Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Nanomedicine ; 18: 6037-6058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904863

RESUMO

Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses.


Assuntos
Antineoplásicos , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Antineoplásicos/uso terapêutico
2.
Sci Rep ; 13(1): 16844, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803074

RESUMO

Thyroid cancer is the most common endocrine malignancy, affecting nearly 600,000 new patients worldwide. Treatment with the BRAF inhibitor sorafenib partially prolongs progression-free survival in thyroid cancer patients, but fails to improve overall survival. This study examines enhancing sorafenib efficacy by combination therapy with the novel HSP90 inhibitor onalespib. In vitro efficacy of sorafenib and onalespib monotherapy as well as in combination was assessed in papillary (PTC) and anaplastic (ATC) thyroid cancer cells using cell viability and colony formation assays. Migration potential was studied in wound healing assays. The in vivo efficacy of sorafenib and onalespib therapy was evaluated in mice bearing BHT-101 xenografts. Sorafenib in combination with onalespib significantly inhibited PTC and ATC cell proliferation, decreased metabolic activity and cancer cell migration. In addition, the drug combination approach significantly inhibited tumor growth in the xenograft model and prolonged the median survival. Our results suggest that combination therapy with sorafenib and onalespib could be used as a new therapeutic approach in the treatment of thyroid cancer, significantly improving the results obtained with sorafenib as monotherapy. This approach has the potential to reduce treatment adaptation while at the same time providing therapeutic anti-cancer benefits such as reducing tumor growth and metastatic potential.


Assuntos
Antineoplásicos , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Glândula Tireoide/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Proliferação de Células , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral
3.
Nano Lett ; 23(17): 8013-8021, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37615624

RESUMO

The rapid proliferative biological behavior of primary foci of anaplastic thyroid cancer (ATC) makes it a lethal tumor. According to the specific iodine uptake capacity of thyroid cells and enhanced endocytosis of ATC cells, we designed a kind of nanoclay drug-loading system and showed a promising treatment strategy for ATC. Introducing potassium iodide (KI) improves the homoaggregation of clay nanoparticles and then affects the distribution of nanoparticles in vivo, which makes KI@DOX-KaolinMeOH enriched almost exclusively in thyroid tissue. Simultaneously, the improvement of dispersibility of KI@DOX-KaolinMeOH changes the target uptake of ATC cells by improving the endocytosis and nanoparticle-induced autophagy, which regulate the production of autolysosomes and autophagy-enhanced chemotherapy, eventually contributing to a tumor inhibition rate of more than 90% in the primary foci of ATC. Therefore, this facile strategy to improve the homoaggregation of nanoclay by introducing KI has the potential to become an advanced drug delivery vehicle in ATC treatment.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Iodeto de Potássio/farmacologia , Iodeto de Potássio/uso terapêutico , Caulim , Endocitose , Sistemas de Liberação de Medicamentos , Neoplasias da Glândula Tireoide/tratamento farmacológico
4.
Phytomedicine ; 108: 154528, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343549

RESUMO

BACKGROUND: Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear. PURPOSE: To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved. METHODS: The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1ß. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1ß in the animal tumor tissues was profiled using immunohistochemistry analyses. RESULTS: Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1ß. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile. CONCLUSION: Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Camundongos , Animais , Humanos , Caspase 3/metabolismo , Piroptose , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclina B1/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacologia , Citocromos c/metabolismo , Camundongos Nus , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Apoptose , Mitocôndrias , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral
5.
Phytother Res ; 36(2): 938-950, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35076979

RESUMO

Capsaicin (CAP) is a well-known anti-cancer agent. Recently, we reported capsaicin-induced apoptosis in anaplastic thyroid cancer (ATC) cells. It is well accepted that the generation of cancer stem cells (CSCs) is responsible for the dedifferentiation of ATC, the most lethal subtype of thyroid cancer with highly dedifferentiation status. Whether CAP inhibited the ATC growth through targeting CSCs needed further investigation. In the present study, CAP was found to induce autophagy in ATC cells through TRPV1 activation and subsequent calcium influx. Meanwhile, CAP dose-dependently decreased the sphere formation capacity of ATC cells. The stemness-inhibitory effect of CAP was further by extreme limiting dilution analysis (ELDA). CAP significantly decreased the protein level of OCT4A in both 8505C and FRO cells. Furthermore, CAP-induced OCT4A degradation was reversed by autophagy inhibitors 3-MA and chloroquine, BAPTA-AM and capsazepine, but not proteasome inhibitor MG132. Collectively, our study firstly showed CAP suppressed the stemness of ATC cells partially via calcium-dependent autophagic degradation of OCT4A. Our study lent credence to the feasible application of capsaicin in limiting ATC stemness.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Apoptose , Autofagia , Capsaicina/farmacologia , Linhagem Celular Tumoral , Humanos , Lisossomos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
6.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500742

RESUMO

Anaplastic thyroid cancer (ATC) is one of the most fatal human malignancies. Ursi Fel (UF) is the bile of a brown bear that has been traditionally used for heat clearance and toxin relief in Korean and Chinese medicines. In this study, we determined the anticancer effects of a UF extract and its active compound, ursodeoxycholic acid (UDCA), in FRO human ATC cells. FRO cells were treated with UF extract and UDCA at different concentrations for various durations. Cell viability was measured using an MTT assay. Cell apoptosis was investigated by flow cytometric analysis following Annexin V and propidium iodide (PI) staining, and Hoechst staining was used to observe nuclear fragmentation. The expression of pro-apoptotic (Bax, caspase-3, cytochrome c, and PARP), anti-apoptotic (Bcl-2), and angiogenetic (TGF-ß, VEGF, N-cadherin, and sirtuin-1) proteins and the phosphorylation of Akt and mechanistic target of rapamycin (mTOR) were determined by western blot analysis. Treatment with UF extract at 10, 25, and 50 µg/mL and UDCA at 25, 50, and 100 µM/mL significantly inhibited the growth of FRO cells in a dose-dependent manner. Flow cytometry and Hoechst staining revealed an increase in the apoptosis of FRO cells mediated by UF extract and UDCA in a dose-dependent manner. UF extract (25 and 50 µg) and UDCA (50 and 100 µM) significantly increased the expression of Bax, caspase-3, cytochrome c, and PARP and inhibited the expression of Bcl-2, TGF-ß, VEGF, N-cadherin, and sirtuin-1 in FRO cells. Furthermore, UF extract and UDCA treatment stimulated Akt phosphorylation and inhibited mTOR phosphorylation in these cells. These results indicate that UF extract and UDCA exert anticancer properties in FRO cells by inducing apoptosis and inhibiting angiogenesis via regulating the Akt/mTOR signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Ácido Ursodesoxicólico/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Carcinoma Anaplásico da Tireoide/patologia , Células Tumorais Cultivadas , Ursidae , Ácido Ursodesoxicólico/química , Ácido Ursodesoxicólico/isolamento & purificação
7.
Front Endocrinol (Lausanne) ; 12: 712107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475850

RESUMO

Background: Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising. Materials and Methods: Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable. Results: PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS. Conclusion: High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos , Antineoplásicos Imunológicos , Antígeno B7-H1/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , RNA Mensageiro/análise , Receptores de Fatores de Crescimento de Fibroblastos/genética , Carcinoma Anaplásico da Tireoide/química , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/química , Neoplasias da Glândula Tireoide/patologia
8.
Endocr Relat Cancer ; 28(5): 311-324, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33769310

RESUMO

Wee1 is a kinase that regulates the G2/M progression by the inhibition of CDK1, which is critical for ensuring DNA damage repair before initiation of mitotic entry. Targeting Wee1 may be a potential strategy in the treatment of anaplastic thyroid cancer, a rare but lethal disease. The therapeutic effects of adavosertib, a Wee1 inhibitor for anaplastic thyroid cancer was evaluated in this study. Adavosertib inhibited cell growth in three anaplastic thyroid cancer cell lines in a dose-dependent manner. Cell cycle analysis revealed cells were accumulated in the G2/M phase. Adavosertib induced caspase-3 activity and led to apoptosis. Adavosertib monotherapy showed significant retardation of the growth of two anaplastic thyroid cancer tumor models. The combination of adavosertib with dabrafenib and trametinib revealed strong synergism in vitro and demonstrated robust suppression of tumor growth in vivo in anaplastic thyroid cancer xenograft models with BRAFV600E mutation. The combination of adavosertib with either sorafenib or lenvatinib also demonstrated synergism in vitro and had strong inhibition of tumor growth in vivo in an anaplastic thyroid cancer xenograft model. No appreciable toxicity appeared in mice treated with either a single agent or combination treatment. Our findings suggest adavosertib holds the promise for the treatment of patients with anaplastic thyroid cancer.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Pirazóis/efeitos adversos , Pirimidinonas , Sorafenibe , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/tratamento farmacológico
9.
Phytother Res ; 35(6): 3428-3443, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751676

RESUMO

It is widely accepted that anaplastic thyroid carcinoma (ATC), a rare, extremely aggressive malignant, is enriched by cancer stem cells (CSCs), which are closely related to the pathogenesis of ATC. In the present study, we demonstrated that diallyl trisulphide (DATS), a well-known hydrogen sulphide (H2 S) donor, suppressed sphere formation and restored the expression of iodide-metabolizing genes in human ATC cells, which were associated with H2 S generation. Two other H2 S donors, NaHS and GYY4137, could also suppress the self-renewal properties of ATC cells in vitro. Compared with normal thyroid tissues and papillary thyroid carcinomas (PTCs), the elevated expressions of SOX2 and MYC, two cancer stem cell markers, in ATCs were validated in the combined Gene Expression Omnibus (GEO) cohort. DATS decreased the expression of SOX2, which was mediated by H2 S generation. Furthermore, knockdown of AKT or inhibition of AKT by DATS led to a decrease of SOX2 expression in ATC cells. AKT knockdown phenocopied restoration of thyroid-specific gene expression in ATC cells. Our data suggest that H2 S donors treatment can compromise the stem cell phenotype and restore thyroid-specific gene expression of ATC cells by targeting AKT-SOX2 pathway, which may serve as a therapeutic strategy to intervene the CSC progression of ATC.


Assuntos
Compostos Alílicos/farmacologia , Sulfetos/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Câncer Papilífero da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
10.
Acta Histochem ; 123(3): 151700, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667778

RESUMO

BACKGROUND: Thyroid carcinoma is the most common endocrine malignancy and anaplastic thyroid carcinoma (ATC) is a rare but most aggressive cancer. Melatonin has enhanced or induced apoptosis in many different cancer cells, however, there has not been any study on the effects of melatonin in the treatment of ATC. In this study, we examined the effect of melatonin on cytotoxicity in the human ATC cell line. MATERIALS AND METHODS: Cultured ATC cells were treated at melatonin concentrations 0.6, 1, 4, 16, 28 mM for 24 h. The MTT assay was performed to examine cell viability. Cytotoxicity was assayed with the determination of lactic dehydrogenase (LDH) activity. Apoptosis was detected by acridine orange/ethidium bromide and Hoechst 33342 staining. Giemsa staining is considered for evaluating the morphological changes of ATC cells. The reproductive ability of cells to form a colony was evaluated by the clonogenic assay. RESULTS: Results showed that melatonin could significantly decrease cell viability and the lowest cell viability was observed at 28 mM, 10.26 % ± 0.858 versus control. Similar results were obtained when analyzing LDH activity. The highest LDH levels were observed at 16 and 28 mM (546.08 ± 4.66, 577.82 ± 3.14 munit/mL versus control) that confirmed the occurrence of late apoptosis. The clonogenic assay showed that cells at the high concentration of melatonin (16 and 28 mM) don't enable to form the colony that approved the occurrence of reproductive death. CONCLUSION: Our results showed a dose-dependent cytotoxic effect of melatonin on ATC cells that significantly decreased cell viability and induced cell reproductive death at the concentration greater than 1 mM and findings suggested that MLT might be useful as an adjuvant in ATC therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Melatonina/farmacologia , Carcinoma Anaplásico da Tireoide/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
11.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430361

RESUMO

Anaplastic thyroid cancer (ATC) is an undifferentiated and advanced form of thyroid cancer, accompanied with a high ratio of epigenetic adjustment, which occurs more than genetic mutations. In this study, we aimed to evaluate the synergistic anticancer effect (in vitro and in vivo) of the new combination of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) and sorafenib with radiation therapy in pre-clinical models of ATC. The ATC cell lines, YUMC-A1 and YUMC-A2, were isolated from the current patients who were treated with HNHA and sorafenib, either as monotherapy or combination therapy. Synergistic anticancer effect of the combination therapy on the intracellular signaling pathways and cell cycle was assessed via flow cytometry and immunoblot analysis. To examine tumor shrinkage activity in vivo, an ATC cell line-derived mouse xenograft model was used. Results showed that the combination therapy of HNHA and sorafenib with radiation promoted tumor suppression via caspase cleavage and cell cycle arrest in patient-derived ATC. In addition, the combination therapy of HNHA and sorafenib with radiation was more effective against ATC than therapy with HNHA or sorafenib with radiation. Thus, the combination of HNHA and sorafenib with radiation may be used as a novel curative approach for the treatment of ATC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Naftalenos/farmacologia , Sorafenibe/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Terapia Combinada , Sinergismo Farmacológico , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Radioterapia , Carcinoma Anaplásico da Tireoide/patologia
12.
Radiology ; 298(1): 123-132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107799

RESUMO

Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts (n = 94 total; August 1, 2018, to January 15, 2020). Mice were treated with vehicle or combined serine/threonine-protein kinase B-Raf (BRAF) kinase inhibitor (BRAFi) and anti-PDL1 antibody (aPDL1). A subset was cotreated with therapies, including an approximately 70-nm model drug delivery nanoparticle (DDNP) to target TAM, and an antibody-neutralizing colony stimulating factor 1 receptor (CSF1R). Imaging was performed at the macroscopic level with ferumoxytol-MRI and microscopically with macrin. Genetically engineered BrafV600E/WT p53-null allografts were used and complemented by a GFP-transgenic derivative and human xenografts. Tumor-bearing organs were processed by using tissue clearing and imaged with confocal microscopy and MRI. Two-tailed Wilcoxon tests were used for comparison (≥five per group). Results TAM levels were higher in orthotopic thyroid tumors compared with pulmonary metastatic lesions by 79% ± 23 (standard deviation; P < .001). These findings were concordant with ferumoxytol MRI, which showed 136% ± 88 higher uptake in thyroid lesions (P = .02) compared with lung lesions. BRAFi and aPDL1 combination therapy resulted in higher tumor DDNP delivery by 39% ± 14 in pulmonary lesions (P = .004). Compared with the untreated group, tumors following BRAFi, aPDL1, and CSF1R-blocking antibody combination therapy did not show greater levels of TAM or DDNP (P = .82). Conclusion In a mouse model of anaplastic thyroid cancer, ferumoxytol MRI showed 136% ± 88 greater uptake in orthotopic thyroid tumors compared with pulmonary lesions, which reflected high vascularization and greater tumor-associated macrophage (TAM) levels. Serine/threonine-protein kinase B-Raf inhibitor and anti-programmed death ligand 1 antibody elicited higher local TAM levels and 43% ± 20 greater therapeutic nanoparticle delivery but not higher vascularization in pulmonary tumors. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Luker in this issue.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Carcinoma Anaplásico da Tireoide/diagnóstico por imagem , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos/imunologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Óxido Ferroso-Férrico , Imunidade/imunologia , Camundongos , Nanopartículas , Proteínas Proto-Oncogênicas B-raf/imunologia , Carcinoma Anaplásico da Tireoide/imunologia , Macrófagos Associados a Tumor/imunologia
13.
Head Neck ; 42(12): 3678-3684, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896015

RESUMO

BACKGROUND: This study aimed to investigate the antitumor activity of paclitaxel with radiation and sorafenib in anaplastic thyroid cancer (ATC) cells in vitro and in vivo. METHODS: The 8505C ATC cell line was exposed to radiation, sorafenib, and paclitaxel each or in combination. The effects of combined treatment on the cell cycle and intracellular signaling pathways were assessed using flow cytometry and western blot analysis. An ATC cell line xenograft model was used to examine antitumor activity in vivo. RESULTS: Radiation, paclitaxel plus sorafenib synergistically decreased cell viability in ATC cells and significantly increased apoptotic cell death. The combination of paclitaxel, sorafenib with radiation reduced the antiapoptotic factor in ATC. This combination therapy significantly reduced the tumor volume and increased survival in the ATC xenograft model. CONCLUSIONS: These results suggest that the combination of radiation and paclitaxel plus sorafenib has significant anticancer activity in preclinical models.


Assuntos
Antineoplásicos , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Paclitaxel/farmacologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia
14.
Med Oncol ; 37(3): 19, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32108281

RESUMO

Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancer, and novel therapies are urgently needed to prolong patient survival and improve clinical outcomes. Very few scientific reviews have examined the literature on combination therapies with the goal of describing the available preclinical and clinical data and suggesting future clinical combination treatment schedules. The present review focuses on preclinical and clinical studies of drug combination therapies in ATC. The relevant literature from PubMed and Scopus was reviewed in this article; the ClinicalTrials.gov database was searched for clinical trials not yet published. Recent data from preclinical models strongly support the idea that combination treatments that utilize drugs from different antineoplastic classes have synergistic antitumour activity in ATC. However, rapid translation of these therapies into the clinic is impeded by the difficulty in recruiting enough patients for randomized clinical trials. Although promising results have been obtained in preclinical studies, additional clinical research is required to elucidate the efficacy of combination treatments for clinical practice.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Resultado do Tratamento
15.
Nutr Cancer ; 72(2): 352-363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31287730

RESUMO

Aim: Anaplastic thyroid cancer (ATC) is the most aggressive subtype of thyroid cancer, presenting high mortality. Currently, no curative treatments exist and new therapeutic strategies are required. Although nutraceuticals were reported to have anticancer properties, few studies exist on ATC. This study aimed to investigate the anticancer effects of nutraceuticals in ATC cell lines (T235, T238) in comparison with normal thyroid cells (PCCL3).Methods: The IC50 values of isothiocyanates (ITCs: sulforaphane, SFN; phenethyl isothiocyanate, PEITC) and polymethoxylated flavones (PMFs: nobiletin; orange peel extract, OPE) were determined. ITCs decreased ATC metabolic viability more efficiently than PMFs. The effects of PEITC and nobiletin on viability and cell cycle, alone or in combination with conventional drugs, were evaluated.Results: PEITC did not affect viability of normal thyroid and ATC cells, while nobiletin decreased viability in a dose-dependent manner in all cell lines, although cell cycle was not arrested. At 100 µM, nobiletin reduced ATC cell viability as efficiently as conventional drugs, such as cisplatin, while being less toxic to normal thyroid cells. When conjugated with 1 µM cisplatin, the combination decreased viability of T235 cells more efficiently than each compound alone.Conclusion: These results suggest nobiletin as a potential anticancer agent that warrants further investigation in ATC.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Cisplatino/farmacologia , Flavonas/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Apoptose , Sobrevivência Celular , Suplementos Nutricionais , Quimioterapia Combinada , Humanos , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas
16.
Endocrine ; 67(1): 117-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377969

RESUMO

PURPOSE: Anaplastic thyroid cancer (ATC) is rare but with poor prognosis. TRAIL can selectively induce apoptosis in cancer cells; however, resistance is quite common. Aim of our study was to evaluate TRAIL-induced apoptosis in ATC-derived cell lines, in vitro and in vivo, and the effect of combination with tyrosine kinase inhibitors (TKIs) selective for BRAF (vemurafenib) or Akt (MK-2206). METHODS: Four ATC-derived cell lines were used: C643, CAL62, HTh7, with activating mutation of RAS and copy gain of PI3K (HTh7) and, 8505C with activating mutation of BRAF. Cells were treated with TRAIL alone or in combination with vemurafenib or MK-2206. The pro-apoptotic effect of TRAIL alone or combined with TKIs was, also, evaluated in two mouse xenograft models (HTh7 and 8505C). RESULTS: C643, CAL62, and HTh7 cells were sensitive to TRAIL-induced apoptosis, whereas 8505C cells were resistant. Both in vitro and in vivo vemurafenib was able to increase the TRAIL-induced apoptosis in 8505C cells causing a slower tumor growth in 8505C xenograft compared to placebo, while MK-2206 did not have any additive effect on TRAIL treatment in HTh7 model. CONCLUSIONS: TRAIL is a promising therapeutic agent in ATC and in case of resistance vemurafenib may be a valid complementary therapy.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Apoptose , Linhagem Celular Tumoral , Camundongos , Ligante Indutor de Apoptose Relacionado a TNF , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico
17.
Acta Biomater ; 102: 367-383, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31778831

RESUMO

Effective accumulation of nanoparticles (NPs) in tumor regions is one of the major motivations in nanotechnology research and that the establishment of an efficient targeting nanoplatform for the treatment of malignant tumors is urgently needed for theranostic applications. In this study, we engineered multifunctional sequential targeting NPs for achieving synergistic antiangiogenic photothermal therapy (PTT) and multimodal imaging-guided diagnosis for anaplastic thyroid carcinoma (ATC) theranostics. Antibody bevacizumab with an affinity towards vascular endothelial growth factor (VEGF) on the tumor cell surface was conjugated onto the surface of polymer NPs for VEGF targeting and antiangiogenic therapy. Encapsulated IR825 was employed as a photothermal agent (PTA) with a mitochondrial targeting capability, which further cascades NPs into mitochondria to enhance hyperthermic efficiency in the ablation of tumor cells. Importantly, the combination of bevacizumab and IR825 in a single nanosystem achieved desirable accumulations of NPs and that sequential targeted PTT combined with antiangiogenesis significantly promoted the therapeutic efficiency in eradicating tumors by near-infrared (NIR) laser irradiation. Furthermore, these NPs are extraordinary contrast agents for photoacoustic, ultrasound and fluorescence imaging applications, providing multimodal imaging capabilities for therapeutic monitoring and a precise diagnosis. Therefore, this multifunctional nanoplatform provides a promising theranostic strategy for extremely malignant ATC. STATEMENT OF SIGNIFICANCE: Anaplastic thyroid carcinoma (ATC), with extremely aggressive behavior, lacks a satisfactory therapeutic method and a comprehensive early diagnostic strategy. Herein, we successfully synthesized a sequential targeting nanoplatform (IR825@Bev-PLGA-PFP NPs) with theranostic function, which specifically binds to VEGF on the tumor cell surface and further cascades into mitochondria to achieve effective accumulation of NPs in the tumor regions. As a result, it solves the urgent demand for ATC detection and therapy. By breaking the limitation of traditional target, such as low efficacy and frequent recurrence as the results of low accumulation, sequential targeting combined with synergistic antiangiogenic PTT completely eradicates tumors without any residual tissue and side effect. Therefore, this strategy paves a solid way for further investigation in the theranostic progressing of ATC.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Nanopartículas/uso terapêutico , Medicina de Precisão/métodos , Carcinoma Anaplásico da Tireoide/diagnóstico por imagem , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Inibidores da Angiogênese/química , Animais , Antineoplásicos Imunológicos/química , Benzoatos/efeitos da radiação , Benzoatos/uso terapêutico , Bevacizumab/química , Bevacizumab/uso terapêutico , Linhagem Celular Tumoral , Corantes/efeitos da radiação , Corantes/uso terapêutico , Feminino , Humanos , Hipertermia Induzida/métodos , Indóis/efeitos da radiação , Indóis/uso terapêutico , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Fotoquimioterapia/métodos , Carcinoma Anaplásico da Tireoide/terapia
18.
Artigo em Inglês | MEDLINE | ID: mdl-30264682

RESUMO

BACKGROUND: The sesquiterpene lactone cynaropicrin, a major constituent of the artichoke leaves extracts, has shown several biologic activities in many preclinical experimental models, including anti-proliferative effects. OBJECTIVE: Herein we evaluated the effects of cynaropicrin on the growth of three human anaplastic thyroid carcinoma cell lines, investigating the molecular mechanism underlying its action. METHOD: MTT assay was used to evaluate the viability of CAL-62, 8505C and SW1736 cells, and flow cytometry to analyse cell cycle distribution. Western blot was performed to detect the levels of STAT3 phosphorylation and NFkB activation. Antioxidant effects were analyzed by measuring the reactive oxygen species and malonyldialdehyde dosage was used to check the presence of lipid peroxidation. RESULTS: Viability of CAL-62, 8505C and SW1736 cells was significantly reduced by cynaropicrin in a dose- and time-dependent way, with an EC50 of about 5 µM observed after 48 h of treatment with the compound. Cellular growth inhibition was accompanied both by an arrest of the cell cycle, mainly in the G2/M phase, and the presence of a significant percentage of necrotic cells. After 48 h of treatment with 10 µM of cynaropicrin, a reduced nuclear expression of NFkB and STAT3 phosphorylation were also revealed. Moreover, we observed an increase in lipid peroxidation, without any significant effect on the reactive oxygen species production. CONCLUSION: These results demonstrate that cynaropicrin reduces the viability and promotes cytotoxic effects in anaplastic thyroid cancer cells associated with reduced NFkB expression, STAT3 phosphorylation and increased lipid peroxidation. Further characterization of the properties of this natural compound may open the way for using cynaropicrin as an adjuvant in the treatment of thyroid cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Lactonas/uso terapêutico , Sesquiterpenos/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , NF-kappa B/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
19.
J Cancer Res Clin Oncol ; 144(2): 285-294, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197967

RESUMO

PURPOSE: The anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a high mortality rate. Since nutraceuticals may exert beneficial effects on tumor biology, here, effects of four of these compounds [resveratrol, genistein, curcumin and epigallocatechin-3-gallate (EGCG)] on ATC cell lines were investigated. METHODS: Two ATC-derived cell lines were used: SW1736 and 8505C. Cell viability and in vitro aggressiveness was tested by MTT and soft agar assays. Apoptosis was investigated by Western Blot, using an anti-cleaved-PARP antibody. mRNA and miRNA levels were quantified by real-time PCR. RESULTS: All tested nutraceuticals caused in both cell lines decrease of cell viability and increase of apoptosis. In contrast, only curcumin reduced in vitro aggressiveness in both SW1736 and 8505C cell lines, while genistein and EGCG determined a reduction of colony formation only in 8505C cells. Effects on genes related to the thyroid-differentiated phenotype were also tested: resveratrol and genistein administration determined the increment of almost all tested mRNAs in both cell lines. Instead curcumin and EGCG treatments had opposite effects in the two cell lines, causing the increment of almost all the mRNAs in 8505C cells and their reduction in SW1736. Finally, effects of nutraceuticals on levels of several miRNAs, known as important in thyroid cancer progression (hsa-miR-221, hsa-miR-222, hsa-miR-21, hsa-miR-146b, hsa-miR-204), were tested. Curcumin induced a strong and significant reduction of all miR analyzed, except for has-miR-204, in both cell lines. CONCLUSIONS: Altogether, our results clearly indicate the anti-cancer proprieties of curcumin, suggesting the promising use of this nutraceutical in ATC treatment. Resveratrol, genistein and EGCG have heterogeneous effects on molecular features of ATC cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Suplementos Nutricionais , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacologia , Genisteína/farmacologia , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Resveratrol , Estilbenos/farmacologia , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
20.
Technol Health Care ; 23 Suppl 1: S89-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26410334

RESUMO

BACKGROUND: Epidemiological and experimental carcinogenesis studies provide evidence that components of garlic have anticancer activity. OBJECTIVE: In this study, the apoptotic effects of Garlic-derived compound S-allylmercaptocysteine (SAMC) were investigated in 8305C human anaplastic thyroid carcinoma cells. METHODS: The cell line 8305C (HPACC) were treated with SAMC and the MTT assay, flow cytometry (FCM), electron microscope method were used to test cell cycle, inhibitory rate and morphologic changes respectively. RESULTS: HPACC-8305C cells were suppressed after exposure to SAMC of 0.02 mg/ml, 0.06 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P< 0.05). SAMC could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G2/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P< 0.05). After exposure to SAMC at 0.02 mg/ml for 24 hours, HPACC-8305C cells showed typical morphologic change. CONCLUSIONS: SAMC inhibits the growth of HPACC-8305C cells by induction of apoptotic cell death and inhibit telomerase activity, which appears to account for its anti-cancer activity.


Assuntos
Apoptose/efeitos dos fármacos , Alho , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cisteína/análogos & derivados , Cisteína/farmacologia , Relação Dose-Resposta a Droga , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA