Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668593

RESUMO

The aim of this in vivo study was to investigate the effects of a novel mycotoxin detoxifier whose formulation includes clay (bentonite and sepiolite), phytogenic feed additives (curcumin and silymarin) and postbiotics (yeast products) on the health, performance and redox status of weaned piglets under the dietary challenge of fumonisins (FUMs). The study was conducted in duplicate in the course of two independent trials on two different farms. One hundred and fifty (150) weaned piglets per trial farm were allocated into two separate groups: (a) T1 (control group): 75 weaned piglets received FUM-contaminated feed and (b) T2 (experimental group): 75 weaned piglets received FUM-contaminated feed with the mycotoxin-detoxifying agent from the day of weaning (28 days) until 70 days of age. Thiobarbituric acid reactive substances (TBARSs), protein carbonyls (CARBs) and the overall antioxidant capacity (TAC) were assessed in plasma as indicators of redox status at 45 and 70 days of age. Furthermore, mortality and performance parameters were recorded at 28, 45 and 70 days of age, while histopathological examination was performed at the end of the trial period (day 70). The results of the present study reveal the beneficial effects of supplementing a novel mycotoxin detoxifier in the diets of weaners, including improved redox status, potential hepatoprotective properties and enhanced growth performance.


Assuntos
Ração Animal , Curcumina , Oxirredução , Desmame , Animais , Curcumina/farmacologia , Ração Animal/análise , Suínos , Fumonisinas/toxicidade , Antioxidantes/farmacologia , Bentonita/farmacologia , Bentonita/química , Silicatos de Alumínio/química , Silicatos de Alumínio/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Contaminação de Alimentos/prevenção & controle , Carbonilação Proteica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Micotoxinas/toxicidade
2.
J Sci Food Agric ; 104(2): 675-685, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37653259

RESUMO

BACKGROUND: Ark clams, a seafood abundant in various nutrients, are widely consumed worldwide. This study aimed to investigate the protective benefits of two common ark clams in Korea, Scapharca subcrenata (SS) and Tegillarca granosa (TG), on gut health in d-galactose (d-gal)-induced aging rats. RESULTS: Thirty-two Wistar rats (11 weeks old) were randomly allocated into four groups: a CON group (normal diet + saline intraperitoneal (i.p.) injection), a CD group (normal diet + d-gal i.p. injection), an SS group (normal diet with 5% SS supplementation + d-gal i.p. injection), and a TG group (normal diet with 5% TG supplementation + d-gal i.p. injection). After 12 weeks of treatment, histopathological results showed that gut barrier damage was alleviated in rats of the SS and TG groups, as evidenced by increases in mucus layer thickness and goblet cell numbers. Meanwhile, the two groups supplemented with ark clams showed an evident reduction in oxidative stress biomarkers (malondialdehyde and protein carbonyl content levels in the colon) and an increase in the immune-related factor (immunoglobulin A level in the plasma) in rats. The 16S ribosomal RNA analysis revealed that SS and TG ark clams significantly increased the proliferations of Bacteroidetes at the phylum level and Parabacteroides at the genus level. Additionally, the levels of the three main short-chain fatty acids in the cecal contents were also significantly increased in the SS and TG groups. CONCLUSION: Our results indicated a potent preventive effect of SS and TG ark clams on d-gal-induced gut injury, suggesting that ark clams may be a promising dietary component for intervening in aging. © 2023 Society of Chemical Industry.


Assuntos
Bivalves , Microbioma Gastrointestinal , Ratos , Animais , Galactose/metabolismo , Ratos Wistar , Carbonilação Proteica , Envelhecimento , Estresse Oxidativo , Suplementos Nutricionais
3.
Free Radic Biol Med ; 208: 700-707, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748718

RESUMO

INTRODUCTION: Calpain overexpression is implicated in mitochondrial damage leading to tissue oxidative stress and myocardial ischemic injury. The aim of this study was to determine the effects of calpain inhibition (CI) on mitochondrial impairment and oxidative stress in a swine model of chronic myocardial ischemia and metabolic syndrome. METHODS: Yorkshire swine were fed a high-fat diet for 4 weeks to induce metabolic syndrome then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, animals received: no drug (control, "CON"; n= 7); a low-dose calpain inhibitor (0.12 mg/kg; "LCI", n= 7); or high-dose calpain inhibitor (0.25 mg/kg; "HCI", n=7). Treatment continued for 5 weeks, followed by tissue harvest. Cardiac tissue was assayed for protein carbonyl content, as well as antioxidant and mitochondrial protein expression. Reactive oxygen species (ROS) and mitochondrial respiration was measured in H9c2 cells following exposure to normoxia or hypoxia (1%) for 24 h with or without CI. RESULTS: In ischemic myocardial tissue, CI was associated with decreased total oxidative stress compared to control. CI was also associated with increased expression of mitochondrial proteins superoxide dismutase 1, SDHA, and pyruvate dehydrogenase compared to control. 100 nM of calpain inhibitor decreased ROS levels and respiration in both normoxic and hypoxic H9c2 cardiomyoblasts. CONCLUSIONS: In the setting of metabolic syndrome, CI improves oxidative stress in chronically ischemic myocardial tissue. Decreased oxidative stress may be via modulation of mitochondrial proteins involved in free radical scavenging and production.


Assuntos
Síndrome Metabólica , Isquemia Miocárdica , Suínos , Animais , Miocárdio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Calpaína/farmacologia , Síndrome Metabólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carbonilação Proteica , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Estresse Oxidativo , Proteínas Mitocondriais/metabolismo , Modelos Animais de Doenças
4.
Plant Physiol Biochem ; 202: 107976, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625253

RESUMO

Selenium (Se) hyperaccumulators are capable of uptake and tolerate high Se dosages. Excess Se-induced oxidative responses were compared in Astragalus bisulcatus and Astragalus cicer. Plants were grown on media supplemented with 0, 25 or 75 µM selenate for 14 days. Both A. bisulcatus and A. cicer accumulated >2000 µg/g dry weight Se to the shoot but the translocation factors of A. cicer were below 1 suggesting its non hyperaccumulator nature. A. cicer showed Se sensitivity indicated by reduced seedling fresh weight, root growth and root apical meristem viability, altered element homeostasis in the presence of Se. In Se-exposed A. bisulcatus, less toxic organic Se forms (mainly MetSeCys, γ-Glu-MetSeCys, and a selenosugar) dominated, while these were absent from A. cicer suggesting that the majority of the accumulated Se may be present as inorganic forms. The glutathione-dependent processes were more affected, while ascorbate levels were not notably influenced by Se in either species. Exogenous Se triggered more intense accumulation of malondialdehyde in the sensitive A. cicer compared with the tolerant A. bisulcatus. The extent of protein carbonylation in the roots of the 75 µM Se-exposed A. cicer exceeded that of A. bisulcatus indicating a correlation between selenate sensitivity and the degree of protein carbonylation. Overall, our results reveal connection between oxidative processes and Se sensitivity/tolerance/hyperaccumulation and contribute to the understanding of the molecular responses to excess Se.


Assuntos
Cicer , Selênio , Selênio/farmacologia , Ácido Selênico , Radioisótopos de Selênio , Carbonilação Proteica
5.
J Sci Food Agric ; 103(12): 5938-5948, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186089

RESUMO

BACKGROUND: Ultrasound is widely used as a novel non-thermal processing technique to improve protein properties. In recent decades, applying ultrasound-assisted emulsification (UAE) to produce protein-stabilized emulsion has attracted people's attention. Instead of applying ultrasound to treat a single protein solution, UAE treatment refers to the use of sonication to a mixture of protein and oil. The purpose of this study was to compare the different effects of ultrasound treatment on the properties of myofibrillar protein (MP) in the presence or absence of soybean oil. A suitable sonication power was selected based on the change in emulsion properties. RESULTS: 300 W sonication power was selected because of its most effectively decreased emulsion droplet size and increased absolute zeta potential. Sonication more significantly increased the protein carbonyl content and disulfide bonds of the MP-soybean oil sample compared with the MP sample. Due to the presence of oil, ultrasound could unfold more protein molecules, illustrated by a lower α-helix content and intrinsic fluorescence intensity, and a higher surface hydrophobicity. Results of liquid chromatography-tandem mass spectrometry illustrated that sonication enhanced the myosin heavy chain and actin content at the soybean oil interface as well as accelerated the myosin light chain to separate from myosin in the MP-soybean oil system. CONCLUSION: Ultrasound treatment could lead to a higher level of protein oxidation and greater protein molecule exposure in the MP in the presence of oil system than in the oil-free MP system. © 2023 Society of Chemical Industry.


Assuntos
Óleo de Soja , Humanos , Óleo de Soja/química , Emulsões/química , Carbonilação Proteica , Oxirredução , Interações Hidrofóbicas e Hidrofílicas
6.
Biol Trace Elem Res ; 201(4): 1905-1912, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35618890

RESUMO

Alzheimer's disease (AD) is the most common form of dementia that occurs in the brain. This is a chronic neurodegenerative disease which is valid in 60-70% of all dementia patients. Boron, regarded as a potential antioxidant, has the effect of reducing oxidative stress. Taurine, as one of the thiol-containing amino acids, exists at different concentrations in both the neurons and glial cells of the central nervous system. It plays an important role in the protective and adjuvant therapies as an antioxidant due to its characteristics of maintaining the oxidant-antioxidant balance of the body as well as cell integrity and increasing body resistance. Based on this information, our objective was to reveal the effect of boron alone, taurine alone plus co-administration of taurine and boron application on brain tissue protein carbonyls (PC) and serum advanced oxidation protein products (AOPP) levels in the experimental Alzheimer's model. For this purpose, 5 groups were formed in our study which consisted of 30 Wistar albino male rats. The rats were given a single dose of STZ stereotaxically. At the end of this period, the rats were decapitated, plus their brain tissues and blood were removed. Our findings suggested that taurine alone and co-administration of boron and taurine had a decreasing effect on AOPP and PC levels of the experimental Alzheimer model of the rats.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Animais , Antioxidantes/metabolismo , Taurina/farmacologia , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/farmacologia , Ratos Wistar , Boro/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carbonilação Proteica , Estresse Oxidativo
7.
Appl Biochem Biotechnol ; 195(2): 772-800, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36173546

RESUMO

Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.


Assuntos
Antioxidantes , Hibiscus , Ratos , Animais , Antioxidantes/química , Ratos Sprague-Dawley , Hibiscus/química , Hibiscus/metabolismo , Fibrinolíticos/farmacologia , Etanol/metabolismo , Diclofenaco/farmacologia , Diclofenaco/metabolismo , Nitrito de Sódio , Carbonilação Proteica , Estresse Oxidativo , Extratos Vegetais/química , Sementes/química
8.
J Proteomics ; 269: 104723, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36096434

RESUMO

Ginger extract has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit oxidation. Herein, the antioxidant properties of ginger and purified components derived from it (6-gingerol, zingerone, rutin, quercetin, and kaempferol) were confirmed by using HPLC and were further used to investigate its effect on lamb meat. Myofibrillar proteins isolated (MPI) from lamb meat were incubated with ginger and its constituents under induced Fenton oxidation (1.0 mmol/L FeCl3, 0.1 mmol/L Asc, and 20 mmol/L H2O2) for 1, 3,5, and 7 h. Incubating meat protein isolate in the absence of ginger extract or its components resulted in a substantial drop in sulfhydryl groups, an increase in protein carbonyl content, and a corresponding increase in TBARS content. However, ginger extract and its constituents demonstrated antioxidant properties, which might be attributed to their hydroxyl groups and suitable solubilizing side chains. Overall, ginger extract exhibited the highest antioxidant capabilities of all treated samples, suggesting that ginger extracts may be used as a natural antioxidant in meat and lipid/protein-containing processed products. SIGNIFICANCE OF THE STUDY: Ginger extract is also frequently used as a herbal medicine due to its anti-inflammatory, anti-cancer, and antibacterial qualities. Nonvolatile pungent chemicals found in ginger, such as gingerol, shogaols, paradols, and zingerone, as well as kaempferol, rutin, and other phenolic compounds, have been confirmed in ginger extract and have been shown to have antioxidant action driven by free radical elimination. Despite these findings, ginger extract and its pure constituent components have seldom been shown to have the ability to slow protein and lipid oxidation in meat and meat-related products. The effect of ginger extracts on the oxidative stability of myofibriller protein isolate has never been investigated. Exploiting the phenolic content of ginger extract may result in a discovery that would have a huge influence on both the ginger and meat industries as well as other food processing sectors. The first aim of our study was to confirm the presence of six selected phenolic compounds (rutin, kaempferol, 6-gingerol, zingerone, naringenin, and quercetin) in ginger as reported by literature, and the second objective was to determine the efficacy of ginger extracts and its purified constituents on myofibrillar protein isolate treated under induced Fenton oxidation.


Assuntos
Quempferóis , Zingiber officinale , Animais , Antibacterianos , Anti-Inflamatórios/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catecóis , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Zingiber officinale/química , Zingiber officinale/metabolismo , Guaiacol/análogos & derivados , Peróxido de Hidrogênio/metabolismo , Proteínas de Carne , Fenóis , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Carbonilação Proteica , Quercetina , Rutina , Ovinos , Substâncias Reativas com Ácido Tiobarbitúrico
9.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014400

RESUMO

The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 µg/µL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Trombose , Animais , Diclofenaco/farmacologia , Feminino , Óxido de Magnésio/química , Óxido de Magnésio/farmacologia , Nanopartículas Metálicas/química , Nanopartículas/química , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Nitrito de Sódio/farmacologia
10.
Arch Environ Contam Toxicol ; 82(4): 551-557, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35394169

RESUMO

Atrazine (ATZ) is one of the pesticides mostly widely used in Brazil; several studies have shown the toxic effects of this herbicide on aquatic organisms such as fish. Thus, it is absolutely necessary finding alternatives to protect the health of fish, mainly of species commercially important for aquaculture, which may be exposed to atrazine deriving from agricultural runoff. The aim of the current study was to investigate interactions between dietary supplementation with vitamin C (Vit C) antioxidant and exposure to ATZ in Rhamdia quelen fish exposed to this herbicide. R. quelen specimens were divided into four groups: (1) CTRL, (2) VitC, (3) ATZ, (4) ATZ + VitC. Groups 3 and 4 were exposed to ATZ (10 µg L-1) for 96 h, after 30 days of VitC supplementation (1 g kg-1). Liver samples were collected for biomarker assays. Group 4 was the only group presenting decreased protein carbonyl content. Non-protein thiol (NPSH) levels were significantly higher in groups VitC, ATZ and ATZ + VitC than in CTRL. Group ATZ + VitC presented significant increase in glutatione-peroxidase (GPx) activity in comparison to the other investigated groups. Ascorbic acid (AA) levels were significantly higher in group VitC and lower in group ATZ. Therefore, interactions between herbicide ATZ and dietary supplementation with Vit C have shown biochemical changes in R. quelen fish. Thus, dietary supplements with adequate amounts of Vit C can be added as antioxidants to the diet of fish bred in aquaculture systems in order to protect them from exposure to ATZ.


Assuntos
Atrazina , Peixes-Gato , Herbicidas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Ácido Ascórbico , Atrazina/toxicidade , Peixes-Gato/metabolismo , Suplementos Nutricionais , Herbicidas/toxicidade , Carbonilação Proteica , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
11.
Lasers Med Sci ; 37(1): 193-204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33417067

RESUMO

The aim of this study was to assess potential combination effects of photobiomodulation therapy (PBMT) with Sida tuberculata extracts on the oxidative stress and antioxidant activity, as well as on the inflammatory process. Rats with knee osteoarthritis (OA) were treated with S. tuberculata extracts and PBMT (904 nm, 18 J/cm2). The animals were evaluated for nociception and edema. The blood, knee lavage and structures, spinal cord, and brainstem were collected for biochemical analyses (lipid peroxidation, protein carbonyl content, superoxide dismutase activity, non-protein thiol levels, and measurement of nitrite/nitrate). The knee structures were also used to measure cytokine levels. PBMT lowered the damage due to oxidative stress in the knee and at distant sites from the lesion. PBMT also reduced the levels of nitric oxide and cytokines, which could explain the nociception reduction mechanism. Similarly, S. tuberculata decreased the damage by oxidative stress, levels of nitrite/nitrate, and cytokines. The therapy combination reduced levels of cytokines and nitrite/nitrate. PBMT and S. tuberculata extracts reduced the oxidative stress and inflammation. It is noteworthy that PBMT increased the antioxidant activity in the knee and at sites distant from the lesion, contributing to a more significant decrease in nociception. The combination of therapies did not present significant effects on the analyzed parameters. Therefore, it is suggested that PBM is sufficient to minimize the signs and symptoms of the knee OA in our rat model.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteoartrite do Joelho , Animais , Inflamação/metabolismo , Articulação do Joelho/metabolismo , Osteoartrite do Joelho/radioterapia , Carbonilação Proteica , Ratos , Ratos Wistar
12.
Toxicology ; 465: 153033, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774662

RESUMO

Chronic exposure to aluminium (Al) can contribute to the progression of several neurological and neurodegenerative diseases. Al is a metal that promotes oxidative damage leading to neuronal death in different brain regions with behavior, cognition, and memory deficits. Chrysin is a flavonoid found mainly in honey, passion fruit, and propolis with antioxidant, anti-inflammatory, and cytoprotective properties. In this study, we used an integrated approach of in vitro and in vivo studies to evaluate the antioxidant and neuroprotective effects of chrysin against the neurotoxicity elicited by aluminium chloride (AlCl3). In in vitro studies, chrysin (5 µM) showed the ability to counteract the early oxidative stress elicited by tert-butyl hydroperoxide, an oxidant that mimics the lipid peroxidation and Fenton reaction in presence of AlCl3 as well as the late necrotic death triggered by AlCl3 in neuronal SH-SY5Y cells. In vivo studies in a mouse model of neurotoxicity induced by chronic exposure to AlCl3 (100 mg/kg/day) for ninety days then corroborated the antioxidant and neuroprotective effect of chrysin (10, 30, and 100 mg/kg/day) using the oral route. In particular, chrysin reduced the cognitive impairment induced by AlCl3 as well as normalized the acetylcholinesterase and butyrylcholinesterase activities in the hippocampus. In parallel, chrysin counteracted the oxidative damage, in terms of lipid peroxidation, protein carbonylation, catalase, and superoxide dismutase impairment, in the brain cortex and hippocampus. Lastly, necrotic cells frequency in the same brain regions was also decreased by chrysin. These results highlight the ability of chrysin to prevent the neurotoxic effects associated with chronic exposure to Al and suggest its potential use as a food supplement for brain health.


Assuntos
Encéfalo/efeitos dos fármacos , Flavonoides/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Acetilcolinesterase/metabolismo , Cloreto de Alumínio , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Necrose , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Células THP-1
13.
Nutrients ; 13(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959876

RESUMO

Breast cancer (Bca) is the most common type of cancer among women worldwide, and oxidative stress caused by adjuvant treatment may be decreased by antioxidant intake. The aim of this study is to investigate the associations between Dietary antioxidant Capacity (DaC) and oxidation and antioxidant biomarkers in women undergoing adjuvant treatment (AT) for Bca. This prospective study had a sample of 70 women (52.2 ± 10.7 y). DaC (mmol/g) was calculated using nutritional data obtained from a Food Frequency Questionnaire, and blood was collected to measure the oxidation and antioxidant biomarkers at baseline (T0), and after AT (T1). Carbonylated protein levels were inversely associated with DaC at T1 (p = 0.004); women showed an increased risk of having increment on lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS), and decrement on ferric reducing antioxidant power (FRAP) and reduced glutathione after AT, in response to lowered DaC (p < 0.05). Carbonylated proteins, TBARS and FRAP levels remained stable between the periods for women at the 3rd DaC tertile at T1, differentiating them from those at the 1st tertile, who showed negative changes in these biomarkers (p < 0.04). DaC may be beneficial for women undergoing AT for Bca, since it promoted a reduction in oxidative stress.


Assuntos
Antioxidantes/administração & dosagem , Neoplasias da Mama/sangue , Dieta/métodos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Neoplasias da Mama/terapia , Quimioterapia Adjuvante/efeitos adversos , Inquéritos sobre Dietas , Ingestão de Alimentos/fisiologia , Feminino , Glutationa/sangue , Humanos , Peróxidos Lipídicos/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Carbonilação Proteica/efeitos dos fármacos , Radioterapia Adjuvante/efeitos adversos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
14.
Biomed Pharmacother ; 144: 112302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678731

RESUMO

Malaria eradication is still a major global health problem in developing countries, which has been of more concern ever since the malaria parasite has developed resistance against frontline antimalarial drugs. Historical evidence proves that the plants possess a major resource for the development of novel anti-malarial drugs. In the present study, the bioactivity guided fractionation of the oleogum-resin of Boswellia serrata Roxb. yielded the optimum activity in the ethyl acetate fraction with an IC50 of 22 ± 3.9 µg/mL and 26.5 ± 4.5 µg/mL against chloroquine sensitive (NF54) and resistant (K1) strains of Plasmodium falciparum respectively. Further, upon fractionation, the ethyl acetate fraction yielded four major compounds, of which 3-Hydroxy-11-keto-ß-boswellic acid (KBA) was found to be the most potent with IC50 values 4.5 ± 0.60 µg/mL and 6.25 ± 1.02 µg/mL against sensitive and resistant strains respectively. KBA was found to inhibit heme detoxification pathways, one of the most common therapeutic targets, which probably lead to an increase in reactive oxygen species (ROS) and nitric oxide (NO) detrimental to P. falciparum. Further, the induced intracellular oxidative stress affected the macromolecules in terms of DNA damage, increased lipid peroxidation, protein carbonylation as well as loss of mitochondrial membrane potential. However, it did not exhibit any cytotoxic effect in VERO cells. Under in vivo conditions, KBA exhibited a significant reduction in parasitemia, retarding the development of anaemia, resulting in an enhancement of the mean survival time in Plasmodium yoelii nigeriensis (chloroquine-resistant) infected mice. Further, KBA did not exhibit any abnormality in serum biochemistry of animals that underwent acute oral toxicity studies at 2000 mg/kg body weight.


Assuntos
Antimaláricos/farmacologia , Boswellia , Heme/metabolismo , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Boswellia/química , Chlorocebus aethiops , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Malária/sangue , Malária/parasitologia , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidade , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resinas Vegetais , Triterpenos/isolamento & purificação , Triterpenos/toxicidade , Células Vero
15.
Nutrients ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684653

RESUMO

Nonalcoholic fatty liver disease (NAFLD) shows extensive liver cell destruction with lipid accumulation, which is frequently accompanied by metabolic comorbidities and increases mortality. This study aimed to investigate the effects of coffeeberry (CB) on regulating the redox status, the CaMKII/CREB/BDNF pathway, autophagy, and apoptosis signaling by a NAFLD rodent model senescence-accelerated mice prone 8 (SAMP8). Three-month-old male SAMP8 mice were divided into a control group and three CB groups (50, 100, and 200 mg/kg BW), and fed for 12 weeks. The results show that CB reduced hepatic malondialdehyde and carbonyl protein levels. CB significantly enhanced Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) and reduced the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio. In addition, CB increased the silent information regulator T1 level, promoted Beclin 1 and microtubule-associated protein light chain 3 II expressions, and reduced phosphorylated mammalian target of rapamycin and its downstream p-p70s6k levels. CB also inhibited the expressions of apoptosis-related factors poly (ADP-ribose) polymerase-1 and the apoptosis-inducing factor. In conclusion, CB might protect the liver by reducing oxidative stress, activating the CaMKII/CREB/BDNF pathway, and improving autophagic and apoptotic expressions in a dose-dependent manner.


Assuntos
Apoptose , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Café/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Animais , Caspases/metabolismo , Comportamento Alimentar , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão , Oxirredução , Carbonilação Proteica , Aumento de Peso
16.
Oxid Med Cell Longev ; 2021: 8141563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707781

RESUMO

Herbal medicines harbor essential therapeutic agents for the treatment of cholestasis. In this study, we have assessed the anticholestatic potential of Stachys pilifera Benth's (SPB's) hydroalcoholic extract encapsulated into liposomes using bile duct ligation- (BDL-) induced hepatic cholestasis in rats. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), malondialdehyde (MDA), total thiol (T-SH) content, protein carbonyl (PCO), total bilirubin (TBIL), albumin (ALB), and nitric oxide (NO) metabolite levels were measured in either liver tissue or plasma to assess liver damage. Moreover, expression of proinflammatory cytokines (IL-1ß and TNF-α) and liver fibrosis markers (TGF-ß and SM-α) which are driving forces of many liver disorders was also determined. The activity of AST, ALT, and ALP was significantly enhanced in the BDL group in comparison to the control group; however, treatment with liposomal (SPB) hydroalcoholic extract significantly reduced AST and ALT's activity. Increases in MDA, TBIL, and NO levels and T-SH content due to BDL were restored to control levels by liposomal (SPB) hydroalcoholic extract treatment. Similarly, hepatic and plasma oxidative marker MDA levels, significantly enhanced by BDL, were significantly decreased by liposomal (SPB) hydroalcoholic extract treatment. Moreover, histopathological findings further demonstrated a significant decrease in hepatic damage in the liposomal (SPB) hydroalcoholic extract-treated BDL group. In addition, liposomal (SPB) hydroalcoholic extract treatment decreased the liver expression of inflammatory cytokines (IL-1ß, TNF-α) and liver fibrosis markers (TGF-ß and SM-α). Since liposomal (SPB) hydroalcoholic extract treatment alleviated the BDL-induced injury of the liver and improved the hepatic structure and function more efficiently in comparison to free SPB hydroalcoholic extract, probable liposomal (SPB) hydroalcoholic extract exhibits required potential therapeutic value in protecting the liver against BDL-caused oxidative injury.


Assuntos
Antioxidantes/farmacologia , Colestase Intra-Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Stachys , Actinas/genética , Actinas/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antifibróticos/isolamento & purificação , Antifibróticos/farmacologia , Antioxidantes/isolamento & purificação , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/patologia , Ducto Colédoco/cirurgia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Ligadura , Lipossomos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Stachys/química , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
17.
Biomed Pharmacother ; 144: 112284, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626932

RESUMO

Hepatic fibrosis is a wound-healing process caused by prolonged liver damage and often occurs due to hepatic stellate cell activation in response to reactive oxygen species (ROS). Red raspberry has been found to attenuate oxidative stress, mainly because it is rich in bioactive components. In the current study, we investigated the inhibitory effects and associated molecular mechanisms of red raspberry extract (RBE) upon activated hepatic stellate cell (aHSC) in cellular and rat models. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased in the dimethylnitrosamine (DMN)-applied samples, whereas treatment of RBE significantly suppressed the activities of these enzymes. In addition, a histopathological analysis demonstrated that RBE could substantially diminish the hepatic collagen content and alpha-smooth muscle actin (α-SMA) expression induced by DMN. Administration of 250 µg/mL RBE could also arrest the growth and enhance the apoptosis of activated HSC-T6 cells, which was accompanied with elevated levels of activated caspases and poly (ADP-ribose) polymerase (PARP) cleavage. Particularly, RBE application remarkably abolished oxidative damage within the cells and reduced the carbonylation of proteins, which was attributed to the upregulation of catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Moreover, the knockdown of Nrf2 together with the RBE treatment synergistically abrogated the expression of α-SMA and promoted the level of peroxisome proliferator-activated receptor gamma (PPAR-γ), suggesting that RBE could mitigate the transdifferentiation of HSC in a Nrf2-independent manner. These findings implied that the application of RBE could effectively remove oxidative stress and relieve the activation of HSC via modulating the caspase/PARP, Nrf2/HO-1 and PPAR-γ pathways, which may allow the development of novel therapeutic strategies against chemical-caused liver fibrogenesis.


Assuntos
Antifibróticos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubus , Animais , Antifibróticos/isolamento & purificação , Antioxidantes/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Frutas , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama/metabolismo , Extratos Vegetais/isolamento & purificação , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Rubus/química , Transdução de Sinais
18.
Biomed Res Int ; 2021: 5577498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337029

RESUMO

Postmenopausal women express great failure in their ovarian hormone production, especially estrogen. This deficiency may promote hypercholesterolemia and accelerate the redox imbalance. The present study was designed to evaluate the protective effect of Avena sativa against estrogen deficiency-induced liver and uterus oxidative injury in experimental ovariectomized mice. Female mice were randomly divided into five groups: group one (negative control) received normal diet and distilled water (C), group two (positive control) received daily enriched diet with oat grains and was kept on tap distilled water at a dose of 200 mg kg-1 d-1 (A), group three (ovariectomized mice) was nontreated fed with normal diet (O), group four includes ovariectomized mice treated daily with estradiol given by intraperitoneal injection at a dose of 100 µg kg-1 d-1 (OE), and the fifth group also includes ovariectomized mice which received enriched diet with oat grain parts with the same dose given to group two. The treatment period lasted two consecutive months. Both oat and hormonal treatments of ovariectomized groups resulted in a significant reduction in triglycerides and total cholesterol and increased high-density lipoprotein (HDL) levels in the plasma after 21 and 60 days of treatment. Besides, the coadministration of A. sativa has decreased the activities of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) and increased transaminase activities after 21 and 60 days of treatment. On the other hand, this cereal has restored the enzymatic (SOD, CAT, and GPx) and nonenzymatic antioxidant activities (GSH) as well as the elevated thiobarbituric acid reactive substances (AOPP and PCO) to near-normal values. The beneficial effects of this cereal were confirmed by a histological study of the liver and uterus of all previous cited groups. Our finding emphasized the antioxidant and antilipidemic effect of oat grain part, suggesting the use of this cereal in the prevention of liver and uterus diseases that occurred in postmenopausal women.


Assuntos
Avena/química , Fígado/patologia , Ovariectomia , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/farmacologia , Biomarcadores/sangue , Inibidores Enzimáticos/farmacologia , Etanol/química , Feminino , Lipase/antagonistas & inibidores , Lipase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Carbonilação Proteica , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Útero/efeitos dos fármacos , Útero/patologia
19.
Biomed Pharmacother ; 142: 112049, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426250

RESUMO

Dyslipidemia is a risk factor for the pathogenesis of several diseases, such as obesity, hypertension, atherosclerosis and cardiovascular diseases. In addition to interfering with serum concentrations of cholesterol and triglycerides, hyperlipidemia is involved in oxidative stress increase and reduction of the endogenous antioxidant defenses. The fruit peel of Annona crassiflora crude extract (CEAc) and its polyphenols-rich fraction (PFAc) were investigated against hypertriglyceridemia, hypercholesterolemia and hepatic oxidative stress in Triton WR-1339-induced hyperlipidemic mice. Lipid parameters in serum, feces and liver, as well as hepatic oxidative status, and enzymatic and non-enzymatic antioxidant defense systems were analyzed. Pre-treatment with CEAc for 12 days decreased hepatic triglycerides and total cholesterol, and similar to PFAc, increased the high-density lipoprotein level. There were reductions in lipid peroxidation and protein carbonylation, as well as restoration of the glutathione defense system and total thiol content in the liver of the hyperlipidemic mice treated with PFAc. The fruit peel of A. crassiflora, a promising natural source of bioactive molecules, showed a potential lipid-lowering action and hepatoprotective activities triggered by reduction of oxidative damage and maintenance of the enzymatic and non-enzymatic antioxidant systems impaired by the hyperlipidemic state.


Assuntos
Annona/química , Antioxidantes/farmacologia , Glutationa/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Colesterol/metabolismo , Frutas/química , Hiperlipidemias/induzido quimicamente , Hipolipemiantes/isolamento & purificação , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Polietilenoglicóis/toxicidade , Polifenóis/isolamento & purificação , Polifenóis/uso terapêutico , Carbonilação Proteica/efeitos dos fármacos , Triglicerídeos/metabolismo
20.
Cells ; 10(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440621

RESUMO

The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Produtos Finais de Glicação Avançada/metabolismo , Lactoilglutationa Liase/metabolismo , Estresse Fisiológico , Fatores Etários , Envelhecimento/patologia , Animais , Senescência Celular/efeitos dos fármacos , Dieta , Suplementos Nutricionais , Glicosilação , Humanos , Compostos Fitoquímicos/farmacologia , Carbonilação Proteica , Proteólise , Estresse Fisiológico/efeitos dos fármacos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA