Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chem Biol Interact ; 351: 109744, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34774545

RESUMO

Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Carboxilesterase/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/química , Alanina/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Carboxilesterase/química , Catepsina A/química , Catepsina A/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Sinvastatina/farmacologia
2.
Food Funct ; 11(10): 8680-8693, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32940318

RESUMO

Human carboxylesterase 1A1 (hCES1A) is a promising target for the treatment of hyperlipidemia and obesity-associated metabolic diseases. To date, the highly specific and efficacious hCES1A inhibitors are rarely reported. This study aims to find potent and highly specific hCES1A inhibitors from herbs, and to investigate their inhibitory mechanisms. Following large-scale screening of herbal products, Styrax was found to have the most potent hCES1A inhibition activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Styrax with strong hCES1A inhibition activity and the major constituents in these bioactive fractions were characterized by LC-TOF-MS/MS. The results demonstrated that seven pentacyclic triterpenoid acids (PTAs) in two bioactive fractions from Styrax potently inhibit hCES1A, with IC50 values ranging from 41 nM to 478 nM. Among all the identified PTAs, epibetulinic acid showed the most potent inhibition activity and excellent specificity towards hCES1A. Both inhibition kinetic analyses and in silico analysis suggested that epibetulinic acid potently inhibited hCES1A in a mixed inhibition manner. Collectively, our findings demonstrate that some PTAs in Styrax are potent and highly specific inhibitors of hCES1A and these constituents can be used as promising lead compounds for the development of more efficacious hCES1A inhibitors.


Assuntos
Carboxilesterase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Styrax/química , Triterpenos/farmacologia , Sítios de Ligação , Carboxilesterase/química , Carboxilesterase/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/metabolismo
3.
Res Vet Sci ; 129: 90-95, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31954319

RESUMO

This study aims to evaluate the effect of the presence of food and the material used in a panel of biomarkers in saliva of horses. For the food effect study, clean saliva was incubated with a known amount of food consisting of oats, hay or grass. Significant changes were observed when saliva was incubated with oats for total protein (P = .050) and phosphorus (P = .008), with grass for total protein (P = .037), salivary alpha-amylase (sAA, P = .018), total esterase (TEA, P = .018), butyrilcholinesterase (BChE, P = .037), adenosine deaminase (ADA, P = .037), and total bilirubin (P = .018), and with hay for sAA (P = .018), phosphorus (P = .037), γ-glutamyl transferase (gGT, P = .004), and creatine kinase (CK, P = .016). For the material-based collection study, saliva using a sponge and a cotton role at the same time were collected and compared. Lower values were obtained in clean saliva collected with cotton role compared to sponge for sAA (P = .030), TEA (P = .034), BChE (P = .003), gGT (P = .002) and cortisol (P < .001) In conclusion, the presence of food and the material used for its collection, can influence the results obtained when analytes are measured in saliva of horses.


Assuntos
Ração Animal/análise , Contaminação de Alimentos , Cavalos , Saliva/química , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Animais , Bilirrubina/química , Bilirrubina/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Carboxilesterase/química , Carboxilesterase/metabolismo , Colinesterases/química , Colinesterases/metabolismo , Dieta/veterinária , Proteínas Alimentares/química , Proteínas Alimentares/metabolismo , Feminino , Humanos , Hidrocortisona , Masculino , Fósforo/química , Fósforo/metabolismo , alfa-Amilases/química , alfa-Amilases/metabolismo
4.
Int J Biol Macromol ; 133: 184-189, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991064

RESUMO

As a part of our searching for natural human carboxylesterase 2 (human CES 2) inhibitors from traditional Chinese medicine, we found that the extract of Alisma orientale significantly inhibited human CES 2 in vitro. The investigation on A. orientale led to the isolation of a new protostane-type triterpenoid alismanin I (1). Its structure was determined according to HRESIMS, 1D and 2D NMR spectra. Alismanin I (1) displayed significantly inhibitory activity against human CES 2 with IC50 value of 1.31 ±â€¯0.09 µM assayed by human CES 2-mediated DDAB hydrolysis. According to its inhibition kinetic result, compound 1 was a noncompetitive type inhibitor, and its Ki was 3.65 µM. Its inhibitory effect was confirmed in living cell level through a visual manner. The potential interaction mechanism of compound 1 with human CES 2 was also analyzed by circular dichroism (CD) spectrum and molecular docking.


Assuntos
Alisma/química , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Carboxilesterase/química , Domínio Catalítico , Dicroísmo Circular , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Extratos Vegetais/metabolismo
5.
Xenobiotica ; 49(11): 1260-1268, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30486721

RESUMO

1. Schisandra chinensis, also called wuweizi in Chinese, is the fruit of Schisandra chinensis (Turcz.) Baill., and has been officially utilized as an astringent tonic for more than two thousand years in China. This study aims to evaluate the inhibition of carboxylesterases (CESs) by the major ingredients isolated from Schisandra chinensis, including Anwuligan, Schisandrol B, Schisanhenol, deoxyschizandrin, and Schisandrin B. 2. In vitro human liver microsomes (HLMs)-catalyzed hydrolysis of 2-(2-Benzoyl-3-methoxyphenyl) benzothiazole (BMBT) and fluorescein diacetate (FD) was employed as the probe reaction for CES1 and CES2, respectively. Initial screening, inhibition kinetics determination (inhibition type and parameters (Ki)), and in silico docking method were carried out. 3. Schisandrin B showed strong inhibition on the activity of CES1, and the activity of CES2 was strongly inhibited by Anwuligan and Schisandrin B. Schisandrin B exhibited noncompetitive inhibition towards CES1 and CES2. Anwuligan showed competitive inhibition towards CES2. The inhibition kinetic parameters (Ki) were calculated to be 29.8, 0.6, and 8.1 uM for the inhibition of Schisandrin B on CES1, Anwuligan on CES2, and Schisandrin B on CES2. In silico docking showed that hydrogen bonds and hydrophobic interactions contributed to the inhibition of Schisandrin B on CES1, Anwuligan on CES2, and Schisandrin B on CES2. All these information will be helpful for understanding the adverse effects of Schisandra chinensis due to the inhibition of CESs-catalyzed metabolism.


Assuntos
Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Schisandra/química , Carboxilesterase/química , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Ciclo-Octanos/farmacologia , Dioxóis/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Inibidores Enzimáticos/química , Humanos , Lignanas/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia
6.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322078

RESUMO

Herb⁻drug interactions strongly challenge the clinical combined application of herbs and drugs. Herbal products consist of complex pharmacological-active ingredients and perturb the activity of drug-metabolizing enzymes. Panax notoginseng saponins (PNS)-based drugs are often combined with aspirin in vascular disease treatment in China. PNS was found to exhibit inhibitory effects on aspirin hydrolysis using Caco-2 cell monolayers. In the present study, a total of 22 components of PNS were separated and identified by UPLC-MS/MS. Using highly selective probe substrate analysis, PNS exerted robust inhibitory potency on human carboxylesterase 2 (hCE2), while had a minor influence on hCE1, butyrylcholinesterase (BChE) and paraoxonase (PON). These effects were also verified through molecular docking analysis. PNS showed a concentration-dependent inhibitory effect on hydrolytic activity of aspirin in HepaRG cells. The protein level of hCE2 in HepaRG cells was suppressed after PNS treatment, while the level of BChE or PON1 in the extracellular matrix were elevated after PNS treatment. Insignificant effect was observed on the mRNA expression of the esterases. These findings are important to understand the underlying efficacy and safety of co-administration of PNS and aspirin in clinical practice.


Assuntos
Aspirina/química , Carboxilesterase/antagonistas & inibidores , Panax notoginseng/química , Saponinas/farmacologia , Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Células CACO-2 , Carboxilesterase/química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Interações Ervas-Drogas , Humanos , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
7.
Nat Prod Commun ; 7(9): 1117-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23074884

RESUMO

Rabbit liver carboxylesterase (rCE) was evaluated as the catalyst for the enantioselective hydrolysis of (+/-)-3-endo-acetyloxy-1 ,8-cineole [(+/-)-4], which yields (1S,3S,4R)-(+)-3-acetyloxy-1,8-cineole [(+)-4] and (1R,3R,4S)-(-)-3-hydroxy-1,8-cineole [(-)-3]. Enantioselective asymmetrization of meso-3,5-diacetoxy-1,8-cineol (5) gives (1S,3S,4R,5R)-(-)-3-acetyloxy-5-hydroxy-1,8-cineole (6), with high enantioselectivity. rCE has been chosen to perform both experiments and molecular modeling simulations. Docking simulations combined with molecular dynamics calculations were used to study rCE-catalyzed enantioselective hydrolysis of cineol derivatives. Both compounds were found to bind with their acetyl groups stabilized by hydrogen bond interactions between their oxygen atoms and Ser221.


Assuntos
Biocatálise , Carboxilesterase/metabolismo , Cicloexanóis/química , Fígado/enzimologia , Monoterpenos/química , Animais , Carboxilesterase/química , Eucaliptol , Hidrólise , Modelos Moleculares , Coelhos , Estereoisomerismo
8.
Biochim Biophys Acta ; 1780(2): 233-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17976920

RESUMO

Factors affecting struvite, a magnesium-ammonium-phosphate complex (MgNH(4)PO(4).6H(2)O), in feline urine were evaluated. Incubation of just "urine mineral (UM)" solution, in which mineral concentrations are compatible with those in feline urine, for 4 h at 37 degrees C did not induce the formation of crystals. Similarly, incubation of urine alone did not produce crystals. However, struvite crystals were formed by the addition of urine to UM solution. Mg, NH(3) and P were all required for urine-induced struvite crystallization. The lower molecular weight (LMW) fraction of urine was essential for struvite crystal formation, and the higher molecular weight (HMW) fraction enhanced formation of LMW-induced struvite crystals. The effects of urine proteins further fractionated by column chromatography were examined. A protein at >250 kDa and cauxin, a major urine protein recently identified as a regulator of felinine production, potentiated struvite crystal formation induced by the LMW fraction. In contrast, Tamm-Horsfall glycoprotein, a urine protein thought to promote struvite crystallization, did not have this activity. The present study reveals a novel mechanism of feline struvite crystallization.


Assuntos
Doenças do Gato/etiologia , Doenças do Gato/urina , Compostos de Magnésio/metabolismo , Compostos de Magnésio/urina , Fosfatos/metabolismo , Fosfatos/urina , Urolitíase/veterinária , Amônia/química , Amônia/metabolismo , Amônia/urina , Animais , Carboxilesterase/química , Carboxilesterase/metabolismo , Carboxilesterase/urina , Gatos , Cristalização , Magnésio/química , Magnésio/metabolismo , Magnésio/urina , Compostos de Magnésio/química , Masculino , Peso Molecular , Fosfatos/química , Fósforo/química , Fósforo/metabolismo , Fósforo/urina , Proteínas/química , Proteínas/metabolismo , Estruvita , Urolitíase/etiologia , Urolitíase/urina
9.
Aquat Toxicol ; 74(2): 172-92, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16011852

RESUMO

Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 microg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 microg/l), but not a low dose (1.2 microg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were approximately 30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was undetectable. Together these data suggest that (1) carboxylesterase activity inhibition may be a more sensitive biomarker for OP exposure than AChE activity, (2) neither AChE nor carboxylesterase activity are biomarkers for pyrethroid exposure, (3) CYP1A protein is not a sensitive marker for these agrochemicals and (4) slow hydrolysis rates may be partly responsible for acute pyrethroid toxicity in fish.


Assuntos
Acetilcolinesterase/metabolismo , Carboxilesterase/metabolismo , Clorpirifos/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Inseticidas/toxicidade , Nitrilas/toxicidade , Oncorhynchus mykiss/metabolismo , Piretrinas/toxicidade , Acetilcolinesterase/química , Análise de Variância , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Carboxilesterase/química , Relação Dose-Resposta a Droga , Fígado/metabolismo , Músculo Esquelético/metabolismo , Análise de Sobrevida
10.
J Biol Chem ; 280(24): 23287-94, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15767260

RESUMO

Previous work demonstrated both acid and neutral, bile salt-independent retinyl ester hydrolase activities in rat liver homogenates. Here we present the purification, identification, and characterization of an acid retinyl ester hydrolase activity from solubilized rat liver microsomes. Purification to homogeneity was achieved by sequential chromatography using SP-Sepharose cation exchange, phenyl-Sepharose hydrophobic interaction, concanavalin A-Sepharose affinity and Superose 12 gel filtration chromatography. The isolated protein had a monomer molecular mass of approximately 62 kDa, as measured by mass spectrometry. Gel filtration chromatography of the purified protein revealed a native molecular mass of approximately 176 kDa, indicating that the protein exists as a homotrimeric complex in solution. The purified protein was identified as carboxylesterase ES-10 (EC 3.1.1.1) by N-terminal Edman sequencing and extensive LC-MS/MS sequence analysis and cross-reaction with an anti-ES-10 antibody. Glycosylation analysis revealed that only one of two potential N-linked glycosylation sites is occupied by a high mannose-type carbohydrate structure. Using retinyl palmitate in a micellar assay system the enzyme was active over a broad pH range and displayed Michaelis-Menten kinetics with a K(m) of 86 microm. Substrate specificity studies showed that ES-10 is also able to catalyze hydrolysis of triolein. Cholesteryl oleate was not a substrate for ES-10 under these assay conditions. Real time reverse transcriptase-PCR and Western blot analysis revealed that ES-10 is highly expressed in liver and lung. Lower levels of ES-10 mRNA were also found in kidney, testis, and heart. A comparison of mRNA expression levels in liver demonstrated that ES-10, ES-4, and ES-3 were expressed at significantly higher levels than ES-2, an enzyme previously thought to play a major role in retinyl ester metabolism in liver. Taken together these data indicate that carboxylesterase ES-10 plays a major role in the hydrolysis of newly-endocytosed, chylomicron retinyl esters in both neutral and acidic membrane compartments of liver cells.


Assuntos
Carboxilesterase/química , Carboxilesterase/fisiologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/isolamento & purificação , Microssomos Hepáticos/enzimologia , Vitamina A/análogos & derivados , Animais , Sítios de Ligação , Western Blotting , Cromatografia em Gel , Cromatografia por Troca Iônica , Concanavalina A/química , Primers do DNA/química , DNA Complementar/metabolismo , Diterpenos , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Fígado/enzimologia , Masculino , Espectrometria de Massas , Micelas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ésteres de Retinil , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sefarose/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual , Vitamina A/química
11.
Biomaterials ; 25(18): 4375-82, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15046928

RESUMO

Poly (n-butyl cyanoacrylate) (PBCA) nanoparticles were prepared by a dispersion polymerisation process in water at pH 3 and using dextran as a stabilising agent. The drug insulin was introduced during the latter stages of particle synthesis and was found not to interfere with the polymer structure, molecular weight, and the particle size. Nanoparticles were exposed to the enzyme esterase in phosphate buffered saline solution at 37 degrees C for time periods up to 4h. Esterase catalyses the degradation of the PBCA through hydrolysis of the side chain on the repeat unit with the release of butanol, and this was monitored as an indicator of degradation. The release of both butanol and insulin occurred via similar biphasic processes, with an initial burst release from the surface, followed by a slower diffusionally hindered release associated with particle erosion. Hydrolysis of the nanoparticle polymer was confirmed by infrared spectroscopy. Particle size reduces with time of exposure to esterase, but is greatest in the first 30 min of exposure. Despite the hydrolysis reaction, and reduction in particle size, there was no reduction in residual polymer molecular weight suggesting a progressive loss of entire chains from the active surface. Polymer loss is thought to occur through either solvation of degradation residue or through complete depolymerisation of hydrolysed chains.


Assuntos
Líquidos Corporais/química , Carboxilesterase/química , Sistemas de Liberação de Medicamentos/métodos , Embucrilato/química , Insulina/administração & dosagem , Insulina/química , Nanotubos/química , Adsorção , Avaliação Pré-Clínica de Medicamentos , Hidrólise , Conformação Molecular , Nanotubos/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA