Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Med ; 77(3): 455-463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36859622

RESUMO

Candidemia is a life-threatening disease common in immunocompromised patients, and is generally caused by the pathogenic fungus Candida albicans. C. albicans can change morphology from yeast to hyphae, forming biofilms on medical devices. Biofilm formation contributes to the virulence and drug tolerance of C. albicans, and thus compounds that suppress this morphological change and biofilm formation are effective for treating and preventing candidemia. Marine organisms produce biologically active and structurally diverse secondary metabolites that are promising lead compounds for treating numerous diseases. In this study, we explored marine-derived fungus metabolites that can inhibit morphological change and biofilm formation by C. albicans. Enniatin B (1), B1 (2), A1 (3), D (4), and E (5), visoltricin (6), ergosterol peroxide (7), 9,11-dehydroergosterol peroxide (8), and 3ß,5α,9α-trihydroxyergosta-7,22-dien-6-one (9) were isolated from the marine-derived fungus Fusarium sp. Compounds 1-5 and 8 exhibited inhibitory activity against hyphal formation by C. albicans, and compounds 1-3 and 8 inhibited biofilm formation by C. albicans. Furthermore, compounds 1-3 decreased cell surface hydrophobicity and expression of the hypha-specific gene HWP1 in C. albicans. Compound 1 was obtained in the highest yield. An in vivo evaluation system using silkworms pierced with polyurethane fibers (a medical device substrate) showed that compound 1 inhibited biofilm formation by C. albicans in vivo. These results indicate that enniatins could be lead compounds for therapeutic agents for biofilm infections by C. albicans.


Assuntos
Candidemia , Fusarium , Humanos , Candida albicans/genética , Antifúngicos/farmacologia , Biofilmes
2.
Microbiol Spectr ; 11(1): e0380722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700687

RESUMO

Candida albicans remains the most common species causing invasive candidiasis. In this study, we present the population structure of 551 global C. albicans strains. Of these, the antifungal susceptibilities of 370 strains were tested. Specifically, 66.6% of the azole-nonsusceptible (NS)/non-wild-type (NWT) strains that were tested belonged to Clade 1. A phylogenetic analysis, a principal components analysis, the population structure, and a loss of heterozygosity events revealed two nested subclades in Clade 1, namely, Clade 1-R and Clade 1-R-α, that exhibited higher azole-NS/NWT rates (75.0% and 100%, respectively). In contrast, 6.4% (21/326) of the non-Clade 1-R isolates were NS/NWT to at least 1 of 4 azoles. Notably, all of the Clade 1-R-α isolates were pan-azole-NS/NWT that carried unique A114S and Y257H double substitutions in Erg11p and had the overexpression of ABC-type efflux pumps introduced by the substitution A736V in transcript factor Tac1p. It is worth noting that the Clade 1-R and Clade 1-R-α isolates were from different cities that are distributed over a large geographic span. Our study demonstrated the presence of specific phylogenetic subclades that are associated with antifungal resistance among C. albicans Clade 1, which calls for public attention on the monitoring of the future spread of these clones. IMPORTANCE Invasive candidiasis is the most common human fungal disease among hospitalized patients, and Candida albicans is the predominant pathogen. Considering the large number of infected cases and the limited alternative therapies, the azole-resistance of C. albicans brings a huge clinical threat. Here, our study suggested that antifungal resistance in C. albicans could also be associated with phylogenetic lineages. Specifically, it was revealed that more than half of the azole-resistant C. albicans strains belonged to the same clade. Furthermore, two nested subclades of the clade exhibited extremely high azole-resistance. It is worth noting that the isolates of two subclades were from different cities that are distributed over a large geographic span in China. This indicates that the azole-resistant C. albicans subclades may develop into serious public health concerns.


Assuntos
Antifúngicos , Candidíase Invasiva , Humanos , Antifúngicos/farmacologia , Candida albicans/genética , Filogenia , Testes de Sensibilidade Microbiana , Azóis , Farmacorresistência Fúngica/genética
3.
Sci Rep ; 12(1): 17233, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241756

RESUMO

The increasing demand for new bioactive compounds to combat the evolution of multi-drug resistance (MDR) requires research on microorganisms in different environments in order to identify new potent molecules. In this study, initial screening regarding the antimicrobial activity of 44 Actinomycetes isolates isolated from three soil samples from three different extremely cold sites in Morocco was carried out. Primary and secondary screening were performed against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, other clinical MDR bacteria, and thirteen phytopathogenic fungi. Based on the results obtained, 11 active isolates were selected for further study. The 11microbial isolates were identified based on morphological and biochemical characters and their molecular identification was performed using 16S rRNA sequence homology. The UV-visible analysis of dichloromethane extracts of the five Streptomyces sp. Strains that showed high antimicrobial and antioxidant (ABTS 35.8% and DPPH 25.6%) activities revealed the absence of polyene molecules. GC-MS analysis of the dichloromethane extract of E23-4 as the most active strain revealed the presence of 21 volatile compounds including Pyrrolopyrazine (98%) and Benzeneacetic acid (90%). In conclusion, we studied the isolation of new Streptomyces strains to produce new compounds with antimicrobial and antioxidant activities in a cold and microbiologically unexplored region of Morocco. Furthermore, this study has demonstrated a significant (P < 0.0001) positive correlation between total phenolic and flavonoid contents and antioxidant capacity, paving the way for the further characterization of these Streptomyces sp. isolates for their optimal use for anticancer, antioxidant, and antimicrobial purposes.


Assuntos
Anti-Infecciosos , Streptomyces , Antibacterianos , Anti-Infecciosos/química , Antioxidantes/farmacologia , Candida albicans/genética , Flavonoides , Cloreto de Metileno , Testes de Sensibilidade Microbiana , Marrocos , Extratos Vegetais , Polienos , RNA Ribossômico 16S/genética , Solo , Streptomyces/química
4.
Braz J Microbiol ; 53(3): 1101-1113, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35352319

RESUMO

Caspofungin and other echinocandins have been used for the treatment of human infections by the opportunistic yeast pathogen, Candida albicans. There has been an increase in infections by non-albicans Candida species such as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris in clinical or hospital settings. This is problematic to public health due to the increasing prevalence of echinocandin resistant species/strains. This review will present a summary on various studies that investigated the inhibitory action of caspofungin on 1,3-ß-D-glucan synthesis, on cell wall structure, and biofilm formation of C. albicans. It will highlight some of the issues linked to caspofungin resistance or reduced caspofungin sensitivity in various Candida species and the potential benefits of antimicrobial peptides and other compounds in synergy with caspofungin.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Candida , Candida albicans/genética , Caspofungina/farmacologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Humanos , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana
5.
Lett Appl Microbiol ; 74(5): 809-819, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35138666

RESUMO

Drug resistance in Candida species has been considerably increased in the last decades. Given the opposition to antifungal agents, toxicity and interactions of the antimicrobial drugs, identifying new antifungal agents seems essential. This study assessed the antifungal effects of nanoparticles (NPs) on the standard strains of Candida albicans and Candida glabrata and determined the expression genes, including ERG3, ERG11 and FKS1. Selenium nanoparticles (Se-NPs) were biosynthesized with a standard strain of C. albicans and approved by several methods including, ultraviolet-visible spectrophotometer, X-ray diffraction technique, Fourier-transform infrared analysis, field-emission scanning electron microscopy and EDX diagram. The antifungal susceptibility testing performed the minimum inhibitory concentrations (MICs) using the CLSI M27-A3 and M27-S4 broth microdilution method. The expression of the desired genes was examined by the real-time PCR assay between untreated and treated by antifungal drugs and Se-NPs. The MICs of itraconazole, amphotericin B and anidulafungin against C. albicans and C. glabrata were 64, 16 and 4 µg ml-1 . In comparison, reduced the MIC values for samples treated with Se-NPs to 1 and 0·5 µg ml-1 . The results obtained from real-time PCR and analysis of the ∆∆Cq values showed that the expression of ERG3, ERG11 and FKS1 genes was significantly down-regulated in Se-NPs concentrations (P < 0·05). This study's evidence implies biosafety Se-NPs have favourable effects on the reducing expression of ERG3, ERG11 and FKS1 antifungal resistance genes in C. albicans and C. glabrata.


Assuntos
Nanopartículas , Selênio , Antifúngicos/farmacologia , Candida albicans/genética , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Selênio/farmacologia
6.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3915-3925, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472268

RESUMO

This study explored the mechanism of Sanhuang Decoction(SHD) in treating dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) in mice with Candida albicans(Ca) colonization via high-throughput transcriptome sequencing. Specifically, the animal model was established by oral administration of 3.0% DSS for 7 days followed by intragastrical administration of Ca suspension at 1.0 × 10~8 cells for 4 days and then the mice were treated with SHD enema for 7 days. Afterwards, the general signs were observed and the disease activity index(DAI) was recorded every day. After mice were sacrificed, colon length and colon mucosa damage index(CMDI) were determined and the histomorphology was observed with the HE staining method. The fungal loads of feces were detected with the plate method. Anti-saccharomyces cerevisiae antibody(ASCA) and ß-1,3-glucan in serum, and TNF-α, IL-1ß, and IL-6 in serum and colon were detected by ELISA. High-throughput RNA sequencing method was adopted to identify transcriptome of colon tissues from the control, model and SHD(15.0 g·kg~(-1)) groups. Differentially expressed genes(DEGs) among groups were screened and the GO and KEGG pathway enrichment analysis of the DEGs was performed. The expression levels of NLRP3, ASC, caspase-1, and IL-1ß genes related to the NOD-like receptor signaling pathway which involved 9 DEGs, were examined by qRT-PCR and Western blot. The results demonstrated that SHD improved the general signs, decreased DAI and Ca loads of feaces, alleviated colon edema, erosion, and shortening, and lowered the content of ß-1,3-glucan in serum and TNF-α, IL-1ß, and IL-6 in serum and colon tissues of mice. Transcriptome sequencing revealed 383 DEGs between SHD and model groups, which were mainly involved in the biological processes of immune system, response to bacterium, and innate immune response. They were mainly enriched in the NOD-like signaling pathway, cytokine-cytokine interaction pathway, and retinol metabolism pathway. Moreover, SHD down-regulated the mRNA and protein levels of NLRP3, caspase-1, and IL-1ß. In a word, SHD ameliorates DSS-induced UC in mice colonized with Ca, which probably relates to its regulation of NOD-like receptor signaling pathway.


Assuntos
Colite Ulcerativa , Animais , Candida albicans/genética , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Transcriptoma
7.
Int J Antimicrob Agents ; 58(3): 106394, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34197906

RESUMO

Oral candidiasis, especially caused by Candida albicans, is the most common fungal infection of the oral cavity. The increase in drug resistance and lack of new antifungal agents call for new strategies of antifungal treatment. This study repurposed artemisinin (Art) as a potentiator to the polyene amphotericin B (AmB) and characterised their synergistic mechanism against C. albicans and oral candidiasis. The synergistic antifungal activity between Art and AmB was identified by the checkerboard and recovery plate assays according to the fractional inhibitory concentration index (FICI). Art showed no antifungal activity even at >200 mg/L. However, it significantly reduced AmB dosages against the wild-type strain and 75 clinical isolates of C. albicans (FICI ≤ 0.5). Art significantly upregulated expression of genes from the ergosterol biosynthesis pathway (ERG1, ERG3, ERG9 and ERG11), as shown by RT-qPCR, and elevated the ergosterol content of Candida cells. Increased ergosterol content significantly enhanced binding between fungal cells and the polyene agent, resulting in sensitisation of C. albicans to AmB. Drug combinations of Art and AmB showed synergistic activity against oral mucosal infection in vivo by reducing the epithelial infection area, fungal burden and inflammatory infiltrates in murine oropharyngeal candidiasis. These findings indicate a novel synergistic antifungal drug combination and a new Art mechanism of action, suggesting that drug repurposing is a clinically practical means of antifungal drug development and treatment of oral candidiasis.


Assuntos
Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Artemisininas/farmacocinética , Artemisininas/uso terapêutico , Candida albicans/genética , Candidíase Bucal/tratamento farmacológico , Candida albicans/química , Candida albicans/efeitos dos fármacos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Ergosterol/biossíntese , Variação Genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana
8.
J Mycol Med ; 31(2): 101134, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33862540

RESUMO

Candida albicans is a pathogen equipped with a variety of commensal and virulence traits that help it colonize the microbiota and invade host tissue during infection. In this study, we investigated the potential anticandidal activity of 3-[2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazino)]butan-1-ol (MT), a thiazolylhydrazone compound synthesized by our group, and identified it as a promising antifungal agent. The activity of MT was evaluated in vitro and in vivo against C. albicans as well as its ability to inhibit virulence factors. For this, the ability of MT to inhibit the adhesion of C. albicans to human buccal epithelial cells and biofilm formation and filamentation was tested. In addition, the potential in vivo activity of MT was evaluated in murine models of oral candidiasis. Our results confirmed the antifungal activity of MT, with a minimal inhibitory concentration range of 0.5-2 µg/mL. Indeed, MT treatment in vitro decreased the expression of C. albicans genes involved in biofilm formation and morphogenesis and encoding hydrolytic enzymes, which was also confirmed through phenotypic observations. In addition, MT promoted a decrease in the colony forming units recovered from the tongues of mice with oral candidiasis. In this work, we present a potent antivirulence compound that shows potential for candidiasis therapy, especially for topical use.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Animais , Antifúngicos/síntese química , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Tiazóis/síntese química , Virulência , Fatores de Virulência
9.
Zhongguo Zhong Yao Za Zhi ; 46(1): 155-161, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645065

RESUMO

The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on ß-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and ß-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 µg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans ß-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and ß-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and ß-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose ß-glucan and damage the integrity of the wall.


Assuntos
Berberina , Candida albicans , Antifúngicos/farmacologia , Berberina/farmacologia , Candida albicans/genética , Parede Celular , Hifas , Testes de Sensibilidade Microbiana
10.
Virulence ; 12(1): 835-851, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33682623

RESUMO

Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Infecções Relacionadas a Cateter/tratamento farmacológico , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Candida albicans/genética , Infecções Relacionadas a Cateter/microbiologia , Catéteres/microbiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética , Fatores de Virulência
11.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693623

RESUMO

The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells' transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.


Assuntos
Candida albicans , Fluconazol , Antifúngicos/farmacologia , Candida albicans/genética , Cobre , Farmacorresistência Fúngica , Fluconazol/farmacologia , Transcriptoma
12.
Cell Microbiol ; 23(5): e13307, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33403715

RESUMO

The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER-resident protein, inositol-requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1-mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence-related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin-induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1-mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Estresse do Retículo Endoplasmático , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Adaptação Fisiológica , Animais , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/fisiologia , Membrana Celular/fisiologia , Parede Celular/fisiologia , Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases/genética , Splicing de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Virulência
13.
Artigo em Chinês | WPRIM | ID: wpr-888117

RESUMO

This study explored the mechanism of Sanhuang Decoction(SHD) in treating dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) in mice with Candida albicans(Ca) colonization via high-throughput transcriptome sequencing. Specifically, the animal model was established by oral administration of 3.0% DSS for 7 days followed by intragastrical administration of Ca suspension at 1.0 × 10~8 cells for 4 days and then the mice were treated with SHD enema for 7 days. Afterwards, the general signs were observed and the disease activity index(DAI) was recorded every day. After mice were sacrificed, colon length and colon mucosa damage index(CMDI) were determined and the histomorphology was observed with the HE staining method. The fungal loads of feces were detected with the plate method. Anti-saccharomyces cerevisiae antibody(ASCA) and β-1,3-glucan in serum, and TNF-α, IL-1β, and IL-6 in serum and colon were detected by ELISA. High-throughput RNA sequencing method was adopted to identify transcriptome of colon tissues from the control, model and SHD(15.0 g·kg~(-1)) groups. Differentially expressed genes(DEGs) among groups were screened and the GO and KEGG pathway enrichment analysis of the DEGs was performed. The expression levels of NLRP3, ASC, caspase-1, and IL-1β genes related to the NOD-like receptor signaling pathway which involved 9 DEGs, were examined by qRT-PCR and Western blot. The results demonstrated that SHD improved the general signs, decreased DAI and Ca loads of feaces, alleviated colon edema, erosion, and shortening, and lowered the content of β-1,3-glucan in serum and TNF-α, IL-1β, and IL-6 in serum and colon tissues of mice. Transcriptome sequencing revealed 383 DEGs between SHD and model groups, which were mainly involved in the biological processes of immune system, response to bacterium, and innate immune response. They were mainly enriched in the NOD-like signaling pathway, cytokine-cytokine interaction pathway, and retinol metabolism pathway. Moreover, SHD down-regulated the mRNA and protein levels of NLRP3, caspase-1, and IL-1β. In a word, SHD ameliorates DSS-induced UC in mice colonized with Ca, which probably relates to its regulation of NOD-like receptor signaling pathway.


Assuntos
Animais , Camundongos , Candida albicans/genética , Colite Ulcerativa/genética , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma
14.
J Microbiol Biotechnol ; 30(12): 1835-1842, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33263334

RESUMO

Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.


Assuntos
Compostos de Bifenilo/farmacologia , Candida albicans/efeitos dos fármacos , Ergosterol/biossíntese , Lignanas/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Antifúngicos/farmacologia , Calcineurina/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Ergosterol/genética , Magnolia/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
15.
mSphere ; 5(5)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968010

RESUMO

Candida albicans, a pervasive opportunistic pathogen, undergoes a unique phenotypic transition from a "white" phenotype to an "opaque" phenotype. The switch to opaque impacts gene expression, cell morphology, wall structure, metabolism, biofilm formation, mating, virulence, and colonization of the skin and gastrointestinal (GI) tract. Although the regulation of switching is complex, a paradigm has evolved from a number of studies, in which, in its simplest form, the transcription factors Efg1 and Wor1 play central roles. When EFG1 is upregulated under physiological conditions, it represses WOR1, an activator of white-to-opaque switching, and the cell expresses the white phenotype; when EFG1 is downregulated, WOR1 is derepressed and activates expression of the opaque phenotype. Deletion of either EFG1 or WOR1 supports this yin-yang model of regulation. Here, we demonstrate that this simple model is insufficient, since strains in which WOR1 and EFG1 are simultaneously deleted can still be induced to switch en masse from white to opaque. Opaque cells of double mutants (efg1-/- wor1-/- ) are enlarged and elongate, form an enlarged vacuole, upregulate mCherry under the control of an opaque-specific promoter, form opaque cell wall pimples, express the opaque phenotype in lower GI colonization, and, if MTL homozygous, form conjugation tubes in response to pheromone and mate. These results can be explained if the basic and simplified model is expanded to include a WOR1-independent alternative opaque pathway repressed by EFG1IMPORTANCE The switch from white to opaque in Candida albicans was discovered 33 years ago, but it is still unclear how it is regulated. A regulatory paradigm has emerged in which two transacting factors, Efg1 and Wor1, play central roles, Efg1 as a repressor of WOR1, which encodes an activator of the transition to the opaque phenotype. However, we show here that if both EFG1 and WOR1 are deleted simultaneously, bona fide opaque cells can still be induced en masse These results are not compatible with the simple paradigm, suggesting that an alternative opaque pathway (AOP) exists, which can activate expression of opaque and, like WOR1, is repressed by EFG1.


Assuntos
Candida albicans/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Mutação , Fatores de Transcrição/genética , Animais , Feminino , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Camundongos Endogâmicos C57BL , Fenótipo
16.
J Ethnopharmacol ; 261: 113193, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32730867

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Boesenbergia rotunda (L.) Mansf. (Zingiberaceae) is an indigenous plant of Southeast Asia. Based on ethnopharmacological use, the rhizome is recommended in the treatment of stomachache, leukoplakia, abscesses, and leukorrhea in Thailand primary health care system. Candida albicans often causes leukorrhea, and infection of many mucosal sites. Its infection leads to serious illness. AIM OF THE STUDY: This study aimed to investigate the effects of the ethanolic extract of the B. rotunda rhizome on C. albicans ATCC10231 in the stages of planktonic and biofilm formation and to explore the underlying mechanisms. MATERIALS AND METHODS: The chemical composition of the extract was determined using ultra-performance liquid chromatography (UPLC). The planktonic growth of C. albicans was evaluated by the microdilution method, following EUCAST guidelines. For each stage of biofilm formation, the biofilm was assessed by the MTT assay. The biofilm structure was examined under a light microscope. The degree of cell surface hydrophobicity was measured. The mRNA levels of ALS1, ALS3, and ACT1 were determined by RT-qPCR. RESULTS: The extract of B. rotunda consisted of 25% (w/w) pinostrobin and 12% (w/w) pinocembrin. All stages of C. albicans biofilm formation were significantly inhibited by the extract, whereas the planktonic growth did not change. Biofilm development greatly decreased due to the extract in a concentration-dependent manner, with an IC50 value of 17.7 µg/mL. Pinostrobin and pinocembrin demonstrated inhibitory effects during this stage. These results were in accordance with the microscopic evaluation. The filamentous form decreased with pinocembrin rather than pinostrobin. Moreover, the cell surface hydrophobicity was significantly decreased by 6.25 and 12.5 µg/mL of the extract and 100 µM of pinocembrin. The ALS3 mRNA level was noticeably decreased by 12.5 µg/mL of the extract, 100 µM of pinostrobin, and 100 µM of pinocembrin. The ACT1 mRNA level decreased significantly with pinocembrin. However, the ALS1 mRNA level was not altered following all treatments. CONCLUSION: The ethanolic extract of B. rotunda could inhibit biofilm formation of C. albicans, especially during the biofilm development stage, by means of reducing the cell surface hydrophobicity and suppressing the ALS3 mRNA expression. Pinocembrin had a stronger effect on ALS3 mRNA expression than pinostrobin. Only pinocembrin significantly decreased the ACT1 mRNA level.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Flavanonas/farmacologia , Zingiberaceae , Actinas/genética , Actinas/metabolismo , Anfotericina B/farmacologia , Antifúngicos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Flavanonas/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Zingiberaceae/química
17.
Photodiagnosis Photodyn Ther ; 31: 101825, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32445962

RESUMO

The present study evaluated whether the oxidative stress caused by antimicrobial photodynamic therapy (aPDT) affects the expression of C. albicans genes related to adhesion and biofilm formation (ALS1 and HPW1) and oxidative stress response (CAP1, CAT1, and SOD1). The aPDT was mediated by two photosensitizing agents (PSs) Photodithazine® (PDZ at 100 and 200 mg/L) or Curcumin (CUR at 40 and 80 µM) and LED (37.5 J/cm2 or 50 J/cm2). The quantification of the expression was performed by Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) using specific primers for the target genes. The data were analyzed by Analysis of Variance (α = 0.05), followed by Tukey's post-test. It was observed reduction in the expression of ALS1, HWP1, CAP1, CAT1, and SOD1 when aPDT was performed using 200 mg/L PDZ and 80 µM CUR associated to LED (37.7 and 50 J/cm2, respectively) and using 100 mg/L PDZ and 40 µM CUR with LED of 50 J/cm2 (versus control). Also, the expression of CAP1 and SOD1 genes was reduced after aPDT using 100 mg/L PDZ and LED of 37.5 J/cm2. There was a significant reduction in the expression of genes HWP1, CAP1, and SOD1 after aPDT using 40 µM CUR and 37.5 J/cm2 (versus the control group). The application of LED only at 37.5 and 50 J/cm2 promoted down-regulation of ALS1, CAP1, CAT1, and SOD1 genes (versus the control group). Therefore, aPDT mediated by LED -associated PSs PDZ and CUR promoted a reduction in the expression of the five C. albicans genes evaluated.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Biofilmes , Candida albicans/genética , Expressão Gênica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
18.
Sci Rep ; 10(1): 2936, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076074

RESUMO

To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1-159) and C-terminus (amino acids 160-237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.


Assuntos
Bioensaio/métodos , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Mapeamento de Interação de Proteínas , Tetraciclina/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Doxiciclina/farmacologia , Fluorescência , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Higromicina B/farmacologia , Proteínas Luminescentes/metabolismo , Ligação Proteica/efeitos dos fármacos , Septinas/metabolismo
19.
Sci Rep ; 10(1): 3615, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107396

RESUMO

Vulvovaginal candidiasis causes sufferers much discomfort. Phytotherapy with garlic has been reported to be a possible alternative form of treatment; however, it is unknown why patients report varying success with this strategy. Fresh garlic extract has been shown to down-regulate the putative virulence gene, SIR2 in C. albicans. Our study aimed to see if previous observations were reproducible for the gene responsible for Candidalysin (ECE1). Two clinical strains from patients with reported variable efficacy of using garlic for the treatment of vulvovaginal candidiasis were compared through biofilm assays and antimicrobial susceptibility. Real-time PCR was used to assess changes in gene expression when exposed to garlic. Treatment with fresh garlic extract and pure allicin (an active compound produced in cut garlic) resulted in a decrease in SIR2 expression in all strains. In contrast, ECE1 expression was up-regulated in a reference strain and an isolate from a patient unresponsive to garlic therapy, while in an isolate from a patient responsive to garlic therapy, down-regulation of ECE1 occurred. Future studies that investigate the effectiveness of phytotherapies should take into account possible varying responses of individual strains and that gene expression may be amplified in the presence of serum.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alho/química , Extratos Vegetais/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Dissulfetos , Feminino , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Sulfínicos/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Yeast ; 37(1): 117-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826306

RESUMO

Adherence of the fungus, Candida albicans, to biotic (e.g. human tissues) and abiotic (e.g. catheters) surfaces can lead to emergence of opportunistic infections in humans. The process of adhesion and further biofilm development depends, in part, on cell surface hydrophobicity (CSH). In this study, we compared the resistance of C. albicans strains with different CSH to the most commonly prescribed antifungal drug, fluconazole, and the newly described synergistic combination, fluconazole and gentamicin. The hydrophobic strain was more resistant to fluconazole due to, among others, overexpression of the ERG11 gene encoding the fluconazole target protein (CYP51A1, Erg11p), which leads to overproduction of ergosterol in this strain. Additionally, the hydrophobic strain displayed high efflux activity of the multidrug resistance Cdr1 pump due to high expression of the CDR1 gene. On the other hand, the hydrophobic C. albicans strain was more susceptible to fluconazole-gentamicin combination because of its different effect on lipid content in the two strains. The combination resulted in ergosterol depletion with subsequent Cdr1p mislocalization and loss of activity in the hydrophobic strain. We propose that C. albicans strains with different CSH may possess altered lipid metabolism and consequently may differ in their response to treatment.


Assuntos
Antifúngicos/farmacologia , Candida albicans/química , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Gentamicinas/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Lipídeos/análise , Candida albicans/genética , Farmacorresistência Fúngica/genética , Sinergismo Farmacológico , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA