Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 445: 138754, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364496

RESUMO

The antioxidant activity of curcumin and curcumin esters was investigated in oleogel and emulgel produced by linseed oil. In the initiation phase, curcumin acetate at 1.086 mM concentration showed the highest antioxidant activity in linseed oil, while curcumin at 2.172 mM concentration showed the highest antioxidant activity in oleogel. In the propagation phase, curcumin and curcumin esters exhibited higher efficiency in linseed oil samples than those of oleogel samples. In the initiation phase, curcumin hexanoate showed higher antioxidant activity than curcumin acetate and curcumin butyrate, while curcumin hexanoate showed lower efficiency than curcumin acetate and curcumin butyrate in the propagation phase. Investigating the mechanism of action of curcumin and curcumin esters in oleogel and emulgel showed that in addition to inhibiting peroxyl radicals, curcumin and curcumin esters were likely to pro-oxidatively attack hydroperoxides. Also, curcumin and curcumin esters radicals were likely to attack lipid substrates in these systems.


Assuntos
Antioxidantes , Curcumina , Antioxidantes/farmacologia , Óleo de Semente do Linho/farmacologia , Curcumina/farmacologia , Caproatos , Ésteres , Butiratos , Acetatos , Compostos Orgânicos
2.
Food Chem ; 441: 138301, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176144

RESUMO

Longjing tea is renowned for its fresh aroma and high value. However, during storage, the emergence of an off-flavor known as "stale odor" can significantly impact the flavor quality and economic benefits of Longjing tea. Yet, the specific volatiles responsible for this stale odor in Longjing tea remain unknown. In this study, Longjing tea samples with varying degrees of stale odor intensity were analyzed using simultaneous distillation extraction coupled with gas chromatography-mass spectrometry (SDE-GC-MS). Through odor activity value (OAV) and fractional omission testing, hexanoic acid and trans-2-nonenal were identified as the primary contributors to the stale odor. Moreover, the concentration of hexanoic acid was found to be valuable in predicting the intensity of the stale odor in Longjing tea. The oxidative degradation of linoleic acid was proved as the generation pathway of stale odor in Longjing tea. These findings provide essential theoretical principles for Longjing tea production and preservation.


Assuntos
Caproatos , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Destilação , Compostos Orgânicos Voláteis/análise
3.
Chemosphere ; 328: 138491, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963586

RESUMO

The functional role of lactate (HLac), as a co-substrate along with glucose (Glu) as well as an electron donor for the synthesis of caproic acid (HCa), a medium chain fatty acid (MCFAs) was studied. A varied HLac and Glu ratios were thus investigated in fed-batch anaerobic reactors (R1-R5) operated at pH 6 with a heat-treated anaerobic consortium. R1 and R5 were noted as controls and operated with sole Glu and HLac, respectively. Strategically, ethanol (HEth) was additionally supplemented as co-electron donor after the production of short chain carboxylic acids (SCCAs) for chain elongation in all the reactors. The reactor operated with HLac and Glu in a ratio of 0.25:0.75 (1.25 g/L (HLac) and 3.75 g/L (Glu)) showed the highest HCa production of 1.86 g/L. R5 operated with solely HLac yielded propionic acid (HPr) as the major product which further led to the higher valeric acid (HVa) production of 1.1 g/L within the reactor. Butyric acid (HBu) was observed in R1, which used Glu as carbon source alone indicating the importance of HLac as electron co-donor. Clostridium observed as the most dominant genera in shotgun metagenome sequencing in R2 and R3, the reactors that produced the highest HCa in comparison to other studied reactors. The study thus provided insight into the importance of substrate and electron donor and their supplementation strategies during the production of MCFAs.


Assuntos
Caproatos , Ácido Láctico , Reatores Biológicos , Glucose , Ácidos Graxos , Fermentação
4.
J Biosci Bioeng ; 134(4): 288-294, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953354

RESUMO

Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as a commercial bioplastic due to its biodegradability, thermoplastic and mechanical properties. The properties of this copolymer are greatly affected by the composition of 3HHx monomer. One of the most efficient ways to modulate the composition of 3HHx monomer in P(3HB-co-3HHx) is by manipulating the (R)-3HHx-CoA monomer supply. In this study, a new (R)-specific enoyl-CoA hydratase originating from a non-PHA producer, Streptomyces sp. strain CFMR 7 (PhaJSs), was characterized and found to be effective in supplying 3HHx monomer during in vivo production of P(3HB-co-3HHx) copolymer. The P(3HB-co-3HHx) copolymer produced from the Cupriavidus necator transformant that harbors phaJSs, PHB-4/pBBR1-CBP-M-CPF4JSs, showed enhanced 3HHx incorporation of up to 11 mol% without affecting the P(3HB-co-3HHx) production when palm oil was used as the carbon source. In addition, both kcat and kcat/Km of PhaJSs were higher toward the C6 than the shorter C4 substrates, underscoring the preference for 3-hydroxyhexanoyl-CoA. These results suggest that PhaJSs has a significant ability to supply 3HHx monomers for PHA biosynthesis via ß-oxidation and can be applied for metabolic engineering of robust PHA-producing strains.


Assuntos
Cupriavidus necator , Streptomyces , Ácido 3-Hidroxibutírico/metabolismo , Caproatos/metabolismo , Carbono/metabolismo , Coenzima A/metabolismo , Cupriavidus necator/metabolismo , Enoil-CoA Hidratase/metabolismo , Óleo de Palmeira/metabolismo , Streptomyces/metabolismo
5.
Cell Prolif ; 55(10): e13289, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35791492

RESUMO

OBJECTIVES: 3D-printing scaffold with specifically customized and biomimetic structures gained significant recent attention in tissue engineering for the regeneration of damaged bone tissues. However, constructed scaffolds that simultaneously promote bone regeneration and in situ inhibit bacterial proliferation remains a great challenge. This study aimed to design a bone repair scaffold with in situ antibacterial functions. MATERIALS AND METHODS: Herein, a general strategy is developed by using epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, firmly anchored in the nano-hydroxyapatite (HA) and coating the 3D printed polymerization of caprolactone and lactide (PCLA) scaffold. Then, we evaluated the stability, mechanical properties, water absorption, biocompatibility, and in vitro antibacterial and osteocyte inductive ability of the scaffolds. RESULTS: The coated scaffold exhibit excellent activity in simultaneously stimulating osteogenic differentiation and in situ resisting methicillin-resistant Staphylococcus aureus colonization in a bone repair environment without antibiotics. Meanwhile, the prepared 3D scaffold has certain mechanical properties (39.3 ± 3.2 MPa), and the applied coating provides the scaffold with remarkable cell adhesion and osteogenic conductivity. CONCLUSION: This study demonstrates that EGCG self-assembled HA coating on PCLA surface could effectively enhance the scaffold's water absorption, osteogenic induction, and antibacterial properties in situ. It provides a new strategy to construct superior performance 3D printed scaffold to promote bone tissue regeneration and combat postoperative infection in situ.


Assuntos
Durapatita , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Regeneração Óssea , Caproatos , Catequina/análogos & derivados , Dioxanos , Durapatita/química , Durapatita/farmacologia , Lactonas , Osteogênese , Polimerização , Polifenóis/farmacologia , Impressão Tridimensional , Chá , Engenharia Tecidual , Alicerces Teciduais/química , Água/farmacologia
6.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723288

RESUMO

Feeding 100% forage rape to sheep consistently lowers methane emissions per unit of intake (CH4/DMI) compared to those fed 100% ryegrass pasture. However, forage rape is usually supplemented with other feeds, which might impact the mitigation potential provided by forage rape. The objective of this study was to determine the effect of substituting ryegrass with graded levels of forage rape in the diet of lambs on methane emissions and rumen fermentation characteristics. Seventy wether lambs (n = 14/treatment) were fed a ryegrass-based pasture substituted with 0%, 25%, 50%, 75%, and 100% of forage rape (Brassica napus; FR0, FR25, FR50, FR75, and FR100, respectively) on a dry matter basis. Methane emissions and dry matter intake were measured for 48 h in respiration chambers and a rumen fluid sample was collected. CH4/DMI decreased (P < 0.01) with increasing forage rape inclusion in the diet so that sheep fed FR100 and FR75 emitted 34% and 11% less, respectively, than those fed FR0. CH4/DMI differences for lambs fed FR25 and FR50 were much smaller (<6%) relative to FR0. The pH of rumen fluid decreased (P < 0.01) at higher levels of forage rape inclusion in the diet (FR75 and FR100) compared to low levels of inclusion (FR0, F25, and F50). The proportion of ruminal acetate was least in FR100 (30%) followed by FR75 (10%), FR50 (8%), and FR25 (4%) compared with FR0 (P < 0.001). The proportion of propionate plus succinate was greater for FR100 (+40%), FR75 (+28%), and FR50 (+29%) compared with FR0, with FR25 intermediate (P < 0.001). The methanol concentration, and ethanol and propanol proportions in rumen fluid were greater for FR100 compared with any other treatment (P < 0.001). In conclusion, CH4/DMI decreased at high levels of forage rape inclusion in the diet and especially feeding FR100 was associated with a pronounced shift in rumen fermentation profile, with a significant presence of succinate, ethanol, propanol, methanol, valerate, and caproate.


The methane yield (g methane/kg dry matter intake) was 34% lower in sheep fed 100% forage rape and 11% lower in sheep fed 75% forage rape compared to sheep fed 100% ryegrass-based pasture. Sheep fed 25% and 50% forage rape as part of their diet had similar methane yields to sheep fed 100% ryegrass pasture. Sheep fed 100% forage rape had a ruminal fermentation profile with a smaller proportion of acetate and greater proportions of fermentation products like propionate, succinate, and valerate. Acetate formation is associated with hydrogen gas formation, which in turn is converted to methane in the rumen. Propionate, succinate, and valerate are alternatives to acetate plus hydrogen production and so fermentation shifts to them result in less methane formation.


Assuntos
Brassica napus , Brassica rapa , Lolium , Acetatos/metabolismo , Animais , Caproatos/metabolismo , Dieta/veterinária , Digestão , Etanol/metabolismo , Feminino , Fermentação , Lactação , Masculino , Metano/metabolismo , Metanol/metabolismo , Propanóis , Propionatos/metabolismo , Rúmen/metabolismo , Ovinos , Ácido Succínico/metabolismo , Valeratos
7.
Microbiol Spectr ; 10(3): e0220221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35532355

RESUMO

Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.


Assuntos
Salmonelose Animal , Salmonella enterica , Solanum tuberosum , Doenças dos Suínos , Animais , Butiratos , Caproatos , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Voláteis , Fezes/microbiologia , Prebióticos , Amido Resistente , Salmonella , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Amido , Suínos , Doenças dos Suínos/microbiologia , Valeratos
8.
Nutrients ; 14(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458230

RESUMO

The adverse effects of anti-tuberculosis (TB) drugs in the intestines were related to alteration of the intestinal microbiota. However, there was less information about microbial metabolism on the adverse reactions. This study aimed to explore whether Lactobacillus casei could regulate gut microbiota or short-chain fatty acids (SCFAs) disorders to protect intestinal adverse reactions induced by isoniazid (H) and rifampicin (R). Male Wistar rats were given low and high doses of Lactobacillus casei two hours before daily administration of anti-TB drugs. After 42 days, colon tissue and blood were collected for analysis. The feces at two-week and six-week were collected to analyze the microbial composition and the content of SCFAs in colon contents was determined. Supplementation of Lactobacillus casei increased the proportion of intestinal goblet cells induced by H and R (p < 0.05). In addition, HR also reduced the level of mucin-2 (p < 0.05), and supplementation of Lactobacillus casei restored. After two weeks of HR intervention, a decrease in OTUs, diversity index, the abundance of Bacteroides, Akkermansia, and Blautia, and an increase of the abundance of Lacetospiraceae NK4A136 group and Rumencoccus UCG-005, were observed compared with the control group (p all < 0.05). These indices in Lactobacillus casei intervention groups were similar to the HR group. Six-week intervention resulted in a dramatic reduction of Lacetospiraceae NK4A136 group, butyric acid, valeric acid and hexanoic acid, while an increase of Bacteroides and Blautia (p all < 0.05). Pretreatment with Lactobacillus casei significantly increased the content of hexanoic acid compared with HR group (p < 0.05). Lactobacillus casei might prevent intestinal injury induced by anti-tuberculosis drugs by regulating gut microbiota and SCFAs metabolism.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Animais , Antituberculosos/efeitos adversos , Antituberculosos/metabolismo , Caproatos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Intestinos , Lacticaseibacillus casei/metabolismo , Masculino , Probióticos/uso terapêutico , Ratos , Ratos Wistar
9.
Folia Microbiol (Praha) ; 67(4): 659-669, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384558

RESUMO

Poly(ε-caprolactone; PCL) is an attractive biodegradable polymer that has been increasingly used to solve environmental problems caused by plastic wastes. In the present study, 468 bacterial isolates were recovered from soil samples and screened for PCL degradation activity. Of the isolates, 37 (7.9%) showed PCL depolymerase activity on PCL agar medium, with the highest activity being by isolate S22 which was identified using 16S rRNA and rpoB gene sequencing as Acinetobacter seifertii. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the degradation of PCL films after treatment with A. seifertii S22. The PCL depolymerase activity of A. seifertii S22 relied on the activity of esterase which occurred at an optimum temperature of 30-40 °C. The highest PCL depolymerase activity (35.5 ± 0.7 U/mL) was achieved after culturing A. seifertii S22 for 6 h in mineral salt medium (MSM) containing 0.1% Tween 20 and 0.02% ammonium sulfate as the carbon and nitrogen sources, respectively, which was approximately 20-fold higher than for cultivation in MSM supplemented with 0.1% PCL as sole carbon source. The results suggested that A. seifertii S22 or its enzymes could be used for PCL bioplastic degradation.


Assuntos
Carbono , Poliésteres , Acinetobacter , Biodegradação Ambiental , Caproatos , Lactonas , Poliésteres/metabolismo , RNA Ribossômico 16S/genética
10.
Ecotoxicol Environ Saf ; 232: 113283, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131581

RESUMO

Perfluorohexanoic acid (PFHxA) has been recognized as an alternative to the wide usage of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in the fluoropolymer industry for years. PFHxA has been frequently detected in the environment due to its wide application. However, the ecological safety of PFHxA, especially its toxicological effects on aquatic organisms, remains obscure. In the present study, PFHxA at different concentrations (0, 0.48, 2.4, and 12 mg/L) was added to the culture medium for zebrafish embryo/larval exposure at 96 h postfertilization (hpf). Zebrafish larvae showed a slow body growth trend and changes in thyroid hormone levels (THs) upon PFHxA exposure, indicating the interference effect of PFHxA on fish larval development. Moreover, the transcription levels of genes related to the hypothalamic-pituitary-thyroid (HPT) axis were also analyzed. The gene expression level of thyroid hormone receptor ß (trß) was upregulated in a dose-dependent manner. Exposure to 0.48 mg/L PFHxA increased the expression levels of the thyrotrophic-releasing hormone (trh) and thyroid hormone receptor α (trα). Significant increases in corticotrophin-releasing hormone (crh) and transthyretin (ttr) gene expression were also observed when the zebrafish larvae were treated with 12 mg/L PFHxA, except iodothyronine deiodinases (dio1), which decreased obviously at that point. There were significant declines in the transcription of both thyroid-stimulating hormone ß (tshß) and uridinediphosphate-glucuronosyltransferase (ugt1ab) upon exposure to 2.4 mg/L PFHxA. In addition, PFHxA induced a dose-related inhibitory effect on the transcription of sodium/iodide symporter (nis). Finally, the thyroid status will be destroyed after exposure to PFHxA, thus leading to growth impairment in zebrafish larvae.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Caproatos , Fluorocarbonos , Hipotálamo , Larva , Glândula Tireoide , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
11.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112209, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34814101

RESUMO

Biodegradable poly-(lactide-coε-caprolactone) (PLCL) scaffolds have opened new perspectives for tissue engineering due to their nontoxic and fascinating functionality. Herein, a black phosphorus-based biodegradable material with a combination of promising enhanced hydrophilicity, shape recovery and osteodifferentiation properties was proposed. First, amino black phosphorous (BP-NH2) was prepared by a simple ball milling method. Then, L-lysine-modified black phosphorous (L-NH-BP) was formed by hydrogen bonding between L-lysine and amino BP and integrated into PLCL to form PLCL/L-NH-BP composite fibers. The scaffolds had excellent shape recovery and shape fixity properties. Moreover, based on gene expression and protein level assessment, the scaffolds could enhance the expression of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), simultaneously improving the mineralization ability of bone mesenchymal stem cells. Specifically, this new composite material was experimentally verified to be degradable under mild conditions. This strategy provided new insight into the design of multifunctional materials for diverse applications.


Assuntos
Nanofibras , Caproatos , Dioxanos , Interações Hidrofóbicas e Hidrofílicas , Lactonas , Lisina , Fósforo , Poliésteres , Engenharia Tecidual , Alicerces Teciduais
12.
Mol Pharm ; 18(8): 3132-3146, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34259534

RESUMO

Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (∼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core-shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.


Assuntos
Administração Intranasal/métodos , Materiais Biocompatíveis/química , Nanocápsulas/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Mucosa Nasal/efeitos dos fármacos , Sinvastatina/administração & dosagem , Sinvastatina/química , Animais , Transporte Biológico , Caproatos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/química , Lactonas/química , Lecitinas/química , Mucosa Nasal/metabolismo , Tamanho da Partícula , Polissorbatos/química , Coelhos , Solubilidade , Tensoativos/química , Suínos
13.
J Biomed Nanotechnol ; 17(5): 873-888, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082873

RESUMO

Tissue engineering is a promising approach for the treatment of chronic lower back pain (LBP) caused by intervertebral disc degeneration (IDD) resulting from degeneration and inflammation of annulus fibrosus (AF) tissue. However, scaffold with an anti-inflammatory effect on AF cells has not been reported. In this study, we fabricated a polylactide-glycolide (PLGA)/poly-ε-caprolactone (PCL)Zdextran (DEX) composite membrane loaded with plastrum testudinis extract (PTE), a Traditional Chinese Medicine herbal extract, via electrospinning. The membranes were characterized by mechanical measurements and scanning electron microscopy (SEM). Using an in vitro inflammation model induced by interleukin (IL)-1ß, the cytocompatibility and anti-inflammatory effects of the composites were investigated by CCK-8 assay and flow cytometry. Potential regulatory mechanisms were examined by RT-qPCR and Western blotting. The results showed that the P10P8D2 (PLGA 10 g, PCL 8 g, DEX 2 g) composite nanofiber membrane exhibited the most uniform diameter distribution, best mechanical properties, a moderate degradation rate, and the best cytocompatibility characteristics. The optimal concentration of PTE was 120 µg/mL. Importantly, P10P8D2 combined with PTE exhibited anti-inflammatory and cell proliferation promotion effects. Moreover, the NF-κBB/NLRP3/IL-ß signaling pathway was inactivated. Our findings suggested that the nanofiber membrane composed of P10P8D2 and PTE has anti-inflammatory and pro-proliferation effects on AF cells. It may provide an effective strategy for AF tissue regeneration.


Assuntos
Anel Fibroso , Nanofibras , Anti-Inflamatórios/farmacologia , Caproatos , Dextranos , Lactonas , Extratos Vegetais , Poliésteres , Engenharia Tecidual , Extratos de Tecidos , Alicerces Teciduais
14.
Int J Pharm ; 602: 120662, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933641

RESUMO

High local intraosseous levels of antimicrobial agents are required for adequate long-term treatment of chronic osteomyelitis (OM). In this study, biodegradable composite scaffolds of poly-lactide-co-ε-caprolactone/calcium phosphate (CaP) were in-situ synthesized using two different polymer grades and synthesis pathways and compared to composites prepared by pre-formed (commercially available) CaP for delivery of the antibiotic moxifloxacin hydrochloride (MOX). Phase identification and characterization by Fourier transform infra-red (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) confirmed the successful formation of different CaP phases within the biodegradable polymer matrix. The selected in-situ formed CaP scaffold showed a sustained release for MOX for six weeks and adequate porosity. Cell viability study on MG-63 osteoblast-like cells revealed that the selected composite scaffold maintained the cellular proliferation and differentiation. Moreover, it was able to diminish the bacterial load, inflammation and sequestrum formation in the bones of OM-induced animals. The results of the present work deduce that the selected in-situ formed CaP composite scaffold is a propitious candidate for OM treatment, and further clinical experiments are recommended.


Assuntos
Osteomielite , Poliésteres , Animais , Caproatos , Dioxanos , Lactonas , Moxifloxacina , Osteomielite/tratamento farmacológico , Engenharia Tecidual , Alicerces Teciduais
15.
Viruses ; 13(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807769

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019 (COVID-19), has become a severe threat to global public health. There are currently no antiviral therapies approved for the treatment or prevention of mild to moderate COVID-19 as remdesivir is only approved for severe COVID-19 cases. Here, we evaluated the antiviral potential of a Propylamylatin formula, which is a mixture of propionic acid and isoamyl hexanoates. The Propylamylatin formula was investigated in gaseous and liquid phases against 1 mL viral suspensions containing 105 PFU of SARS-CoV-2. Viral suspensions were sampled at various times post-exposure and infectious virus was quantified by plaque assay on Vero E6 cells. Propylamylatin formula vapors were effective at inactivating infectious SARS-CoV-2 to undetectable levels at room temperature and body temperature, but the decline in virus was substantially faster at the higher temperature (15 min versus 24 h). The direct injection of liquid Propylamylatin formula into viral suspensions also completely inactivated SARS-CoV-2 and the rapidity of inactivation occurred in an exposure dependent manner. The overall volume that resulted in 90% viral inactivation over the course of the direct injection experiment (EC90) was 4.28 µls. Further investigation revealed that the majority of the antiviral effect was attributed to the propionic acid which yielded an overall EC90 value of 11.50 µls whereas the isoamyl hexanoates provided at most a 10-fold reduction in infectious virus. The combination of propionic acid and isoamyl hexanoates was much more potent than the individual components alone, suggesting synergy between these components. These findings illustrate the therapeutic promise of the Propylamylatin formula as a potential treatment strategy for COVID-19 and future studies are warranted.


Assuntos
Antivirais/farmacologia , Caproatos/farmacologia , Propionatos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/virologia , Chlorocebus aethiops , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
16.
Colloids Surf B Biointerfaces ; 199: 111557, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33434880

RESUMO

Diabetic infection is a long-term complication difficult to cure. The skin of diabetic patients is prone to damage, the healing is slow after the injury, and the wound occurs repeatedly. Therefore, there is an urgent need to develop an effective method for treating diabetes wounds. In this study, we used the electrospinning technique to load Huangbai Liniment (Compound Phellodendron Liquid, CPL) into Silk fibroin (SF) /poly-(L-lactide-co-caprolactone) (PLCL) to prepare the nanofiber membrane (SP/CPL) to treat the diabetic wound. The morphology and structure of the nanofibers were observed by scanning electron microscope (SEM). The SEM results indicate the smooth and bead free fibers and the diameter of the fiber decreased with increasing drug concentration. The release profile indicates the sustained release of the drug. Moreover, the drug-loaded nanofibers showed inhibitory effects for S.aureus and E.coli. Furthermore, in vitro cell culture studies showed the increased proliferation and adhesion of NIH-3T3 cells on the drug-containing nanofiber membrane. Animal experiments showed that the nanofiber membrane loaded with CPL increases the expression of the TGF-ß signaling pathway and collagen during wound healing, inhibits the expression of pro-inflammatory factors, and thus effectively promotes wound healing in diabetic mice. Therefore, the SP/CPL nanofiber scaffold with CPL loading is a potential candidate for diabetic wound dressings and tissue engineering.


Assuntos
Diabetes Mellitus Experimental , Fibroínas , Nanofibras , Animais , Caproatos , Diabetes Mellitus Experimental/tratamento farmacológico , Dioxanos , Medicamentos de Ervas Chinesas , Humanos , Lactonas , Linimentos , Camundongos , Poliésteres , Seda , Alicerces Teciduais , Cicatrização
17.
Med Sci Sports Exerc ; 53(1): 236-243, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32694367

RESUMO

PURPOSE: Autologous blood transfusion is performance enhancing and prohibited in sport but remains difficult to detect. This study explored the hypothesis that an untargeted urine metabolomics analysis can reveal one or more novel metabolites with high sensitivity and specificity for detection of autologous blood transfusion. METHODS: In a randomized, double-blinded, placebo-controlled, crossover design, exercise-trained men (n = 12) donated 900 mL blood or were sham phlebotomized. After 4 wk, red blood cells or saline were reinfused. Urine samples were collected before phlebotomy and 2 h and 1, 2, 3, 5, and 10 d after reinfusion and analyzed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. Models of unique metabolites reflecting autologous blood transfusion were attained by partial least-squares discriminant analysis. RESULTS: The strongest model was obtained 2 h after reinfusion with a misclassification error of 6.3% and 98.8% specificity. However, combining only a few of the strongest metabolites selected by this model provided a sensitivity of 100% at days 1 and 2 and 66% at day 3 with 100% specificity. Metabolite identification revealed the presence of secondary di-2-ethylhexyl phtalate metabolites and putatively identified the presence of (iso)caproic acid glucuronide as the strongest candidate biomarker. CONCLUSIONS: Untargeted urine metabolomics revealed several plasticizers as the strongest metabolic pattern for detection of autologous blood transfusion for up to 3 d. Importantly, no other metabolites in urine seem of value for antidoping purposes.


Assuntos
Transfusão de Sangue Autóloga , Dopagem Esportivo/métodos , Transfusão de Eritrócitos , Urinálise , Adulto , Biomarcadores/urina , Caproatos/urina , Estudos Cross-Over , Dietilexilftalato/urina , Método Duplo-Cego , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Metabolômica , Adulto Jovem
18.
J Agric Food Chem ; 68(40): 11170-11181, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32840366

RESUMO

(R)-Oxyphylla A, a natural product isolated from Alpinia oxyphylla Miquel as a food and medicinal plant, has been reported previously as a novel chiral compound that possesses a potential therapeutic value for Parkinson's disease (PD). A chiral high-performance liquid chromatography-multiple reaction monitoring-mass spectrometry method was developed to separate oxyphylla A enantiomers and to identify the presence of natural (S)-oxyphylla A for the first time. Twelve samples of dried A. oxyphylla fruits were analyzed in which a large variation in the abundance of enantiomers was observed. Moreover, (S)-oxyphylla A was less abundant in all tested samples, whereas fruits harvested from Hainan and Guangdong tended to have relatively higher total concentrations of enantiomers. Additionally, enantiomers exhibited comparable neuroprotective effects in the zebrafish model of PD without observed toxicity phenotype. The optimized enantioseparation method will be crucial for the quality control of A. oxyphylla and research on bioactivities facilitates the development of oxyphylla A as a potential therapeutic for neurodegenerative diseases.


Assuntos
Alpinia/química , Caproatos/administração & dosagem , Caproatos/química , Cresóis/administração & dosagem , Cresóis/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Frutas/química , Humanos , Masculino , Espectrometria de Massas , Peixe-Zebra
19.
Food Res Int ; 136: 109548, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846600

RESUMO

The aims of this study were to produce poly-ɛ-caprolactone lipid-core nanocapsules containing lycopene-rich extract from red guava (LEG), to characterize those nanoparticles and to evaluate their cytotoxic effects on human breast cancer cells. Lipid-core nanocapsules containing the extract (nanoLEG) were produced by the method of interfacial deposition of the preformed polymer. The nanoparticles were characterized by Dynamic Light Scattering (DLS), Polydispersity Index, Zeta Potential, pH, Encapsulation Efficiency, Nanoparticle Tracking Analysis (NTA), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Cell viability was evaluated by the MTT dye reduction method in the human breast cancer MCF-7 cell line and inhibition of ROS and NF-κB was assayed in living human microglial cell line (HMC3) by time-lapse images microscopy. A hemolytic activity assay was carried out with sheep blood. Data showed that nanoparticles average size was around 200 nm, nanoparticles concentration/mL was around 0.1 µM, negative zeta potential, pH < 5.0 and spherical shape, with low variation during a long storage period (7 months) at 5 °C, indicating stability of the system and protection against lycopene degradation. The percentage of encapsulation varied from 95% to 98%. The nanoLEG particles significantly reduced the viability of the MCF-7 cells after 24 h (61.47%) and 72 h (55.96%) of exposure, even at the lowest concentration tested (6.25-200 µg/ml) and improved on the cytotoxicity of free LEG to MCF-7. NanoLEG inhibited LPS-induced NF-kB activation and ROS production in microglial cells. The particles did not affect the membrane integrity of sheep blood erythrocytes at the concentrations tested (6.25-200 µg/mL). Thus, the formulation of lipid-core nanocapsules with a polysorbate 80-coated poly-ɛ-caprolactone wall was efficiently applied to stabilize the lycopene-rich extract from red guava, generating a product with satisfactory physico-chemical and biological properties for application as health-promoting nanotechnology-based nutraceutical, emphasizing its potential to be used as a cancer treatment.


Assuntos
Neoplasias da Mama , Nanocápsulas , Psidium , Animais , Neoplasias da Mama/tratamento farmacológico , Caproatos , Humanos , Lactonas , Lipídeos , Licopeno , Extratos Vegetais/farmacologia , Ovinos
20.
Enzyme Microb Technol ; 138: 109555, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32527525

RESUMO

Hydroxy- or ketone- functionalized fatty acid methyl esters (FAMEs) are important compounds for production of pharmaceuticals, vitamins, cosmetics or dietary supplements. Biocatalysis through enzymatic cascades has drawn attention to the efficient, sustainable, and greener synthetic processes. Furthermore, whole cell catalysts offer important advantages such as cofactor regeneration by cell metabolism, omission of protein purification steps and increased enzyme stability. Here, we report the first whole cell catalysis employing an engineered P450 BM3 variant and cpADH5 coupled cascade reaction for the biosynthesis of hydroxy- and keto-FAMEs. Firstly, P450 BM3 was engineered through the KnowVolution approach yielding P450 BM3 variant YE_M1_2, (R47S/Y51W/T235S/N239R/I401 M) which exhibited boosted performance toward methyl hexanoate. The initial oxidation rate of YE_M1_2 toward methyl hexanoate was determined to be 23-fold higher than the wild type enzyme and a 1.5-fold increase in methyl 3-hydroxyhexanoate production was obtained (YE_M1_2; 2.75 mM and WT; 1.8 mM). Subsequently, the whole cell catalyst for the synthesis of methyl 3-hydroxyhexanoate and methyl 3-oxohexanoate was constructed by combining the engineered P450 BM3 and cpADH5 variants in an artificial operon. A 2.06 mM total product formation was achieved by the whole cell catalyst including co-expressed channel protein, FhuA and co-solvent addition. Moreover, the generated whole cell biocatalyst also accepted methyl valerate, methyl heptanoate as well as methyl octanoate as substrates and yielded ω-1 ketones as the main product.


Assuntos
Álcool Desidrogenase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Álcool Desidrogenase/genética , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biocatálise , Candida parapsilosis/enzimologia , Candida parapsilosis/genética , Caproatos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ésteres/química , Ácidos Graxos/química , Hidroxilação , Óperon , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA