Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Vopr Virusol ; 66(6): 434-441, 2022 01 08.
Artigo em Russo | MEDLINE | ID: mdl-35019250

RESUMO

INTRODUCTION: Giant phiKZ-like bacteriophages have a unique protein formation inside the capsid, an inner body (IB) with supercoiled DNA molecule wrapped around it. Standard cryo-electron microscopy (cryo-EM) approaches do not allow to distinguish this structure from the surrounding nucleic acid of the phage. We previously developed an analytical approach to visualize protein-DNA complexes on Escherichia coli bacterial cell slices using the chemical element phosphorus as a marker. In the study presented, we adapted this technique for much smaller objects, namely the capsids of phiKZ-like bacteriophages. MATERIAL AND METHODS: Following electron microscopy techniques were used in the study: analytical (AEM) (electron energy loss spectroscopy, EELS), and cryo-EM (images of samples subjected to low and high dose of electron irradiation were compared). RESULTS: We studied DNA packaging inside the capsids of giant bacteriophages phiEL from the Myoviridae family that infect Pseudomonas aeruginosa. Phosphorus distribution maps were obtained, showing an asymmetrical arrangement of DNA inside the capsid. DISCUSSION: We developed and applied an IB imaging technique using a high angle dark-field detector (HAADF) and the STEM-EELS analytical approach. Phosphorus mapping by EELS and cryo-electron microscopy revealed a protein formation as IB within the phage phiEL capsid. The size of IB was estimated using theoretical calculations. CONCLUSION: The developed technique can be applied to study the distribution of phosphorus in other DNA- or RNA-containing viruses at relatively low concentrations of the element sought.


Assuntos
Bacteriófagos , Caudovirales , Bacteriófagos/genética , Capsídeo , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , DNA Viral/genética , Microscopia Eletrônica , Myoviridae/química , Fósforo
2.
Viruses ; 12(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143128

RESUMO

Geminivirus particles, consisting of a pair of twinned isometric structures, have one of the most distinctive capsids in the virological world. Until recently, there was little information as to how these structures are generated. To address this, we developed a system to produce capsid structures following the delivery of geminivirus coat protein and replicating circular single-stranded DNA (cssDNA) by the infiltration of gene constructs into plant leaves. The transencapsidation of cssDNA of the Begomovirus genus by coat protein of different geminivirus genera was shown to occur with full-length but not half-length molecules. Double capsid structures, distinct from geminate capsid structures, were also generated in this expression system. By increasing the length of the encapsidated cssDNA, triple geminate capsid structures, consisting of straight, bent and condensed forms were generated. The straight geminate triple structures generated were similar in morphology to those recorded for a potato-infecting virus from Peru. These finding demonstrate that the length of encapsidated DNA controls both the size and stability of geminivirus particles.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/química , DNA de Cadeia Simples/química , DNA Viral/química , Geminiviridae/fisiologia , Folhas de Planta/virologia , Empacotamento do Genoma Viral , Sequência de Aminoácidos , Geminiviridae/genética , Solanum tuberosum/virologia
3.
Viruses ; 12(2)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033244

RESUMO

The green tea catechin epigallocatechin gallate (EGCG) exhibits antiviral activity against various viruses. Whether EGCG also inhibits the infectivity of circovirus remains unclear. In this study, we demonstrated the antiviral effect of EGCG on porcine circovirus type 2 (PCV2). EGCG targets PCV2 virions directly and blocks the attachment of virions to host cells. The microscale thermophoresis assay showed EGCG could interact with PCV2 capsid protein in vitro with considerable affinity (Kd = 98.03 ± 4.76 µM), thereby interfering with the binding of the capsid to the cell surface receptor heparan sulfate. The molecular docking analysis of capsid-EGCG interaction identified the key amino acids which formed the binding pocket accommodating EGCG. Amino acids ARG51, ASP70, ARG73 and ASP78 of capsid were found to be critical for maintaining the binding, and the arginine residues were also essential for the electrostatic interaction with heparan sulfate. The rescued mutant viruses also confirm the importance of the key amino acids of the capsid to the antiviral effect of EGCG. Our findings suggest that catechins could act as anti-infective agents against circovirus invasion, as well as provide the basic information for the development and synthesis of structure-based anti-circovirus drugs.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Catequina/análogos & derivados , Circovirus/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos , Animais , Capsídeo/química , Capsídeo/efeitos dos fármacos , Catequina/farmacologia , Linhagem Celular , Circovirus/classificação , Simulação de Acoplamento Molecular , Suínos , Chá/química
4.
Curr Protein Pept Sci ; 21(4): 344-356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32048964

RESUMO

In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Nicotiana/genética , Vírus de Plantas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vigna/genética , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Capsídeo/química , Capsídeo/imunologia , Avaliação Pré-Clínica de Medicamentos , Engenharia Genética/métodos , Humanos , Imunização , Imunogenicidade da Vacina , Camundongos , Nanopartículas/administração & dosagem , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Vírus de Plantas/genética , Nicotiana/virologia , Vacinas de Subunidades Antigênicas , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas de Partículas Semelhantes a Vírus/genética , Vigna/virologia
5.
Hum Gene Ther ; 30(10): 1297-1305, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502485

RESUMO

Adeno-associated virus (AAV) vector-mediated gene therapy is currently evaluated as a potential treatment for Crigler-Najjar syndrome (CN) (NCT03466463). Pre-existing immunity to AAV is known to hinder gene transfer efficacy, restricting enrollment of seropositive subjects in ongoing clinical trials. We assessed the prevalence of anti-AAV serotype 8 (AAV8) neutralizing antibodies (NAbs) in subjects affected by CN and investigated the impact of low NAb titers (<1:5) on liver gene transfer efficacy in an in vivo passive immunization model. A total of 49 subjects with a confirmed molecular diagnosis of CN were included in an international multicenter study (NCT02302690). Pre-existing NAbs against AAV8 were detected in 30.6% (15/49) of screened patients and, in the majority of positive cases, cross-reactivity to AAV2 and AAV5 was detected. To investigate the impact of low NAbs on AAV vector-mediated liver transduction efficiency, adult wild-type C57BL/6 mice were passively immunized with pooled human donor-derived immunoglobulins to achieve titers of up to 1:3.16. After immunization, animals were injected with different AAV8 vector preparations. Hepatic vector gene copy number was unaffected by low anti-AAV8 NAb titers when column-purified AAV vector batches containing both full and empty capsids were used. In summary, although pre-existing anti-AAV8 immunity can be found in about a third of subjects affected by CN, low anti-AAV8 NAb titers are less likely to affect liver transduction efficiency when using AAV vector preparations manufactured to contain both full and empty capsids. These findings have implications for the design of liver gene transfer clinical trials and for the definition of inclusion criteria related to seropositivity of potential participants.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Síndrome de Crigler-Najjar/terapia , Dependovirus/genética , Terapia Genética/métodos , Glucuronosiltransferase/genética , Adolescente , Adulto , Animais , Bilirrubina/imunologia , Bilirrubina/metabolismo , Capsídeo/imunologia , Capsídeo/metabolismo , Criança , Pré-Escolar , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/imunologia , Síndrome de Crigler-Najjar/patologia , Dependovirus/imunologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Expressão Gênica , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/imunologia , Células HEK293 , Humanos , Imunidade Inata , Imunização Passiva , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenobarbital/uso terapêutico , Fototerapia/métodos , Plasmídeos/química , Plasmídeos/metabolismo , Transfecção
6.
PLoS One ; 14(8): e0221256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437199

RESUMO

HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its globular subdomains. It is compact when in solution but assumes an extended conformation when assembled within the immature HIV-1 virion. Here, we use molecular dynamics (MD) simulations to quantitatively characterize the intra-domain interactions of HIV-1 Gag. We find that the matrix (MA) domain and the C-terminal subdomain CActd of the CA capsid domain can form a bound state. The bound state, which is held together primarily by interactions between complementary charged and polar residues, stabilizes the compact state of HIV-1 Gag. We calculate the depth of the attractive free energy potential between the MA/ CActd sites and find it to be about three times larger than the dimerization interaction between the CActd domains. Sequence analysis shows high conservation within the newly-found intra-Gag MA/CActd binding site, as well as its spatial proximity to other well known elements of Gag -such as CActd's SP1 helix region, its inositol hexaphosphate (IP6) binding site and major homology region (MHR), as well as the MA trimerization site. Our results point to a high, but yet undetermined, functional significance of the intra-Gag binding site. Recent biophysical experiments that address the binding specificity of Gag are interpreted in the context of the MA/CActd bound state, suggesting an important role in selective packaging of genomic RNA by Gag.


Assuntos
Capsídeo/ultraestrutura , HIV-1/ultraestrutura , RNA Viral/química , Vírion/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Motivos de Aminoácidos , Sítios de Ligação , Capsídeo/metabolismo , HIV-1/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Ácido Fítico/química , Ácido Fítico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA Viral/metabolismo , Eletricidade Estática , Termodinâmica , Vírion/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
7.
Antiviral Res ; 169: 104544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254557

RESUMO

Due to its multifaceted essential roles in virus replication and extreme genetic fragility, the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein is a valued therapeutic target. However, CA is as yet unexploited clinically, as there are no antiviral agents that target it currently on the market. To facilitate the identification of potential HIV-1 CA inhibitors, we established a homogeneous time-resolved fluorescence (HTRF) assay to screen for small molecules that target a biologically active and specific binding pocket in the C-terminal domain of HIV-1 CA (CA CTD). The assay, which is based on competition of small molecules for the binding of a known CA inhibitor (CAI) to the CA CTD, exhibited a signal-to-background ratio (S/B) > 10 and a Z' value > 0.9. In a pilot screen of three kinase inhibitor libraries containing 464 compounds, we identified one compound, TX-1918, as a low micromolecular inhibitor of the HIV-1 CA CTD-CAI interaction (IC50 = 3.81 µM) that also inhibited viral replication at moderate micromolar concentration (EC50 = 15.16 µM) and inhibited CA assembly in vitro. Based on the structure of TX-1918, an additional compound with an antiviral EC50 of 6.57 µM and cellular cytotoxicity CC50 of 102.55 µM was obtained from a compound similarity search. Thus, the HTRF-based assay has properties that are suitable for screening large compound libraries to identify novel anti-HIV-1 inhibitors targeting the CA CTD.


Assuntos
Ligação Competitiva , Proteínas do Capsídeo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Fluorescência , HIV-1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Montagem de Vírus/efeitos dos fármacos , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Liberação Controlada de Fármacos , Proteínas Recombinantes , Linfócitos T , Replicação Viral/efeitos dos fármacos
8.
Nat Commun ; 10(1): 2184, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097716

RESUMO

Chronic hepatitis B virus (HBV) infection can cause cirrhosis and hepatocellular carcinoma and is therefore a serious public health problem. Infected patients are currently treated with nucleoside/nucleotide analogs and interferon α, but this approach is not curative. Here, we screen 978 FDA-approved compounds for their ability to inhibit HBV replication in HBV-expressing HepG2.2.15 cells. We find that ciclopirox, a synthetic antifungal agent, strongly inhibits HBV replication in cells and in mice by blocking HBV capsid assembly. The crystal structure of the HBV core protein and ciclopirox complex reveals a unique binding mode at dimer-dimer interfaces. Ciclopirox synergizes with nucleoside/nucleotide analogs to prevent HBV replication in cells and in a humanized liver mouse model. Therefore, orally-administered ciclopirox may provide a novel opportunity to combat chronic HBV infection by blocking HBV capsid assembly.


Assuntos
Antivirais/farmacologia , Ciclopirox/farmacologia , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/tratamento farmacológico , Montagem de Vírus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Ciclopirox/química , Ciclopirox/uso terapêutico , Cristalografia por Raios X , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Hepatócitos/transplante , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , RNA Viral/metabolismo , Quimeras de Transplante , Resultado do Tratamento , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Viruses ; 11(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083301

RESUMO

Human parvovirus B19 (B19V) traffics to the cell nucleus where it delivers the genome for replication. The intracellular compartment where uncoating takes place, the required capsid structural rearrangements and the cellular factors involved remain unknown. We explored conditions that trigger uncoating in vitro and found that prolonged exposure of capsids to chelating agents or to buffers with chelating properties induced a structural rearrangement at 4 °C resulting in capsids with lower density. These lighter particles remained intact but were unstable and short exposure to 37 °C or to a freeze-thaw cycle was sufficient to trigger DNA externalization without capsid disassembly. The rearrangement was not observed in the absence of chelating activity or in the presence of MgCl2 or CaCl2, suggesting that depletion of capsid-associated divalent cations facilitates uncoating. The presence of assembled capsids with externalized DNA was also detected during B19V entry in UT7/Epo cells. Following endosomal escape and prior to nuclear entry, a significant proportion of the incoming capsids rearranged and externalized the viral genome without capsid disassembly. The incoming capsids with accessible genomes accumulated in the nuclear fraction, a process that was prevented when endosomal escape or dynein function was disrupted. In their uncoated conformation, capsids immunoprecipitated from cytoplasmic or from nuclear fractions supported in vitro complementary-strand synthesis at 37 °C. This study reveals an uncoating strategy of B19V based on a limited capsid rearrangement prior to nuclear entry, a process that can be mimicked in vitro by depletion of divalent cations.


Assuntos
Cálcio/metabolismo , Capsídeo/metabolismo , Citoplasma/virologia , Eritema Infeccioso/virologia , Magnésio/metabolismo , Parvovirus B19 Humano/fisiologia , Desenvelopamento do Vírus , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Núcleo Celular/virologia , Humanos , Parvovirus B19 Humano/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-30373799

RESUMO

NVR 3-778 is the first capsid assembly modulator (CAM) that has demonstrated antiviral activity in hepatitis B virus (HBV)-infected patients. NVR 3-778 inhibited the generation of infectious HBV DNA-containing virus particles with a mean antiviral 50% effective concentration (EC50) of 0.40 µM in HepG2.2.15 cells. The antiviral profile of NVR 3-778 indicates pan-genotypic antiviral activity and a lack of cross-resistance with nucleos(t)ide inhibitors of HBV replication. The combination of NVR 3-778 with nucleos(t)ide analogs in vitro resulted in additive or synergistic antiviral activity. Mutations within the hydrophobic pocket at the dimer-dimer interface of the core protein could confer resistance to NVR 3-778, which is consistent with the ability of the compound to bind to core and to induce capsid assembly. By targeting core, NVR 3-778 inhibits pregenomic RNA encapsidation, viral replication, and the production of HBV DNA- and HBV RNA-containing particles. NVR 3-778 also inhibited de novo infection and viral replication in primary human hepatocytes with EC50 values of 0.81 µM against HBV DNA and between 3.7 and 4.8 µM against the production of HBV antigens and intracellular HBV RNA. NVR 3-778 showed favorable pharmacokinetics and safety in animal species, allowing serum levels in excess of 100 µM to be achieved in mice and, thus, enabling efficacy studies in vivo The overall preclinical profile of NVR 3-778 predicts antiviral activity in vivo and supports its further evaluation for safety, pharmacokinetics, and antiviral activity in HBV-infected patients.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Capsídeo/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Piperidinas/farmacologia , RNA Viral/antagonistas & inibidores , Animais , Antígenos Virais/genética , Antígenos Virais/metabolismo , Antivirais/sangue , Antivirais/química , Antivirais/farmacocinética , Benzamidas/sangue , Benzamidas/química , Benzamidas/farmacocinética , Capsídeo/química , Capsídeo/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Células Hep G2 , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Piperidinas/sangue , Piperidinas/química , Piperidinas/farmacocinética , Cultura Primária de Células , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos
11.
J Am Chem Soc ; 140(49): 17226-17233, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30452248

RESUMO

In this Article, we show that the surface of the bacteriophage Qß is equipped with natural ligands for the synthesis of small gold nanoparticles (AuNPs). By exploiting disulfides in the protein secondary structure and the geometry formed from the capsid quaternary structure, we find that we can produce regularly arrayed patterns of ∼6 nm AuNPs across the surface of the virus-like particle. Experimental and computational analyses provide insight into the formation and stability of this composite. We further show that the entrapped genetic material can hold upward of 500 molecules of the anticancer drug Doxorubicin without leaking and without interfering with the synthesis of the AuNPs. This direct nucleation of nanoparticles on the capsid allows for exceptional conduction of photothermal energy upon nanosecond laser irradiation. As a proof of principle, we demonstrate that this energy is capable of rapidly releasing the drug from the capsid without heating the bulk solution, allowing for highly targeted cell killing in vitro.


Assuntos
Allolevivirus/química , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Células A549 , Animais , Antineoplásicos/química , Capsídeo/química , Proteínas do Capsídeo/química , Doxorrubicina/química , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ouro/efeitos da radiação , Ouro/toxicidade , Humanos , Hipertermia Induzida/métodos , Luz , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Camundongos , Tamanho da Partícula , Fototerapia/métodos , Porosidade , Estudo de Prova de Conceito , Células RAW 264.7 , RNA/química , RNA/toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-29418076

RESUMO

Over the last decade, viruses have established themselves as a powerful tool in nanotechnology. Their proteinaceous capsids benefit from biocompatibility, chemical addressability, and a variety of sizes and geometries, while their ability to encapsulate, scaffold, and self-assemble enables their use for a wide array of purposes. Moreover, the scaling up of viral-based nanotechnologies is facilitated by high capsid production yield and speed, which is particularly advantageous when compared with slower and costlier lithographic techniques. These features enable the bottom-up fabrication of photonic and plasmonic materials, which relies on the precise arrangement of photoactive material at the nanoscale to control phenomena such as electromagnetic wave propagation and energy transfer. The interdisciplinary approach required for the fabrication of such materials combines techniques from the life sciences and device engineering, thus promoting innovative research. Materials with applications spanning the fields of sensing (biological, chemical, and physical sensors), nanomedicine (cellular imaging, drug delivery, phototherapy), energy transfer and conversion (solar cells, light harvesting, photocatalysis), metamaterials (negative refraction, artificial magnetism, near-field amplification), and nanoparticle synthesis are considered with exclusive emphasis on viral capsids and protein cages. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Biotecnologia , Nanoestruturas , Nanotecnologia , Vírus , Animais , Técnicas Biossensoriais , Capsídeo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Imageamento por Ressonância Magnética , Camundongos , Imagem Óptica , Óptica e Fotônica
13.
Biotechnol Adv ; 36(3): 557-576, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29292156

RESUMO

Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Animais , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566379

RESUMO

Chronic hepatitis B virus (HBV) infection is a global public health problem. Although the currently approved medications can reliably reduce the viral load and prevent the progression of liver diseases, they fail to cure the viral infection. In an effort toward discovery of novel antiviral agents against HBV, a group of benzamide (BA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA were discovered. The initial lead optimization efforts identified two BA derivatives with improved antiviral activity for further mechanistic studies. Interestingly, similar to our previously reported sulfamoylbenzamides (SBAs), the BAs promote the formation of empty capsids through specific interaction with HBV core protein but not other viral and host cellular components. Genetic evidence suggested that both SBAs and BAs inhibited HBV nucleocapsid assembly by binding to the heteroaryldihydropyrimidine (HAP) pocket between core protein dimer-dimer interfaces. However, unlike SBAs, BA compounds uniquely induced the formation of empty capsids that migrated more slowly in native agarose gel electrophoresis from A36V mutant than from the wild-type core protein. Moreover, we showed that the assembly of chimeric capsids from wild-type and drug-resistant core proteins was susceptible to multiple capsid assembly modulators. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy. Our studies thus indicate that BAs are a chemically and mechanistically unique type of HBV capsid assembly modulators and warranted for further development as antiviral agents against HBV.IMPORTANCE HBV core protein plays essential roles in many steps of the viral replication cycle. In addition to packaging viral pregenomic RNA (pgRNA) and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, the core protein dimers, existing in several different quaternary structures in infected hepatocytes, participate in and regulate HBV virion assembly, capsid uncoating, and covalently closed circular DNA (cccDNA) formation. It is anticipated that small molecular core protein assembly modulators may disrupt one or multiple steps of HBV replication, depending on their interaction with the distinct quaternary structures of core protein. The discovery of novel core protein-targeting antivirals, such as benzamide derivatives reported here, and investigation of their antiviral mechanism may lead to the identification of antiviral therapeutics for the cure of chronic hepatitis B.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzamidas/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Montagem de Vírus/efeitos dos fármacos , Fármacos Anti-HIV/isolamento & purificação , Benzamidas/isolamento & purificação , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica
15.
J Gen Virol ; 98(3): 385-395, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902359

RESUMO

The foot-and-mouth disease virus (FMDV) capsid precursor, P1-2A, is cleaved by FMDV 3C protease to yield VP0, VP3, VP1 and 2A. Cleavage of the VP1/2A junction is the slowest. Serotype O FMDVs with uncleaved VP1-2A (having a K210E substitution in VP1; at position P2 in cleavage site) have been described previously and acquired a second site substitution (VP1 E83K) during virus rescue. Furthermore, introduction of the VP1 E83K substitution alone generated a second site change at the VP1/2A junction (2A L2P, position P2' in cleavage site). These virus adaptations have now been analysed using next-generation sequencing to determine sub-consensus level changes in the virus; this revealed other variants within the E83K mutant virus population that changed residue VP1 K210. The construction of serotype A viruses with a blocked VP1/2A cleavage site (containing K210E) has now been achieved. A collection of alternative amino acid substitutions was made at this site, and the properties of the mutant viruses were determined. Only the presence of a positively charged residue at position P2 in the cleavage site permitted efficient cleavage of the VP1/2A junction, consistent with analyses of diverse FMDV genome sequences. Interestingly, in contrast to the serotype O virus results, no second site mutations occurred within the VP1 coding region of serotype A viruses with the blocked VP1/2A cleavage site. However, some of these viruses acquired changes in the 2C protein that is involved in enterovirus morphogenesis. These results have implications for the testing of potential antiviral agents targeting the FMDV 3C protease.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/metabolismo , Febre Aftosa/virologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Avaliação Pré-Clínica de Medicamentos , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/genética , Ácido Glutâmico/genética , Lisina/genética , Mutação , Montagem de Vírus/efeitos dos fármacos
16.
Biol Direct ; 11: 25, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27179769

RESUMO

BACKGROUND: Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. RESULTS: Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. CONCLUSIONS: These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. REVIEWERS: Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.


Assuntos
Antivirais/análise , Capsídeo/fisiologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Vírus da Febre do Vale do Rift/fisiologia , Sistema Livre de Células , Nucleoproteínas/química
17.
J Antimicrob Chemother ; 71(7): 1922-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098012

RESUMO

OBJECTIVES: Enterovirus 71 (EV-A71) is an important pathogen that can cause severe neurological symptoms and even death. Our aim was to identify potent anti-EV-A71 compounds and study their underlying mechanisms and in vivo activity. METHODS: We identified a potent imidazolidinone derivative (abbreviated to PR66) as an inhibitor of EV-A71 infection from the screening of compounds and subsequent structure-based modification. Time-course treatments and resistant virus selection of PR66 were employed to study the mode of mechanism of PR66. In vivo activity of PR66 was tested in the ICR strain of new-born mice challenged with EV-A71/4643/MP4. RESULTS: PR66 could impede the uncoating process during viral infection via interaction with capsid protein VP1, as shown by a resistant virus selection assay. Using site-directed mutagenesis, we confirmed that a change from valine to phenylalanine in the 179th amino acid residue of the cDNA-derived resistant virus resulted in resistance to PR66. PR66 increased the virion stability of WT viruses, but not the PR66-resistant mutant, in a particle stability thermal release assay. We further showed that PR66 had excellent anti-EV-A71 activity in an in vivo mouse model of disease, with a dose-dependent increase in survival rate and in protection against virus-induced hind-limb paralysis following oral or intraperitoneal administration. This was associated with reductions of viral titres in brain and muscle tissues. CONCLUSIONS: We demonstrated here for the first time that an imidazolidinone derivative (PR66) could protect against EV-A71-induced neurological symptoms in vivo by suppressing EV-A71 replication. This involved binding to and restricting viral uncoating.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos ICR , Análise de Sobrevida
18.
Acta Crystallogr A Found Adv ; 72(Pt 3): 324-37, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126109

RESUMO

Considered is the coarse-grained modeling of icosahedral viruses in terms of a three-dimensional lattice (the digital modeling lattice) selected among the projected points in space of a six-dimensional icosahedral lattice. Backbone atomic positions (Cα's for the residues of the capsid and phosphorus atoms P for the genome nucleotides) are then indexed by their nearest lattice point. This leads to a fine-grained lattice point characterization of the full viral chains in the backbone approximation (denoted as digital modeling). Coarse-grained models then follow by a proper selection of the indexed backbone positions, where for each chain one can choose the desired coarseness. This approach is applied to three viruses, the Satellite tobacco mosaic virus, the bacteriophage MS2 and the Pariacoto virus, on the basis of structural data from the Brookhaven Protein Data Bank. In each case the various stages of the procedure are illustrated for a given coarse-grained model and the corresponding indexed positions are listed. Alternative coarse-grained models have been derived and compared. Comments on related results and approaches, found among the very large set of publications in this field, conclude this article.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Levivirus/química , Nodaviridae/química , Vírus Satélite do Mosaico do Tabaco/química , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares , Fósforo/química
19.
Biochemistry ; 54(13): 2240-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25774576

RESUMO

HIV capsid protein is an important target for antiviral drug design. High-throughput screening campaigns have identified two classes of compounds (PF74 and BI64) that directly target HIV capsid, resulting in antiviral activity against HIV-1 and HIV-2 laboratory strains. Using recombinant proteins, we developed a suite of label-free assays to mechanistically understand how these compounds modulate capsid activity. PF74 preferentially binds to the preassembled hexameric capsid form and prevents disruption of higher-order capsid structures by stabilizing capsid intersubunit interactions. BI64 binds only the monomeric capsid and locks the protein in the assembly incompetent monomeric form by disrupting capsid intersubunit interactions. We also used these assays to characterize the interaction between capsid and the host protein cleavage and polyadenylation specific factor 6 (CPSF6). Consistent with recently published results, our assays revealed CPSF6 activates capsid polymerization and preferentially binds to the preassembled hexameric capsid form similar to the small molecule compound, PF74. Furthermore, these label-free assays provide a robust method for facilitating the identification of a different class of small molecule modulators of capsid function.


Assuntos
Fármacos Anti-HIV/farmacologia , Técnicas Biossensoriais/métodos , Capsídeo/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Benzimidazóis/farmacologia , Capsídeo/química , HIV-1 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Dados de Sequência Molecular , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Poliadenilação e Clivagem de mRNA/genética
20.
J Virol ; 89(10): 5350-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25741002

RESUMO

UNLABELLED: During uncoating, the conical capsid of HIV disassembles by dissociation of the p24 capsid protein (CA). Uncoating is known to be required for HIV replication, but the mechanism is poorly defined. Here, we examined the timing and effect of two capsid binding drugs (PF74 and BI2) on infectivity and capsid integrity in HIV-1-infected cells. The virus remained susceptible to the action of PF74 and BI2 for hours after uncoating as defined in parallel drug addition and cyclosporine (CsA) washout assays to detect the kinetics of drug susceptibility and uncoating, respectively. Resistance mutations in CA decreased the potency of these compounds, demonstrating that CA is the target of drug action. However, neither drug altered capsid integrity in a fluorescence microscopy-based assay. These data suggest that PF74 and BI2 do not alter HIV-1 uncoating but rather affect a later step in viral replication. Because both drugs bind CA, we hypothesized that a residual amount of CA associates with the viral complex after the loss of the conical capsid to serve as a target for these drugs. Superresolution structured illumination microscopy (SIM) revealed that CA localized to viral complexes in the nuclei of infected cells. Using image quantification, we determined that viral complexes localized in the nucleus displayed a smaller amount of CA than complexes at the nuclear membrane, in the cytoplasm, or in controls. Collectively, these data suggest that a subset of CA remains associated with the viral complex after uncoating and that this residual CA is the target of PF74 and BI2. IMPORTANCE: The HIV-1 capsid is a target of interest for new antiviral therapies. This conical capsid is composed of monomers of the viral CA protein. During HIV-1 replication, the capsid must disassemble by a poorly defined process called uncoating. CA has also been implicated in later steps of replication, including nuclear import and integration. In this study, we used cell-based assays to examine the effect of two CA binding drugs (PF74 and BI2) on viral replication in infected cells. HIV-1 was susceptible to both drugs for hours after uncoating, suggesting that these drugs affect later steps of viral replication. High-resolution structured illumination microscopy (SIM) revealed that a subset of CA localized to viral complexes in the nuclei of cells. Collectively, these data suggest that a subset of CA remains associated with the viral complex after uncoating, which may facilitate later steps of viral replication and serve as a drug target.


Assuntos
Proteína do Núcleo p24 do HIV/fisiologia , HIV-1/fisiologia , Desenvelopamento do Vírus/fisiologia , Fármacos Anti-HIV/farmacologia , Capsídeo/efeitos dos fármacos , Capsídeo/fisiologia , Linhagem Celular , Núcleo Celular/virologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Células HeLa , Humanos , Indóis/farmacologia , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Desenvelopamento do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA