via non-electrophilic/electrophilic metabolic conversion. The epoxidized metabolic intermediate EM-Lig exerts analgesic effects by irreversibly inhibiting the activation of TRPA1 on sensory neurons. These findings not only highlight the analgesic mechanism of Lig but also offer a novel nucleophilic attack site for the development of TRPA1 antagonists in the pre-S1 region.


Assuntos
4-Butirolactona , Analgésicos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Animais , Canal de Cátion TRPA1/metabolismo , Analgésicos/farmacologia , Analgésicos/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/química , Ratos , Humanos , Dor/tratamento farmacológico , Cisteína/farmacologia , Cisteína/química , Masculino , Simulação de Acoplamento Molecular , Células HEK293 , Sítios de Ligação , Feminino
2.
J Ethnopharmacol ; 324: 117741, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224794

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY: The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS: Lipopolysaccharide (LPS) (80µg/50 µL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS: ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1ß. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION: ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.


Assuntos
Lipopolissacarídeos , Canais de Cátion TRPV , Camundongos , Animais , Canal de Cátion TRPA1/metabolismo , Lipopolissacarídeos/toxicidade , Pós/uso terapêutico , Simulação de Acoplamento Molecular , Canais de Cátion TRPV/metabolismo , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Tosse/metabolismo , Inflamação/patologia , Anti-Inflamatórios/efeitos adversos
3.
Cells ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296632

RESUMO

Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Neuralgia , Canais de Potencial de Receptor Transitório , Feminino , Animais , Camundongos , Esclerose Múltipla/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Canal de Cátion TRPA1/metabolismo , Hiperalgesia/tratamento farmacológico , Nociceptividade , Canais de Potencial de Receptor Transitório/metabolismo , Doenças Neuroinflamatórias , Medula Espinal/metabolismo , Neuralgia/tratamento farmacológico
4.
Biomed Pharmacother ; 161: 114284, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868017

RESUMO

BACKGROUND AND AIMS: Patients suffering from cancer induced bone pain (CIBP) have a poor quality of life that is exacerbated by the lack of effective therapeutic drugs. Monkshood is a flowering plant that has been used in traditional Chinese medicine where it has been used to relieve cold pain. Aconitine is the active component of monkshood, but the molecular mechanism for how this compound reduces pain is unclear. METHODS AND RESULTS: In this study, we employed molecular and behavioral experiments to explore the analgesic effect of aconitine. We observed aconitine alleviated cold hyperalgesia and AITC (allyl-isothiocyanate, TRPA1 agonist) induced pain. Interestingly, we found aconitine directly inhibits TRPA1 activity in calcium imaging studies. More importantly, we found aconitine alleviated cold and mechanical allodynia in CIBP mice. Both the activity and expression of TRPA1 in L4 and L5 DRG (Dorsal Root Ganglion) neurons were reduced with the treatment of aconitine in the CIBP model. Moreover, we observed aconiti radix (AR) and aconiti kusnezoffii radix (AKR), both components of monkshood that contain aconitine, alleviated cold hyperalgesia and AITC induced pain. Furthermore, both AR and AKR alleviated CIBP induced cold allodynia and mechanical allodynia. CONCLUSIONS: Taken together, aconitine alleviates both cold and mechanical allodynia in cancer induced bone pain via the regulation of TRPA1. This research on the analgesic effect of aconitine in cancer induced bone pain highlights a component of a traditional Chinese medicine may have clinical applications for pain.


Assuntos
Dor do Câncer , Neoplasias , Camundongos , Animais , Hiperalgesia/metabolismo , Aconitina/efeitos adversos , Qualidade de Vida , Canal de Cátion TRPA1/metabolismo , Dor/tratamento farmacológico , Dor/etiologia , Dor/metabolismo , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Analgésicos/efeitos adversos
5.
Lipids Health Dis ; 22(1): 6, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641489

RESUMO

BACKGROUND: Curcumin (Cur) is a bioactive dietary polyphenol of turmeric with various biological activities against several cancers. Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Intestinal cholesterol homeostasis is associated with CRC. Chemotherapy for CRC is related to varied adverse effects. Therefore, natural products with anti-cancer properties represent a potential strategy for primary prevention of CRC. METHODS: The present study used Cur as a therapeutic approach against CRC using the Caco-2 cell line. The cells were treated with different concentrations of Cur for different duration of time and then the proliferation ability of cells was assessed using Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine assays. Oil red O staining and cholesterol assay kit were used to evaluate cellular lipid content and cholesterol outward transportation. Finally, the protein expressions of cholesterol transport-related protein and signal transduction molecules were assessed using Western blot assay. RESULTS: Cur inhibited cell proliferation in Caco-2 cells in a dose- and time-dependent manner by activating the transient receptor potential cation channel subfamily A member 1 (TRPA1) channel. Activation of the TRPA1 channel led to increased intracellular calcium, peroxisome proliferator-activated receptor gamma (PPARγ) upregulation, and the subsequent downregulation of the specificity protein-1 (SP-1)/sterol regulatory element-binding protein-2 (SREBP-2)/Niemann-Pick C1-like 1 (NPC1L1) signaling pathway-related proteins, and finally reduced cholesterol absorption in Caco-2 cells. CONCLUSIONS: Cur inhibits cell proliferation and reduces cholesterol absorption in Caco-2 cells through the Ca2+/PPARγ/SP-1/SREBP-2/NPC1L1 signaling by activating the TRPA1 channel, suggesting that Cur can be used as a dietary supplement for the primary prevention of CRC. In Caco-2 cells, Cur first stimulates calcium influx by activating the TRPA1 channel, further upregulates PPARγ and downregulates SP-1/SREBP-2/NPC1L1 signaling pathway, and finally inhibits the absorption of cholesterol. TRPA1, transient receptor potential cation channel subfamily A member 1; NPC1L1, Niemann-Pick C1-like 1; PPARγ, peroxisome proliferator-activated receptor gamma; SP-1, specificity protein-1; SREBP-2, sterol regulatory element-binding protein-2; Cur, curcumin.


Assuntos
Curcumina , Proteínas de Membrana Transportadoras , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana/metabolismo , Células CACO-2 , Curcumina/farmacologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Cálcio/metabolismo , Colesterol/metabolismo , Proliferação de Células , Absorção Intestinal
6.
J Ethnopharmacol ; 305: 116065, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36587876

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Neuropathic pain can be debilitating and drastically affects the quality of life of those patients suffering from this condition. The Chinese herb Notopterygium incisum Ting ex H.T. Chang has long been used to disperse "cold". One under examined clinical feature of neuropathic pain is sensitivity to cold. Patients with neuropathic pain or arthritis usually describe a worsening of symptoms during the winter. AIMS OF THIS STUDY: We proposed to test the hypothesis that Notopterygium incisum has a positive effect on the cold sensitivity found in neuropathic pain. MATERIALS AND METHODS: In this study, we established chronic constriction injury (CCI) and cisplatin induced neuropathic pain mice models. Behavioral experiments and physiological examination methods were employed to investigate the effect of water extract of Notopterygium incisum (WN) on cold pain. RESULTS: We found WN reduced cold pain and allyl isothiocyanate (AITC, Transient Receptor Potential A1 (TRPA1 agonist)) induced pain. WN inhibited AITC induced calcium response in HEK 293 cells transfected with TRPA1 and dorsal root ganglion (DRG) neurons. Moreover, we found that oral administration of WN reduced cold allodynia and mechanical allodynia caused by (CCI) and cisplatin induced neuropathic pain. We also observed that oral administration of WN decreased responses to AITC in DRG neurons as well as expression of TRPA1 in the WN treated neuropathic pain model. CONCLUSIONS: The present study provide evidence that Notopterygium incisum alleviates cold allodynia in CCI and cisplatin induced neuropathic pain mouse models. WN alleviated neuropathic pain induced cold allodynia via directly modulating TRPA1. Our findings identify WN as a promising candidate for treating neuropathic pain that highlights a new mechanism of Notopterygium incisum on 'disperse cold'.


Assuntos
Hiperalgesia , Neuralgia , Camundongos , Humanos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Cisplatino , Células HEK293 , Qualidade de Vida , Canal de Cátion TRPA1/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo
7.
J Ethnopharmacol ; 307: 116182, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706935

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Entada phaseoloides (Linn.) Merr. commonly named "Ke-teng-zi" is a traditional Chinese folk medicine and reported to treat dermatitis, spasm, and headache. However, the exact effect and the mechanism of Ke-teng-zi on the treatment of dermatitis is unclear. AIM OF THE STUDY: To elucidate the antipruritic effect and molecular mechanisms of Ke-teng-zi on the treatment of allergic contact dermatitis (ACD). MATERIALS AND METHODS: The main components of the n-butanol fraction of 70% ethanol extract from Ke-teng-zi (abbreviated as KB) were analyzed by HPLC. The chloroquine (CQ)-induced acute itch and squaraine dibutyl ester (SADBE)-induced ACD chronic itch in mice was established, and the TNF-α/IFN-γ stimulated Human keratinocytes (HaCaT) were used to evaluate the antipruritic and anti-inflammatory effects of KB. Behavioral tests, lesion scoring, and histology were also examined. The expression levels of molecules in MAPK and JAK/STAT3 pathways, the mRNA levels of chemokines and cytokines in both the skin of ACD mice and the HaCaT cells were detected by western blot and qPCR. Furthermore, whole-cell patch-clamp recordings in TRPA1-tranfected HEK293T cells were used to elucidate the effect of KB on TRPA1 channels. TRPA1 siRNA was used to evaluate the role of TRPA1 in the anti-inflammatory effect of KB in keratinocytes. RESULTS: The main compounds in KB could bind to the active sites of TRPA1 mainly through hydrogen bond and hydrophobic bond interactions. KB could inhibit the scratching behavior in CQ-induced acute itch, and the inhibitory effect of KB was blocked by TRPA1 inhibitor HC-030031. In addition, KB significantly decreased the scratching bouts of ACD mice, reduced the skin lesion scores, mast cells degranulation, and epidermal thickening, inhibited the production of inflammatory chemokines/cytokines and CGRP, and down-regulated the levels of p-ERK1/2, p-p38, and p-STAT3, compared to the ACD mice. Moreover, continuous application of KB induced the desensitization of TRPA1 channels. Also, KB inhibited the expression of p-ERK1/2, p-p38, and p-STAT3, and down-regulated the expression of inflammatory chemokines and cytokines in vitro, which were reversed by the TRPA1 siRNA. CONCLUSIONS: KB alleviated the pruritus and skin inflammation in ACD mice through TRPA1 channels desensitization and down-regulation of intracellular MAPK and JAK/STAT3 signaling pathways. Our results suggested that Ke-teng-zi is a potential drug for the treatment of inflammatory skin diseases such as ACD.


Assuntos
Antipruriginosos , Dermatite Alérgica de Contato , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Antipruriginosos/uso terapêutico , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatite Alérgica de Contato/tratamento farmacológico , Células HEK293 , Prurido , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Canal de Cátion TRPA1/metabolismo , Medicina Tradicional Chinesa , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
8.
J Ethnopharmacol ; 298: 115667, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ligustrazine, an important active ingredient extracted from Ligusticum chuanxiong hort, has been widely used to cure cardiovascular diseases and exerts an analgesic effect. AIMS OF THIS STUDY: The aim of this study is to investigate whether ligustrazine mitigates chronic venous disease (CVeD)-induced pain and to explore its underlying mechanisms. MATERIALS AND METHODS: A mouse model of CVeD was established by vein ligature. Ligustrazine was administered intraperitoneally to CVeD mice for a single injection (20 mg/kg, 100 mg/kg, and 200 mg/kg) or once a day for three weeks (100 mg/kg and 200 mg/kg), and TRPA1 overexpressed HEK 293 cells were treated with ligustrazine (600 µM) in the presence of mustard oil (100 µM) for 2 min. Patch clamp and calcium imaging were used to measure the inhibitory response of ligustrazine on DRG neurons and TRPA1 transfected HEK293 cells. RESULTS: The present results showed that mice receiving vein ligature surgery exhibited obvious pain hypersensitivity to mechanical, cold and thermal stimuli, whereas ligustrazine significantly reversed the pain hyperalgesia in CVeD mice. Furthermore, ligustrazine desensitized transient receptor potential ankyrin 1 (TRPA1) activity in the dorsal root ganglion (DRG) neurons, resulting in suppressing the DRG neuronal excitability in the CVeD mice. However, ligustrazine could not directly inhibit the response of TRPA1 transfected HEK293 cells to mustard oil. Strikingly, ligustrazine restricted the macrophage infiltration and decreased the mRNA levels of Interleukin-1ß (IL-1ß) and NOD-like receptor protein 3 (NLRP3) in the DRG neurons of the CVeD mice. CONCLUSIONS: The present study provided evidence that ligustrazine alleviated pain hypersensitivity to mechanical, cold and thermal stimuli in CVeD mice. Ligustrazine could weaken the activity of TRPA1 in the DRG to mitigate CVeD-induced pain hyperalgesia mainly through inhibition of inflammation. Our findings identify that ligustrazine may be a new therapeutic agent for the treatment of CVeD-induced pain.


Assuntos
Dor Crônica , Gânglios Espinais , Animais , Dor Crônica/metabolismo , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Inflamação/metabolismo , Camundongos , Canal de Cátion TRPA1/metabolismo
9.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269566

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with chronic relapsing symptoms. This study investigated the effects of Lycium barbarum polysaccharides (LBP) and capsaicin (CAP) in dextran sulfate sodium (DSS)-induced UC rats. Rats were divided into normal, DSS-induced UC, and UC treated with 100 mg LBP/kg bw, 12 mg CAP/kg bw, or 50 mg LBP/kg bw and 6 mg CAP/kg bw. Rats were fed LBP or CAP orally by gavage for 4 weeks, and UC model was established by feeding 5% DSS in drinking water for 6 days during week 3. Oral CAP and mixture significantly reduced disease activity index. Oral LBP significantly decreased serum malondialdehyde, interleukin (IL)-6, colonic tumor necrosis factor (TNF)-α levels, and protein expression of transient receptor potential cation channel V1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1), but increased serum catalase activity. Oral CAP significantly suppressed serum IL-6, colonic TRPV1 and TRPA1 protein expression, but elevated IL-10 levels, serum superoxide dismutase and catalase activities. The mixture of LBP and CAP significantly reduced serum IL-6, colonic TNF-α and TRPA1 protein. In conclusion, administration of LBP and/or CAP attenuate DSS-induced UC symptoms through inhibiting oxidative stress, proinflammatory cytokines, and protein expression of TRPV1 and TRPA1.


Assuntos
Capsaicina/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas de Fase Aguda/metabolismo , Animais , Capsaicina/farmacologia , Proteínas de Transporte/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-10/metabolismo , Interleucina-6/sangue , Masculino , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
10.
J Pharm Pharmacol ; 73(12): 1617-1629, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718677

RESUMO

OBJECTIVES: This study aimed to discover the active compounds of Sophora flavescens Ait. (SF), the anti-itch effects and underlying mechanisms of oxymatrine (OMT), one of the bioactive compounds from SF. METHODS: Dorsal root ganglion cell membrane immobilized chromatography was used to screen potential anti-pruritic active compounds from SF. The scratching behaviour was analysed to systematically study the anti-pruritic effects of OMT in chloroquine- (CQ), peptide Ser-Leu-Ile-Gly-Arg-Leu- (SLIGRL), histamine- (HIS) and allyl-isothiocyanate-(AITC)-induced itch mice models. Real-time quantitative PCR, in-vivo study and molecular docking were employed to explore the underlying mechanisms. KEY FINDINGS: All in all, 21 compounds of SF were identified and 5 potential bioactive compounds were discovered. OMT significantly reduced scratching bouts in two HIS-independent itch models induced by CQ and SLIGRL but was not effective in the HIS-induced itch model. OMT reduced scratching bouts in a dose-dependent manner and decreased the messenger RNA (mRNA) expression of transient receptor potential ankyrin 1 (TRPA1) channel in two HIS-independent itch models; in addition, OMT reduced the wipes and scratching bouts induced by AITC. CONCLUSIONS: This study discovered five potential anti-pruritic compounds including OMT in the SF extract, and OMT has strong anti-pruritic effects in HIS-independent itch via TRPA1 channel.


Assuntos
Alcaloides/uso terapêutico , Antipruriginosos/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Prurido/tratamento farmacológico , Quinolizinas/uso terapêutico , Sophora/química , Canal de Cátion TRPA1/metabolismo , Alcaloides/farmacologia , Animais , Antipruriginosos/farmacologia , Membrana Celular , Cloroquina , Cromatografia/métodos , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Gânglios Espinais , Histamina , Humanos , Isotiocianatos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oligopeptídeos , Extratos Vegetais/farmacologia , Prurido/induzido quimicamente , Quinolizinas/farmacologia , RNA Mensageiro/metabolismo
11.
Neurosci Lett ; 757: 135982, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34023406

RESUMO

Polysulfide (PS), an endogenous sulfur compound, generated by oxidation of hydrogen sulfide, has a stimulatory action on the nociceptive TRPA1 channel. TRPA1 is also activated by reactive oxygen species such as hydrogen peroxide (H2O2) produced during inflammation. Here, we examined the effect of PS on H2O2-induced responses in native and heterologously expressed TRPA1 using a cell-based calcium assay. We also carried out behavioral experiments in vivo. In mouse sensory neurons, H2O2 elicited early TRPA1-dependent and late TRPA1-independent increases of [Ca2+]i. The former was suppressed by the pretreatment with PS. In cells heterologously expressed TRPA1, PS suppressed [Ca2+]i responses to H2O2. Simultaneous measurement of [Ca2+]i and the intracellular PS level revealed that scavenging effect of PS was not related to the inhibitory effect. Removal of extracellular Ca2+, a calmodulin inhibitor and dithiothreitol attenuated the inhibitory effect of PS. Pretreatment with PS diminished nociceptive behaviors induced by H2O2. The present data suggest that PS suppresses oxidative stress-induced TRPA1 activation due to cysteine modification and Ca2+/calmodulin signaling. Thus, endogenous sulfurs may have regulatory roles in nociception via functional changes in TRPA1 under inflammatory conditions.


Assuntos
Analgésicos/farmacologia , Nociceptividade/efeitos dos fármacos , Sulfetos/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
12.
Biomolecules ; 11(4)2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920609

RESUMO

Spirulina platensis is a "super-food" and has attracted researchers' attention due to its anti-inflammatory, antioxidant, and analgesic properties. Herein, we investigated the antinociceptive effects of Spirulina in different rodent behavior models of inflammatory pain. Male Swiss mice were treated with Spirulina (3-300 mg/kg, p.o.), indomethacin (10 mg/kg, p.o.), or vehicle (0.9% NaCl 10 mL/kg). Behavioral tests were performed with administration of acetic acid (0.6%, i.p.), formalin 2.7% (formaldehyde 1%, i.pl.), menthol (1.2 µmol/paw, i.pl.), cinnamaldehyde (10 nmol/paw, i.pl.), capsaicin (1.6 µg/paw, i.pl.), glutamate (20 µmol/paw, i.pl.), or naloxone (1 mg/kg, i.p.). The animals were also exposed to the rotarod and open field test to determine possible effects of Spirulina on locomotion and motor coordination. The quantitative phytochemical assays exhibited that Spirulina contains significant concentrations of total phenols and flavonoid contents, as well as it showed a powerful antioxidant effect with the highest scavenging activity. Oral administration of Spirulina completely inhibited the abdominal contortions induced by acetic acid (ED50 = 20.51 mg/kg). Spirulina treatment showed significant inhibition of formalin-induced nociceptive behavior during the inflammatory phase, and the opioid-selective antagonist markedly blocked this effect. Furthermore, our data indicate that the mechanisms underlying Spirulina analgesia appear to be related to its ability to modulate TRMP8 and TRPA1, but not by TRPV1 or glutamatergic system. Spirulina represents an orally active and safe natural analgesic that exhibits great therapeutic potential for managing inflammatory pain disorders.


Assuntos
Analgésicos/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor Nociceptiva/tratamento farmacológico , Extratos Vegetais/farmacologia , Spirulina/química , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPM/metabolismo , Analgésicos/uso terapêutico , Animais , Capsaicina/farmacologia , Masculino , Camundongos , Naloxona/farmacologia , Nociceptividade/efeitos dos fármacos , Extratos Vegetais/uso terapêutico
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 538-546, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693534

RESUMO

Peripheral inflammation is always accompanied by a noxious sensation, either pain or itch, providing a protective warning for the occurrence of pathological changes; however, the mechanisms determining whether pain, itch, or both will be elicited under certain inflammatory statuses are still far from clear. Complete Freund's adjuvant (CFA) contains heat killed and dried Mycobacterium tuberculosis widely used to induce inflammatory pain models, but how CFA treatment affects itch sensation and the possible mechanisms are still unclear. In this study, using itch behavior testing and calcium imaging, we showed that both the behaviors and calcium responses associated with Transient Receptor Potential Vanilloid 1 (TRPV1)-mediated histamine-dependent itch and Transient Receptor Potential Ankyrin 1 (TRPA1)-mediated histamine-independent itch were significantly suppressed by CFA treatment. Furthermore, to explore the possible cellular mechanisms, high-throughput single-cell RNA sequencing and real-time PCR were used to detect CFA-induced changes of itch-related genes in dorsal root ganglion (DRG) neurons. Our results revealed that although both nociceptive Trpv1+ and Trpa1+ DRG neurons were increased after CFA treatment, most known pruriceptors, including Hrh1+, Mrgpra3+, Mrgprd+, Htr3a+, Htr1f+, IL31ra+, Osmr+, and Lpar3+ DRG neurons, were significantly decreased, which may explain that CFA treatment caused itch suppression. This study indicated that itch sensation was affected after CFA treatment, although negatively, and comprehensive but not specific suppression of different pruriceptors was observed after CFA treatment, suggesting that a unified adaptive change of increased pain and decreased itch will occur simultaneously under CFA-induced inflammatory conditions.


Assuntos
Adjuvante de Freund/farmacocinética , Prurido/tratamento farmacológico , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Masculino , Camundongos , Prurido/metabolismo , Prurido/patologia
14.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540826

RESUMO

Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Glicolipídeos/uso terapêutico , Hiperalgesia/prevenção & controle , Ceratite/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptor 4 Toll-Like/antagonistas & inibidores , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Glicolipídeos/farmacologia , Células HEK293 , Humanos , Hiperalgesia/etiologia , Ceratite/induzido quimicamente , Ceratite/patologia , Lipopolissacarídeos/toxicidade , Antígeno 96 de Linfócito/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Modelos Moleculares , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Conformação Proteica , Células RAW 264.7 , Distribuição Aleatória , Nervo Isquiático/lesões , Canal de Cátion TRPA1/metabolismo
15.
Biomolecules ; 12(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35053150

RESUMO

Transient receptor potential (TRP) channels are critical receptors in the transduction of nociceptive stimuli. The microenvironment of diverse types of cancer releases substances, including growth factors, neurotransmitters, and inflammatory mediators, which modulate the activity of TRPs through the regulation of intracellular signaling pathways. The modulation of TRP channels is associated with the peripheral sensitization observed in patients with cancer, which results in mild noxious sensory stimuli being perceived as hyperalgesia and allodynia. Secondary metabolites derived from plant extracts can induce the activation, blocking, and desensitization of TRP channels. Thus, these compounds could act as potential therapeutic agents, as their antinociceptive properties could be beneficial in relieving cancer-derived pain. In this review, we will summarize the role of TRPV1 and TRPA1 in pain associated with cancer and discuss molecules that have been reported to modulate these channels, focusing particularly on the mechanisms of channel activation associated with molecules released in the tumor microenvironment.


Assuntos
Dor do Câncer , Proteínas de Neoplasias , Neoplasias , Transdução de Sinais , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Animais , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Dor do Câncer/metabolismo , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
16.
Antioxid Redox Signal ; 34(16): 1260-1279, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977733

RESUMO

Aims: Delphinidin (DEL) is a plant-derived antioxidant with clinical potential to treat inflammatory pain but suffers from poor solubility and low bioavailability. The aim of the study was to develop a well-tolerated cyclodextrin (CD)-DEL complex with enhanced bioavailability and to investigate the mechanisms behind its antinociceptive effects in a preclinical model of inflammatory pain. Results: CD-DEL was highly soluble and stable in aqueous solution, and was nontoxic. Systemic administration of CD-DEL reversed mechanical and heat hyperalgesia, while its local application into the complete Freund's adjuvant (CFA)-induced inflamed paw dose-dependently reduced mechanical hyperalgesia, paw volume, formation of the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE), and tissue migration of CD68+ macrophages. CD-DEL also directly prevented 4-HNE-induced mechanical hyperalgesia, cold allodynia, and an increase in the intracellular calcium concentration into transient receptor potential ankyrin 1 expressing cells. Both 4-HNE- and CFA-induced reactive oxygen species (ROS) levels were sensitive to CD-DEL, while its capacity to scavenge superoxide anion radicals (inhibitory concentration 50 [IC50]: 70 ± 5 µM) was higher than that observed for hydroxyl radicals (IC50: 600 ± 50 µM). Finally, CD-DEL upregulated heme oxygenase 1 that was prevented by HMOX-1 siRNA in vitro. Innovation:In vivo application of DEL to treat inflammatory pain is facilitated by complexation with CD. Apart from its antioxidant effects, the CD-DEL has a unique second antioxidative mechanism involving capturing of 4-HNE into the CD cavity followed by displacement and release of the ROS scavenger DEL. Conclusion: CD-DEL has antinociceptive, antioxidative, and anti-inflammatory effects making it a promising formulation for the local treatment of inflammatory pain.


Assuntos
Antocianinas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Hiperalgesia/tratamento farmacológico , beta-Ciclodextrinas/química , Aldeídos/metabolismo , Animais , Antocianinas/química , Antocianinas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Modelos Animais de Doenças , Estabilidade de Medicamentos , Adjuvante de Freund/efeitos adversos , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Ratos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
17.
J Ethnopharmacol ; 264: 113342, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890712

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cough variant asthma (CVA) is characterized with its long-lasting cough symptom on clinic. The mechanism of CVA is related to chronic persistent airway inflammation, airway hyperresponsiveness, etc. The traditional Chinese prescription has achieved good curative effect on CVA treatment through reducing cough counts, decreasing airway hyperresponsiveness and alleviating airway inflammation. The mechanism is associated with reducing IL4, IL-13, NGF and CGRP levels, as well as down-regulating TRPA1/TRPV1/TRPV5 channels in both lung and brain tissues. AIM OF THE STUDY: The Chinese prescription, San'ao decoction with scorpio and bombyx batryticatus (SSB), is well known in treating cough in asthmatic patients. In this study, the anti-tussive and anti-asthmatic role of SSB, as well as its mechanism on CVA mice model were explored and evaluated via alleviating airway inflammation and regulation of TRP channels. MATERIALS AND METHODS: The major chemical components in SSB were detected and analyzed by UPLC-QTOF-MS under an optimized chromatographic and MS condition. 60 BALB/c mice were randomly divided into six groups: normal group, model group, dexamethasone group (0.1178 mg/kg/d), SSB high dose group (9.74 g/kg/d), SSB middle dose group (4.87 g/kg/d) and SSB low dose group (2.435 g/kg/d). The cough variant asthma mice model was established by ovalbumin sensitization and challenge. The protective role of SSB on CVA mice model was studied through inducing cough counts by capsaicin, assessing inflammatory cells in peripheral blood and bronchoalveolar lavage fluid (BALF), measuring airway responsiveness, detecting histopathological changes in lung tissues, analyzing cytokines and neuropeptides levels in BALF, as well as examining the mRNA and protein expressions of TRPA1, TRPV1 and TRPV5 in both lung and brain tissues. RESULTS: 17 signal peaks of the chemical components in SSB were identified by using UPLC-QTOF-MS. SSB (especially the high dose and middle dose), showed significantly effects on mice model by reducing mice cough counts (P < 0.01), decreasing eosinophil (EOS) counts in blood (P < 0.01) and inflammatory cell numbers in BALF (P < 0.01), decreasing airway hyperresponsiveness (P < 0.05), reducing the levels of IL-4 (P < 0.05), IL-13 (P < 0.01), NGF (P < 0.01) and CGRP (P < 0.01) in BALF, as well as down regulating the mRNA and protein expressions of TRPA1, TRPV1 and TRPV5 in both lung and brain tissues (P < 0.01). CONCLUSIONS: SSB showed anti-tussive and anti-asthmatic effects on cough variant asthma mice model by reducing cough counts, improving lung function, alleviating lung injury and airway inflammation. The mechanism of SSB might be associated with the regulation of cytokines and neuropeptides in BALF, as well as the regulation of TRPA1, TRPV1, TRPV5 channels in both lung and brain tissues.


Assuntos
Antiasmáticos/administração & dosagem , Antitussígenos/administração & dosagem , Bombyx , Medicamentos de Ervas Chinesas/administração & dosagem , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Canais de Cálcio/metabolismo , Tosse/tratamento farmacológico , Tosse/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Resultado do Tratamento
18.
Toxicon ; 188: 80-88, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33038354

RESUMO

Opioids are the "gold standard" treatment for postoperative pain, but these drugs also have limiting adverse effects. Thus, adjuvant drugs might be useful in opioid therapy for postoperative pain. The aim of the present study was to evaluate the effect of Phα1ß, a dual blocker of Cav2 and TRPA1 channels, on antinociceptive and adverse actions of morphine in a model of postoperative pain. Phα1ß (100-300 pmol/site) or morphine (3-10 mg/kg), alone, largely reduced postoperative nociception. However, Phα1ß (100 pmol/site) or morphine (10 mg/kg) also produced motor impairment. Lower doses of Phα1ß (30 pmol/site) or morphine (1 mg/kg), that did not have an effect alone, showed antinociceptive effect when concomitantly administrated. Moreover, co-administration of Phα1ß (30 pmol/site) with morphine (1 or 10 mg/kg) was unable to cause motor impairment. Preoperative repeated treatment with morphine increased the expression of Cav2 and TRPA1 channels in spinal cord, and caused tolerance and withdrawal syndrome, which were reversed with a single injection of Phα1ß (30 pmol/site). When injected postoperatively, escalating doses of morphine worsened postoperative hyperalgesia, induced tolerance, and withdrawal syndrome. Similarly, Phα1ß (30 pmol/site) reversed these adverse effects. Single or repeated morphine caused constipation, which was not altered by Phα1ß. Thus, a low dose of Phα1ß potentiated the analgesia, and reversed some adverse effects of morphine on operated mice, indicating the potential use of this agent as an adjuvant drug in opioid therapy for postoperative pain.


Assuntos
Analgésicos Opioides/uso terapêutico , Quimioterapia Adjuvante/métodos , Dor Pós-Operatória/tratamento farmacológico , Venenos de Aranha/uso terapêutico , Analgésicos , Animais , Canais de Cálcio Tipo N/metabolismo , Hiperalgesia/induzido quimicamente , Camundongos , Morfina , Venenos de Aranha/farmacologia , Canal de Cátion TRPA1/metabolismo
19.
Mol Pain ; 16: 1744806920955103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32880221

RESUMO

Neuropathic pain is a chronic disease state resulting from injury to the nervous system. This type of pain often responds poorly to standard treatments and occasionally may get worse instead of better over time. Patients who experience neuropathic pain report sensitivity to cold and mechanical stimuli. Since the nociceptive system of African naked mole-rats contains unique adaptations that result in insensitivity to some pain types, we investigated whether naked mole-rats may be resilient to sensitivity following nerve injury. Using the spared nerve injury model of neuropathic pain, we showed that sensitivity to mechanical stimuli developed similarly in mice and naked mole-rats. However, naked mole-rats lacked sensitivity to mild cold stimulation after nerve injury, while mice developed robust cold sensitivity. We pursued this response deficit by testing behavior to activators of transient receptor potential (TRP) receptors involved in detecting cold in naïve animals. Following mustard oil, a TRPA1 activator, naked mole-rats responded similarly to mice. Conversely, icilin, a TRPM8 agonist, did not evoke pain behavior in naked mole-rats when compared with mice. Finally, we used RNAscope to probe for TRPA1 and TRPM8 messenger RNA expression in dorsal root ganglia of both species. We found increased TRPA1 messenger RNA, but decreased TRPM8 punctae in naked mole-rats when compared with mice. Our findings likely reflect species differences due to evolutionary environmental responses that are not easily explained by differences in receptor expression between the species.


Assuntos
Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Neuralgia/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Temperatura Baixa , Modelos Animais de Doenças , Feminino , Gânglios Espinais/lesões , Masculino , Camundongos , Ratos-Toupeira , Mostardeira , Neurônios/metabolismo , Neurônios/fisiologia , Nociceptividade , Medição da Dor , Óleos de Plantas/farmacologia , Pirimidinonas/farmacologia , Canal de Cátion TRPA1/genética , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/genética
20.
Life Sci ; 257: 118112, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32682914

RESUMO

AIMS: STW 5 is an herbal drug combination used for the treatment of functional gastrointestinal disorders (FGIDs) with visceral hypersensitivity as the therapy-resistant hallmark. STW 5 has been clinically proven to alleviate visceral hypersensitivity-related symptoms, including abdominal pain, bloating, nausea, and early satiety. However, the molecular and cellular mechanisms underlying the antinociceptive action of STW 5 remain unknown. Here, we investigate the role of STW 5 in the calcium mobilisation of dorsal root ganglion (DRG) sensory neurons. MAIN METHODS: Calcium imaging experiments were performed with freshly dissociated cultured murine DRG neurons isolated from mice by microfluorometry. TRPA1-deficient DRGs, TRPV1-deficient DRGs, TRPA1/V1 double-deficient DRGs, and wild-type DRGs have been used to investigate the role of TRPs ion channels in mediating STW 5 action. KEY FINDINGS: STW 5 (1.74 and 5.8 mg/ml) induced calcium ion influx into DRG neurons in a concentration-dependent manner. Calcium transients were desensitised during repeated exposure to STW 5, an effect that was facilitated in TRPA1-deficient DRGs and less pronounced in TRPV1-deficient DRGs compared to wild-type (WT) DRGs. SIGNIFICANCE: Repeated exposure to STW 5 induced desensitisation of sensory neurons and may ultimately contribute to its proven clinical efficacy against sensory-related symptoms in patients with FGID, including abdominal pain, bloating, nausea, and early satiety. This effect is modulated by the two prominent irritant sensors in nociceptors, TRPA1 and TRPV1.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA