Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 186: 106462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030019

RESUMO

To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.


Assuntos
Bacillus , Nanopartículas , Selênio , Zingiber officinale , Humanos , Selênio/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida albicans/metabolismo , Fatores de Virulência , Nanoconjugados , Células HEK293 , Nanopartículas/química , Bacillus/metabolismo , Biofilmes
2.
Metallomics ; 15(12)2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38061812

RESUMO

Histatin-5 (Hist-5) is an antimicrobial peptide found in human saliva that functions to defend the oral cavity from microbial infections, such as those caused by the fungal pathogen Candida albicans (C. albicans). Hist-5 can bind Cu in multiple oxidation states, Cu2+ and Cu+in vitro, and supplemental Cu2+ has been shown to improve the fungicidal activity of the peptide against C. albicans in culture. However, the exact role of Cu on the antifungal activity of Hist-5 and whether direct peptide-Cu interactions occur intracellularly has yet to be fully determined. Here, we used a combination of fluorescence spectroscopy and confocal microscopy experiments to show reversible Cu-dependent quenching of a fluorescent Hist-5 analogue, Hist-5*, indicating a direct interaction between Hist-5 and intracellular Cu. X-ray fluorescence microscopy images revealed peptide-induced changes to cellular Cu distribution and cell-associated Cu content. These data support a model in which Hist-5 can facilitate the hyperaccumulation of Cu in C. albicans and directly interact with Cu intracellularly to increase the fungicidal activity of Hist-5.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/metabolismo , Histatinas/farmacologia , Histatinas/metabolismo , Cobre/metabolismo , Microscopia Confocal , Testes de Sensibilidade Microbiana
3.
PLoS Pathog ; 19(6): e1011478, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363924

RESUMO

Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.


Assuntos
Candida albicans , Candidíase , Camundongos , Animais , Candida albicans/metabolismo , Manganês/metabolismo , Candidíase/microbiologia , Candida , Morfogênese , Proteínas Fúngicas/metabolismo , Mamíferos
4.
PLoS One ; 17(8): e0272844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947573

RESUMO

Green methods have become vital for sustainable development of the scientific and commercial sphere; however, they can bring new challenges, including the need for detailed characterization and elucidation of efficacy of their products. In this study, green method of silver nanoparticles (AgNPs) production was employed using an extract from grapevine canes. The aim of the study was to contribute to the knowledge about biosynthesized AgNPs by focusing on elucidation of their antifungal efficiency based on their size and/or hypothesized synergy with bioactive substances from Vitis vinifera cane extract. The antifungal activity of AgNPs capped and stabilized with bioactive compounds was tested against the opportunistic pathogenic yeast Candida albicans. Two dispersions of nanoparticles with different morphology (characterized by SEM-in-STEM, DLS, UV-Vis, XRD, and AAS) were prepared by modification of reaction conditions suitable for economical production and their long-term stability monitored for six months was confirmed. The aims of the study included the comparison of the antifungal effect against suspension cells and biofilm of small monodisperse AgNPs with narrow size distribution and large polydisperse AgNPs. The hypothesis of synergistic interaction of biologically active molecules from V. vinifera extracts and AgNPs against both cell forms were tested. The interactions of all AgNPs dispersions with the cell surface and changes in cell morphology were imaged using SEM. All variants of AgNPs dispersions were found to be active against suspension and biofilm cells of C. albicans; nevertheless, surprisingly, larger polydisperse AgNPs were found to be more effective. Synergistic action of nanoparticles with biologically active extract compounds was proven for biofilm cells (MBIC80 20 mg/L of polydisperse AgNPs in extract), while isolated nanoparticles suspended in water were more active against suspension cells (MIC 20 mg/L of polydisperse AgNPs dispersed in water). Our results bring new insight into the economical production of AgNPs with defined characteristics, which were proven to target a specific mode of growth of significant pathogen C. albicans.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes , Candida albicans/metabolismo , Testes de Sensibilidade Microbiana , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Prata/metabolismo , Prata/farmacologia , Água/metabolismo
5.
Microbiol Spectr ; 10(3): e0112122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674440

RESUMO

Fungal diseases have become a major public health issue worldwide. Increasing drug resistance and the limited number of available antifungals result in high morbidity and mortality. Metal-based drugs have been reported to be therapeutic agents against major protozoan diseases, but knowledge of their ability to function as antifungals is limited. In this study, we found that calcium supplementation combined with iron deficiency causes dramatic growth inhibition of the human fungal pathogens Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Calcium induces the downregulation of iron uptake-related genes and, in particular, causes a decrease in the expression of the transcription factor HapX, which tends to transcriptionally activate siderophore-mediated iron acquisition under iron-deficient conditions. Iron deficiency causes calcium overload and the overproduction of intracellular reactive oxygen species (ROS), and perturbed ion homeostasis suppresses fungal growth. These phenomena are consistently identified in azole-resistant A. fumigatus isolates. The findings here imply that low iron availability lets cells mistakenly absorb calcium as a substitute, causing calcium abnormalities. Thus, there is a mutual effect between iron and calcium in fungal pathogens, and the combination of calcium with an iron chelator could serve to improve antifungal therapy. IMPORTANCE Millions of immunocompromised people are at a higher risk of developing different types of severe fungal diseases. The limited number of antifungals and the emergence of antimicrobial resistance highlight an urgent need for new strategies against invasive fungal infections. Here, we report that calcium can interfere with iron absorption of fungal pathogens, especially in iron-limited environments. Thus, a combination of calcium supplementation with an iron chelator inhibits the growth of human fungal pathogens, including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Moreover, we demonstrate that iron deficiency induces a nonspecific calcium uptake response, which results in toxic levels of metal. Findings in this study suggest that a microenvironment with excess calcium and limited iron is an efficient strategy to curb the growth of fungal pathogens, especially for drug-resistant isolates.


Assuntos
Criptococose , Cryptococcus neoformans , Deficiências de Ferro , Micoses , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Cálcio/metabolismo , Cálcio/farmacologia , Cálcio/uso terapêutico , Candida albicans/metabolismo , Cryptococcus neoformans/metabolismo , Suplementos Nutricionais , Farmacorresistência Fúngica , Humanos , Ferro/metabolismo , Micoses/microbiologia , Sideróforos/metabolismo , Sideróforos/farmacologia , Sideróforos/uso terapêutico
6.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163951

RESUMO

Phosphorus in the form of phosphate (Pi) is an essential element for metabolic processes, including lipid metabolism. In yeast, the inositol polyphosphate kinase vip1 mediated synthesis of inositol heptakisphosphate (IP7) regulates the phosphate-responsive (PHO) signaling pathway, which plays an important role in response to Pi stress. The role of vip1 in Pi stress and lipid metabolism of Candida albicans has not yet been studied. We found that when vip1Δ/Δ was grown in glucose medium, if Pi was supplemented in the medium or mitochondrial Pi transporter was overexpressed in the strain, the lipid droplet (LD) content was reduced and membrane damage was alleviated. However, further studies showed that neither the addition of Pi nor the overexpression of the Pi transporter affected the energy balance of vip1Δ/Δ. In addition, the LD content of vip1Δ/Δ grown in Pi limitation medium PNMC was lower than that grown in SC, and the metabolic activity of vip1Δ/Δ grown in PNMC was also lower than that grown in SC medium. This suggests that the increase in Pi demand by a high energy metabolic rate is the cause of LD accumulation in vip1Δ/Δ. In addition, in the vip1Δ/Δ strains, the core transcription factor PHO4 in the PHO pathway was transported to the vacuole and degraded, which reduced the pathway activity. However, this does not mean that knocking out vip1 completely blocks the activation of the PHO pathway, because the LD content of vip1Δ/Δ grown in the medium with ß-glycerol phosphate as the Pi source was significantly reduced. In summary, the increased Pi demand and the decreased PHO pathway activity in vip1Δ/Δ ultimately lead to LD accumulation and cell membrane damage.


Assuntos
Metabolismo Energético/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Candida albicans/metabolismo , Membrana Celular/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Fosfatos de Inositol , Gotículas Lipídicas/metabolismo , Fosfatos/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo
7.
ScientificWorldJournal ; 2021: 8856147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594161

RESUMO

Candida albicans and Candida tropicalis are the leading causes of human fungal infections worldwide. There is an increase in resistance of Candida pathogens to existing antifungal drugs leading to a need to find new sources of antifungal agents. Tormentic acid has been isolated from different plants including Callistemon citrinus and has been found to possess antimicrobial properties, including antifungal activity. The study aimed to determine the effects of tormentic and extracts from C. citrinus on C. albicans and C. tropicalis and a possible mode of action. The extracts and tormentic acid were screened for antifungal activity using the broth microdilution method. The growth of both species was inhibited by the extracts, and C. albicans was more susceptible to the extract compared to C. tropicalis. The growth of C. albicans was inhibited by 80% at 100 µg/ml of both the DCM: methanol extract and the ethanol: water extract. Tormentic acid reduced the growth of C. albicans by 72% at 100 µg/ml. The effects of the extracts and tormentic acid on ergosterol content in C. albicans were determined using a UV/Vis scanning spectrophotometer. At concentrations of tormentic acid of 25 µg/ml, 50 µg/ml, 100 µg/ml, and 200 µg/ml, the content of ergosterol was decreased by 22%, 36%, 48%, and 78%, respectively. Similarly, the DCM: methanol extract at 100 µg/ml and 200 µg/ml decreased the content by 78% and 88%, respectively. A dose-dependent decrease in ergosterol content was observed in cells exposed to miconazole with a 25 µg/ml concentration causing a 100% decrease in ergosterol content. Therefore, tormentic acid inhibits the synthesis of ergosterol in C. albicans. Modifications of the structure of tormentic acid to increase its antifungal potency may be explored in further studies.


Assuntos
Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Ergosterol/biossíntese , Melaleuca/química , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química , Especificidade da Espécie , Espectrofotometria Ultravioleta
8.
Future Microbiol ; 16: 461-469, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33960815

RESUMO

Aim: To investigate the effects of dihydroartemisinin combined with fluconazole against C. albicans in vitro and to explore the underlying mechanisms. Materials & methods: Checkerboard microdilution assay and time-kill curve method were employed to evaluate the static and dynamic antifungal effects against C. albicans. Reactive oxygen species (ROS) was measured by a fluorescent probe. Results: Combination of dihydroartemisinin and fluconazole exerted potent synergy against planktonic cells and biofilms of fluconazole-resistant C. albicans, with the fractional inhibitory concentration index values less than 0.07. A potent fungistatic activity of this drug combination could still be observed after 18 h. The accumulation of ROS induced by the drug combination might contribute to the synergy. Conclusion: Dihydroartemisinin reversed the resistance of C. albicans to fluconazole.


Lay abstract Patients with weakened immune system often suffer from C. albicans infections. C. albicans is a common fungus. Fluconazole is a widely used antifungal drug owing to its low price and few side effects. Unfortunately, fluconazole is gradually losing its effect against C. albicans due to the constantly emerging resistance in C. albicans. Interestingly, in this study a combined use of fluconazole and an old antimalarial agent restored the effect of fluconazole against resistant C. albicans. The antimalarial drug we used is dihydroartemisinin, with low price, high safety and multiple biological activities, which originates from a traditional Chinese medicine. Our study also presented that this drug combination generated abundant reactive oxygen, which might account for the effect. The drug combination would be expected to be used for treating C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Artemisininas/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
9.
J Microbiol Biotechnol ; 30(12): 1835-1842, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33263334

RESUMO

Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.


Assuntos
Compostos de Bifenilo/farmacologia , Candida albicans/efeitos dos fármacos , Ergosterol/biossíntese , Lignanas/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Antifúngicos/farmacologia , Calcineurina/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Ergosterol/genética , Magnolia/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
10.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126621

RESUMO

This study presents an investigation of the anticancer and antimicrobial ability of a combination of ginger and cannabis extracts in different ratios (1:1, 7:3 and 3:7). Extracts were obtained using various methods (Soxhlet extractions, cold macerations, ultrasonic extractions and supercritical fluid extractions). The antioxidant activity and the presence of total phenols were measured in the extracts, and the effect of the application extracts in various concentrations (c = 50, 20, 10, 5, 1, 0.1, 0.01 mg/mL) on cells was investigated. Higher values of antioxidants were measured at the ratio where ginger was predominant, which is reflected in a higher concentration of total phenols. Depending on the polyphenol content, the extracts were most effective when prepared supercritically and ultrasonically. However, with respect to cell response, the ratio was shown to have no effect on inhibiting cancer cell division. The minimum concentration required to inhibit cancer cell growth was found to be 1 mg/mL. High-performance liquid chromatography (HPLC) analysis also confirmed the effectiveness of ultrasonic and supercritical fluid extraction, as their extracts reached higher cannabinoid contents. In both extractions, the cannabidiol (CBD) content was above 30% and the cannabidiolic acid (CBDA) content was above 45%. In the case of ultrasonic extraction, a higher quantity of cannabigerol (CBG) (5.75 ± 0.18) was detected, and in the case of supercritical fluid extraction, higher cannabichromene (CBC) (5.48 ± 0.13) content was detected, when compared to other extraction methods. The antimicrobial potential of extracts prepared with ultrasonic and supercritical extractions on three microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) was checked. Ginger and cannabis extract show better growth inhibition of microorganisms in cannabis-dominated ratios for gram-positive bacterium S. aureus, MIC = 9.38 mg/mL, for gram-negative bacterium E. coli, MIC > 37.5 mg/mL and for the C. albicans fungus MIC = 4.69 mg/mL. This suggests guidelines for further work: a 1: 1 ratio of ginger and hemp will be chosen in a combination with supercritical and ultrasonic extraction.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Cannabis/química , Extratos Vegetais/farmacologia , Zingiber officinale/química , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Metástase Neoplásica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
11.
J Vis Exp ; (160)2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32597857

RESUMO

Natural products derived from plants and microbes are a rich source of bioactive molecules. Prior to their use, the active molecules from complex extracts must be purified for downstream applications. There are various chromatographic methods available for this purpose yet not all labs can afford high performance methods and isolation from complex biological samples can be difficult. Here we demonstrate that preparative liquid-phase isoelectric focusing (IEF) can separate molecules, including small molecules and peptides from complex plant extracts, based on their isoelectric points (pI). We have used the method for complex biological sample fractionation and characterization. As a proof of concept, we fractionated a Gymnema sylvestre plant extract, isolating a family of terpenoid saponin small molecules and a peptide. We also demonstrated effective microbial protein separation using the Candida albicans fungus as a model system.


Assuntos
Produtos Biológicos/isolamento & purificação , Candida albicans/metabolismo , Proteínas Fúngicas/isolamento & purificação , Focalização Isoelétrica/métodos , Fragmentos de Peptídeos/isolamento & purificação , Extratos Vegetais/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Produtos Biológicos/química , Proteínas Fúngicas/química , Gymnema sylvestre/química , Fragmentos de Peptídeos/química , Bibliotecas de Moléculas Pequenas/química
12.
BMC Microbiol ; 20(1): 165, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546212

RESUMO

BACKGROUND: Candida albicans is the most prevalent opportunistic fungal pathogen. Development of antifungals with novel targets is necessary for limitations of current antifungal agents and the emergence of drug resistance. The antifungal activity of clioquinol was widely accepted while the precise mechanism was poorly understood. Hence, we aimed to seek for the possible mechanism of clioquinol against Candida albicans in the present study. RESULTS: Clioquinol could inhibit hyphae formation in a concentration-dependent manner in multiple liquid and solid media. The concentration and time-dependent anti-biofilm activities were observed in different incubation periods quantitatively and qualitatively. Further investigation found that clioquinol disrupted cell membrane directly in high concentration and induced depolarization of the membrane in low concentration. As for the influence on ion homeostasis, the antifungal effects of clioquinol could be reversed by exogenous addition of metal ions. Meanwhile, the minimum inhibitory concentration of clioquinol was increased in media supplemented with exogenous metal ions and decreased in media supplemented with exogenous metal chelators. We also found that the cellular labile ferrous iron level decreased when fungal cells were treated with clioquinol. CONCLUSION: These results indicated that clioquinol could inhibit yeast-hyphae transition and biofilm formation in Candida albicans. The effect on the cell membrane was different depending on different concentrations of clioquinol. Meanwhile, clioquinol could interfere with ion homeostasis as metal chelators for zinc, copper and iron, which was quite different with current common antifungal agents. All in all, clioquinol can be a new promising antifungal agent with novel target though more studies are needed to better understand the precise antifungal mechanism.


Assuntos
Candida albicans/crescimento & desenvolvimento , Membrana Celular/metabolismo , Quelantes/metabolismo , Clioquinol/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Membrana Celular/efeitos dos fármacos , Cobre/metabolismo , Meios de Cultura/química , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Íons/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Morfogênese/efeitos dos fármacos , Zinco/metabolismo
13.
J Ethnopharmacol ; 259: 112965, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32413575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Candida albicans is developing resistance to existing drugs increasing morbidity and mortality, which elevates an immediate need to explore new antifungal agents. Phytochemicals are an excellent source of therapeutic agents. We previously reported the antifungal activity of the crude extract of Dodonaea viscosa var. angustifolia Jacq. (DVA) from which a beneficial compound flavone: 5,6,8-trihydroxy-7,4' dimethoxy flavone (5,6,8-trihydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) abbreviated as TMMC, was extracted. AIM OF THE STUDY: The present study evaluated the effect of a TMMC subfraction on biofilms, membrane stability, ergosterol biosynthesis and germ tube (GT) formation in Candida albicans. MATERIALS AND METHODS: Extracts were prepared and fractionated to obtain purified TMMC. Minimum inhibitory concentrations of TMMC were obtained and subinhibitory concentrations were selected for further studies. Confocal laser scanning microscopy (CLSM) was performed to assess the effect of TMMC on membrane permeability and sterol deposition using propidium iodide (PI) and filipin stains, respectively. RESULTS: Minimum inhibitory concentrations (MIC) and Minimum Fungicidal concentrations (MFC) of TMMC were 0.39 mg/mL and 1.56 mg/mL, respectively. TMMC inhibited biofilm formation and damaged mature biofilms at 0.39 mg/mL and 1.56 mg/mL, respectively. CLSM further confirmed the disruption and architectural changes in biofilms following treatment with TMMC. TMMC also inhibited GT formation and ergosterol biosynthesis in a concentration dependent manner, which was further confirmed by varying sterol distribution and membrane disruption in treated and untreated cells. CONCLUSIONS: With the multiple targets at different concentrations, TMMC warrants its potential use as antifungal drug against C. albicans. However further studies using animal models and more mechanistic approaches will be required.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Ergosterol/biossíntese , Flavonoides/farmacologia , Hifas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sapindaceae , Antifúngicos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/ultraestrutura , Flavonoides/isolamento & purificação , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Sapindaceae/química
14.
J Microbiol Biotechnol ; 30(7): 967-973, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32347080

RESUMO

The fungal cell wall is a major target of antifungals. In this study, we report the antifungal activity of an ethanol extract from Aucklandia lappa against Candida albicans. We found that the extract caused cell wall injury by decreasing chitin synthesis or assembly and (1,3)-ß-D-glucan synthesis. A sorbitol protection assay demonstrated that the minimum inhibitory concentration (MIC) of the A. lappa extract against C. albicans cells increased eight-fold from 0.78 to 6.24 mg/ml in 72 h. Cell aggregates, which indicate damage to the cell wall or membrane, were commonly observed in the A. lappatreated C. albicans cells through microscopic analysis. In addition, the relative fluorescence intensities of the C. albicans cells incubated with the A. lappa extract for 3, 5, and 6 h were 92.1, 84.6, and 79.8%, respectively, compared to the controls, estimated by Calcofluor White binding assay. This result indicates that chitin content was reduced by the A. lappa treatment. Furthermore, synthesis of (1,3)-ß-D-glucan polymers was inhibited to 84.3, 79.7, and 70.2% of that of the control treatment following incubation of C. albicans microsomes with the A. lappa extract at a final concentration equal to its MIC, 2× MIC, and 4× MIC, respectively. These findings suggest that the A. lappa ethanol extract may aid the development of a new antifungal to successfully control Candida-associated disease.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quitina/metabolismo , Extratos Vegetais/farmacologia , Saussurea/química , beta-Glucanas/metabolismo , Candida albicans/metabolismo , Parede Celular/química , Testes de Sensibilidade Microbiana , Proteoglicanas
15.
Front Biosci (Landmark Ed) ; 25(8): 1412-1432, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114439

RESUMO

Candidal infections are increasing at an alarming rate due to hospital acquired infections causing high mortality rates worldwide. Moreover, the emergence of drug resistant Candida strains is the major impediment against effective therapeutics. Thus, there is an imperious need to search for novel antifungal drug targets. Among various fungi, Candida albicans is one of  the most prevalent human fungal pathogen. Protein kinases modify other signaling molecules through phosphorylation and transduce extracellular stimuli for adaptation ensuing C. albicans growth, persistence and pathogenesis. In C. albicans, there are various kinds of kinases such as MAP (Mitogen Activated Protein) kinase cascade involving Hog1 (High-osmolarity glycerol) and Cek1 (C. albicans ERK-like Kinase1) mediated pathways, cyclin dependent pathway, cAMP (cyclic adenosine monophosphate) -dependent protein kinase pathway and TOR signaling pathway. Herein we have reviewed the variety of functions served by protein kinases in C. albicans.  Additionally, we have discussed the inhibitors for targeting these kinases. Together, we explore the potential of these kinases as effective drug target and discuss the progress made in the development of inhibitors against these targets.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/fisiologia , Candidíase/microbiologia , Proteínas Fúngicas/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Fosforilação/efeitos dos fármacos
16.
Sci Rep ; 10(1): 2936, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076074

RESUMO

To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1-159) and C-terminus (amino acids 160-237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.


Assuntos
Bioensaio/métodos , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Mapeamento de Interação de Proteínas , Tetraciclina/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Doxiciclina/farmacologia , Fluorescência , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Higromicina B/farmacologia , Proteínas Luminescentes/metabolismo , Ligação Proteica/efeitos dos fármacos , Septinas/metabolismo
17.
Sci Rep ; 10(1): 3615, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107396

RESUMO

Vulvovaginal candidiasis causes sufferers much discomfort. Phytotherapy with garlic has been reported to be a possible alternative form of treatment; however, it is unknown why patients report varying success with this strategy. Fresh garlic extract has been shown to down-regulate the putative virulence gene, SIR2 in C. albicans. Our study aimed to see if previous observations were reproducible for the gene responsible for Candidalysin (ECE1). Two clinical strains from patients with reported variable efficacy of using garlic for the treatment of vulvovaginal candidiasis were compared through biofilm assays and antimicrobial susceptibility. Real-time PCR was used to assess changes in gene expression when exposed to garlic. Treatment with fresh garlic extract and pure allicin (an active compound produced in cut garlic) resulted in a decrease in SIR2 expression in all strains. In contrast, ECE1 expression was up-regulated in a reference strain and an isolate from a patient unresponsive to garlic therapy, while in an isolate from a patient responsive to garlic therapy, down-regulation of ECE1 occurred. Future studies that investigate the effectiveness of phytotherapies should take into account possible varying responses of individual strains and that gene expression may be amplified in the presence of serum.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alho/química , Extratos Vegetais/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Dissulfetos , Feminino , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Sulfínicos/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
J Med Microbiol ; 68(10): 1497-1506, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31460860

RESUMO

Aim. The aim of this work was to characterize the response of Candida albicans to atorvastatin, and to assess its in vivo antifungal capability.Methodology. The effect of atorvastatin on the growth and viability of C. albicans was assessed. The ability of the statin to alter cell permeability was quantified by measuring amino acid and protein leakage. The response of C. albicans to atorvastatin was assessed using label-free quantitative proteomics. The in vivo antifungal activity of atorvastatin was assessed using Galleria mellonella larvae infected with C. albicans.Results. Atorvastatin inhibited the growth of C. albicans. The atorvastatin-treated cells showed lower ergosterol levels than the controls, demonstrated increased calcofluor staining and released elevated quantities of amino acids and protein. Larvae infected with C. albicans showed a survival rate of 18.1±4.2 % at 144 h. In contrast, larvae administered atorvastatin (9.09 mg kg-1) displayed a survival rate of 60.2±6.4 % (P<0.05). Label-free quantitative proteomics identified 1575 proteins with 2 or more peptides and 465 proteins were differentially abundant (P<0.05). There was an increase in the abundance of enzymes with oxidoreductase and hydrolase activity in atorvastatin-treated cells, and squalene monooxygenase (4.52-fold increase) and lanosterol synthase (2.84-fold increase) were increased in abundance. Proteins such as small heat shock protein 21 (-6.33-fold) and glutathione peroxidase (-2.05-fold) were reduced in abundance.Conclusion. The results presented here indicate that atorvastatin inhibits the growth of C. albicans and is capable of increasing the survival of G. mellonella larvae infected with C. albicans.


Assuntos
Antifúngicos/farmacologia , Atorvastatina/farmacologia , Candida albicans/efeitos dos fármacos , Animais , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candidíase/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Larva/microbiologia , Mariposas/microbiologia
19.
Chin J Nat Med ; 17(3): 209-217, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30910057

RESUMO

Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/química , Antifúngicos/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Candida albicans/química , Candida albicans/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Técnicas de Cocultura , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Lipídeos/química , Estrutura Molecular , Permeabilidade , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Éteres Fenílicos/farmacologia , Esteróis/química , Esteróis/metabolismo , Estilbenos/química , Estilbenos/metabolismo , Estilbenos/farmacologia , Triterpenos/química , Triterpenos/metabolismo , Triterpenos/farmacologia
20.
Eur J Pharmacol ; 842: 64-69, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30326213

RESUMO

Candida species are opportunistic pathogens which can cause conditions ranging from simple mucocutaneous infections to fungemia and death in immunosuppressed and hospitalized patients. Candida albicans is considered to be the species mostly associated with fungal infections in humans and, therefore, the mostly studied yeast. This microorganism has survival and virulence factors which, allied to a decreased host immunity response, make infection more difficult to control. Today, the current limited antifungal arsenal and a dramatic increase in fungal resistance have driven the need for the synthesis of drugs with novel mechanisms of action. However, the development of a new drug from discovery to marketing takes a long time and is highly costly. The objective of this review is to show that with advances in biotechnology and biofinformatics, in silico tools such as molecular docking can optimize such a timeline and reduce costs, while contributing to the design and development of targeted drugs. Here we highlight the most promising protein targets in Candida albicans for the development of drugs with new mechanisms of action.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Proteômica , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA