Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014791

RESUMO

Premature death due to heart failure is a major health problem. Taurine is a non-essential amino acid that has received much attention. However, although many studies have been carried out on the beneficial effects of taurine in cardiac pathophysiology, no studies have investigated the effect of taurine treatment on the development of hereditary cardiomyopathy (HCM) associated with hypertrophy, heart failure, and early death. This study aims to verify whether short-term treatment (20 days) with taurine in tap water prevents the development of hypertrophy and premature death in hereditary cardiomyopathy of the hamster (HCMH) of the line UM-X7.1 and if its effect is sex-dependent. Our results show that treatment for 20 days with taurine (250 mg/kg/day or 25 mg/animal/day) during the development of the hypertrophic phase (220 days old) significantly decreased (p < 0.01) the heart weight to body weight ratio in male HCMHs without affecting the female. During the 20 days (220−240 days old), there were nearly 40% premature deaths in non-treated males HCMHs and 50% in female HCMHs. Treatment for 20 days wholly and significantly prevented early death in both males and females HCMHs. Our results demonstrate that short-term treatment with taurine prevents the development of cardiac hypertrophy associated with HCM in a sex-dependent manner; however, it prevents early death in a sex-independent fashion. Our results suggest that taurine supplementation could be used to treat HCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Cardiomiopatia Hipertrófica/metabolismo , Cricetinae , Feminino , Masculino , Taurina/farmacologia , Taurina/uso terapêutico
2.
Toxicol Appl Pharmacol ; 438: 115914, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150662

RESUMO

The goal of the CiPA initiative (Comprehensive in vitro Proarrhythmia Assay) was to assess a more accurate prediction of new drug candidate proarrhythmic severe liabilities such as torsades de pointes, for example. This new CiPA paradigm was partly based on in silico reconstruction of human ventricular cardiomyocyte action potential useful to identify repolarization abnormalities such early afterdepolarization (EAD), for example. Using the ToR-ORd algorithm (Tomek-Rodriguez-O'Hara-Rudy dynamic model), the aim of the present work was (i) to identify intracellular parameters leading to EAD occurrence under healthy and hypertrophic cardiomyopathy (HCM) conditions and (ii) to evaluate the prediction accuracy of compound torsadogenic risk based on EAD occurrence using a large set of 109 torsadogenic and non-torsadogenic compounds under both experimental conditions. In silico results highlighted the crucial involvement of Ca++ handling in the ventricular cardiomyocyte intracellular subspace compartment for the initiation of EAD, demonstrated by a higher amplitude of Ca++ release from junctional sarcoplasmic reticulum to subspace compartments (Jrel) measured at EAD take-off voltage in the presence vs. the absence of EAD initiated either by high IKr inhibition or by high enough concentration of a torsadogenic compound under both experimental conditions. Under healthy or HCM conditions, the prediction accuracy of the torsadogenic risk of compound based on EAD occurrence was observed to be 61 or 92%, respectively. This high accuracy under HCM conditions was discussed regarding its usefulness for cardiac safety pharmacology at least at early drug screening/preclinical stage of the drug development process.


Assuntos
Potenciais de Ação/fisiologia , Cardiomiopatia Hipertrófica/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/tratamento farmacológico , Algoritmos , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Eletrocardiografia/efeitos dos fármacos , Humanos , Miócitos Cardíacos/fisiologia , Medição de Risco , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Torsades de Pointes/fisiopatologia
3.
Biol Open ; 10(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589442

RESUMO

The fundamental basis of muscle contraction 'the sliding filament model' (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) and the 'swinging, tilting crossbridge-sliding filament mechanism' (Huxley, 1969; Huxley and Brown, 1967) nucleated a field of research that has unearthed the complex and fascinating role of myosin structure in the regulation of contraction. A recently discovered energy conserving state of myosin termed the super relaxed state (SRX) has been observed in filamentous myosins and is central to modulating force production and energy use within the sarcomere. Modulation of myosin function through SRX is a rapidly developing theme in therapeutic development for both cardiovascular disease and infectious disease. Some 70 years after the first discoveries concerning muscular function, modulation of myosin SRX may bring the first myosin targeted small molecule to the clinic, for treating hypertrophic cardiomyopathy (Olivotto et al., 2020). An often monogenic disease HCM afflicts 1 in 500 individuals, and can cause heart failure and sudden cardiac death. Even as we near therapeutic translation, there remain many questions about the governance of muscle function in human health and disease. With this review, we provide a broad overview of contemporary understanding of myosin SRX, and explore the complexities of targeting this myosin state in human disease.This article has an associated Future Leaders to Watch interview with the authors of the paper.


Assuntos
Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Contração Miocárdica/fisiologia , Biomarcadores , Miosinas Cardíacas/ultraestrutura , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Mutação , Fosforilação
4.
Cardiovasc Res ; 117(3): 694-711, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32365198

RESUMO

Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.


Assuntos
Cardiomiopatias/metabolismo , Metabolismo Energético , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Antraciclinas/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiotoxicidade , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Período Periparto , Fenótipo , Gravidez , Complicações Cardiovasculares na Gravidez/genética , Complicações Cardiovasculares na Gravidez/metabolismo , Complicações Cardiovasculares na Gravidez/patologia
5.
Nat Biomed Eng ; 4(9): 889-900, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661320

RESUMO

Study of the molecular basis of myocardial fibrosis is hampered by limited access to tissues from human patients and by confounding variables associated with sample accessibility, collection, processing and storage. Here, we report an integrative strategy based on mass spectrometry for the phosphoproteomic profiling of normal and fibrotic cardiac tissue obtained from surgical explants from patients with hypertrophic cardiomyopathy, from a transaortic-constriction mouse model of cardiac hypertrophy and fibrosis, and from a heart-on-a-chip model of cardiac fibrosis. We used the integrative approach to map the relative abundance of thousands of proteins, phosphoproteins and phosphorylation sites specific to each tissue source, to identify key signalling pathways driving fibrosis and to screen for anti-fibrotic compounds targeting glycogen synthase kinase 3, which has a consistent role as a key mediator of fibrosis in all three types of tissue specimen. The integrative disease-modelling strategy may reveal new insights into mechanisms of cardiac disease and serve as a test bed for drug screening.


Assuntos
Miocárdio/patologia , Proteômica/métodos , Transdução de Sinais , Animais , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fibrose , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Engenharia Tecidual
6.
Orphanet J Rare Dis ; 13(1): 120, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30025539

RESUMO

BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin.


Assuntos
Acidose/genética , Acidose/metabolismo , Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Riboflavina/uso terapêutico , Acidose/patologia , Atividades Cotidianas , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Cardiomiopatia Hipertrófica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Doenças Mitocondriais/patologia , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/patologia , Prognóstico
7.
Int J Cardiol ; 232: 255-263, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082092

RESUMO

BACKGROUND: Fabry disease (FD) is a lysosomal storage disease in which glycosphingolipids (GB3) accumulate in organs of the human body, leading to idiopathic hypertrophic cardiomyopathy and target organ damage. Its pathophysiology is still poorly understood. OBJECTIVES: We aimed to generate patient-specific induced pluripotent stem cells (iPSC) from FD patients presenting cardiomyopathy to determine whether the model could recapitulate key features of the disease phenotype and to investigate the energy metabolism in Fabry disease. METHODS: Peripheral blood mononuclear cells from a 30-year-old Chinese man with a diagnosis of Fabry disease, GLA gene (IVS4+919G>A) mutation were reprogrammed into iPSCs and differentiated into iPSC-CMs and energy metabolism was analyzed in iPSC-CMs. RESULTS: The FD-iPSC-CMs recapitulated numerous aspects of the FD phenotype including reduced GLA activity, cellular hypertrophy, GB3 accumulation and impaired contractility. Decreased energy metabolism with energy utilization shift to glycolysis was observed, but the decreased energy metabolism was not modified by enzyme rescue replacement (ERT) in FD-iPSCs-CMs. CONCLUSION: This model provided a promising in vitro model for the investigation of the underlying disease mechanism and development of novel therapeutic strategies for FD. This potential remedy for enhancing the energetic network and utility efficiency warrants further study to identify novel therapies for the disease.


Assuntos
Cardiomiopatia Hipertrófica/etiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Metabolismo Energético/fisiologia , Doença de Fabry/genética , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/metabolismo , Adulto , Animais , Western Blotting , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas/métodos , Terapia de Reposição de Enzimas , Doença de Fabry/metabolismo , Doença de Fabry/terapia , Humanos , Masculino , Camundongos SCID , Microscopia Eletrônica de Transmissão , Mutação , Miócitos Cardíacos/ultraestrutura , Fenótipo
8.
Int Immunopharmacol ; 28(1): 751-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26277701

RESUMO

Objective of the present investigation was to study the effect of the flax lignan concentrate (FLC) and Omega-3-fatty acid (O-3-FA) on myocardial apoptosis, left ventricular (LV) contractile dysfunction and electrocardiographic abnormalities in pressure overload-induced cardiac hypertrophy. The rats were divided into five groups such as sham, aortic stenosis (AS), AS+FLC, AS+O-3-FA and AS+FLC+O-3-FA. Cardiac hypertrophy was produced in rats by abdominal aortic constriction. The rats were treated with FLC (400mg/kg, p.o.), O-3-FA (400mg/kg, p.o.) and FLC+O-3-FA orally per day for four weeks. The LV function, myocardial apoptosis, and oxidative stress were quantified. FLC+O-3-FA treatment significantly reduced hemodynamic changes, improved LV contractile dysfunction, reduced cardiomyocyte apoptosis and cellular oxidative stress. Moreover, it significantly up-regulated the VEGF expression and decreased TNF-alpha level in serum. The histological analysis also revealed that FLC+O-3-FA treatment markedly preserved the cardiac structure and inhibited interstitial fibrosis. In conclusion, FLC+O-3-FA treatment improved LV dysfunction, inhibited cardiomyocyte apoptosis, improved myocardial angiogenesis, conserved activities of membrane-bound phosphatase enzymes and suppressed inflammation through reduced oxidative stress in an additive manner than FLC alone and O-3-FA alone treatment in pressure overload-induced cardiac hypertrophy.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Cardiomiopatia Hipertrófica/prevenção & controle , Ácidos Graxos Ômega-3/uso terapêutico , Linho/química , Lignanas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Ácidos Graxos Ômega-3/administração & dosagem , Hemodinâmica/efeitos dos fármacos , Lignanas/administração & dosagem , Lignanas/isolamento & purificação , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Ratos Wistar , Sementes/química , Função Ventricular Esquerda/efeitos dos fármacos
9.
Am J Med Genet A ; 167(6): 1231-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846410

RESUMO

Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1,644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Cardiomiopatia Hipertrófica/genética , DNA (Citosina-5-)-Metiltransferases/genética , Glutamato-Cisteína Ligase/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Obesidade/genética , Adulto , Betaína-Homocisteína S-Metiltransferase/metabolismo , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Suplementos Nutricionais/efeitos adversos , Feminino , Ácido Fólico/efeitos adversos , Expressão Gênica , Interação Gene-Ambiente , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Homocisteína/metabolismo , Humanos , Lactente , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Modelos Genéticos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Polimorfismo de Nucleotídeo Único , Gravidez , Fatores de Risco , DNA Metiltransferase 3B
10.
J Steroid Biochem Mol Biol ; 147: 92-102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25541436

RESUMO

OBJECTIVE: We investigated the effect of ovariectomy (OVX) and 17ß-estradiol (E2) replacement on both mitochondrial and myocardial function in cTnT-Q92 transgenic mice generated by cardiac-restricted expression of a human hypertrophic cardiomyopathy (HCM) mutation. METHODS: The cTnT-Q92 mice were ovariectomized at twenty weeks of age and were treated with either placebo (OVX group) or E2 (OVX+E2 group) for twelve weeks before being sacrificed. Wild-type and cTnT-Q92 female mice receiving sham operation were used as controls. Indices of diastolic function such as mitral early (E) and late (A) inflow as well as isovolumic relaxation time (IVRT) were measured by echocardiography. A Clark-type electrode was used to detect respiratory control, and ATP levels were determined at the mitochondrial level using HPLC. Key components related to mitochondrial energy metabolism, such as peroxisome proliferator-activated receptor α (PPARα), PPARγ coactivator 1α (PGC-1α) and nuclear respiratory factor-1 (NRF-1), were also analyzed using Western blot and RT-PCR. The levels of oxidative stress markers were determined by measuring malondialdehyde (MDA) using the thiobarbituric acid assay. RESULTS: The cTnT-Q92 mice had impaired diastolic function compared with wild-type mice (E/A ratio, 1.39 ± 0.04 vs. 1.21 ± 0.01, p<0.001; IVRT, 19.17 ± 0.85 vs. 22.15 ± 1.43 ms, p=0.028). In response to ovariectomy, cardiac function further decreased compared with that observed in cTnT-Q92 mice that received the sham operation (E/A ratio, 1.15 ± 0.04 vs. 1.21 ± 0.01, p<0.001; IVRT, 28.31 ± 0.39 vs. 22.15 ± 1.43 ms, p=0.002). Myocardial energy metabolism, as determined by ATP levels (3.49 ± 0.31 vs. 5.07 ± 0.47 µmol/g, p<0.001), and the mitochondrial respiratory ratio (2.04 ± 0.10 vs. 2.63 ± 0.11, p=0.01) also decreased significantly. By contrast, myocardial concentrations of MDA increased significantly in the OVX group, and PGC-1α, PPARα and NRF-1decreased significantly. E2 supplementation significantly elevated myocardial ATP levels (4.55 ± 0.21 vs. 3.49 ± 0.31 µmol/g, p=0.003) and mitochondrial respiratory function (3.93 ± 0.05 vs. 2.63 ± 0.11, p=0.001); however, it reduced the MDA level (0.21 ± 0.02 vs. 0.36 ± 0.03 nmol/g, p<0.001), which subsequently improved diastolic function (E/A ratio, 1.35 ± 0.06 vs. 1.15 ± 0.04, p<0.001; IVRT, 18.22 ± 1.16 vs. 28.31 ± 0.39 ms, p=0.007). CONCLUSIONS: Our study has shown that 17ß-estradiol improved myocardial diastolic function, prevented myocardial energy dysregulation, and reduced myocardial oxidative stress in cTnT-Q92 mice.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Estradiol/uso terapêutico , Coração/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Troponina T/genética , Animais , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Coração/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mutação , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa
11.
J Cell Mol Med ; 18(8): 1509-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24981391

RESUMO

It has been known for over 20 years that foetal calf serum can induce hypertrophy in cultured cardiomyocytes but this is rarely considered when examining cardiomyocytes derived from pluripotent stem cells (PSC). Here, we determined how serum affected cardiomyocytes from human embryonic- (hESC) and induced pluripotent stem cells (hiPSC) and hiPSC from patients with hypertrophic cardiomyopathy linked to a mutation in the MYBPC3 gene. We first confirmed previously published hypertrophic effects of serum on cultured neonatal rat cardiomyocytes demonstrated as increased cell surface area and beating frequency. We then found that serum increased the cell surface area of hESC- and hiPSC-derived cardiomyocytes and their spontaneous contraction rate. Phenylephrine, which normally induces cardiac hypertrophy, had no additional effects under serum conditions. Likewise, hiPSC-derived cardiomyocytes from three MYBPC3 patients which had a greater surface area than controls in the absence of serum as predicted by their genotype, did not show this difference in the presence of serum. Serum can thus alter the phenotype of human PSC derived cardiomyocytes under otherwise defined conditions such that the effects of hypertrophic drugs and gene mutations are underestimated. It is therefore pertinent to examine cardiac phenotypes in culture media without or in low concentrations of serum.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/genética , Meios de Cultura/química , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Soro/química , Potenciais de Ação , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Derme/citologia , Derme/metabolismo , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mutação/genética , Miócitos Cardíacos/citologia , Fenótipo , Ratos
12.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 32(5): 661-5, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22679730

RESUMO

OBJECTIVE: To explore changes of mitochondrial structure and functions, as well as the protection of ligustrazine in the process of myocardial hypertrophy. METHODS: Neonatal myocardial cells were isolated and cultured with angiotensin II (Ang II) for 72 or 96 h. The total protein content was detected using BCA method. The cell diameter was measured by inverted microscope, by which to reflect the proliferation situation of cardiomyocytes. The mitochondrial membrane potential (MMP) was measured by fluorescence microscope. The mitochondrial monoamine oxidase (MAO) activity was detected by spectrophotometer. The mitochondrial cytochrome oxidase (COX) activity and the mitochondrial damage percentage were detected by microplate reader, by which to reflect the damage of mitochondrial outer membrane's structure and the membranes' function. Also, cells were treated with ligustrazine and losartan and then the pharmacological effects on the mitochondrial structure and functions in the myocardial cells treated with Ang II were observed. RESULTS: At 72 h and 96 h, when compared with the blank group, cells treated with Ang II had increased total protein content (P < 0.01) and enlarged diameter (P < 0.01). Treated with Ang II, the MAO activity and the outer membrane damage percentage of myocardial cells significantly increased (P < 0.01), and mitochondrial COX activity and the mitochondrial MMP significantly decreased (P < 0.01). Compared with the model group at the same time period, ligustrazine significantly reduced myocardial cells' total protein content and myocardial cell diameter, and significantly decreased myocardial cells' MAO activity, increased mitochondrial COX activity, improved the outer membrane damage percentage and inner membrane MMP at 72 and 96 h, all showing statistical difference (P < 0.01, P < 0.05). CONCLUSIONS: During the process of myocardial hypertrophy existed the damage to the mitochondrial structure and functions. Ligustrazine protected the mitochondrial structure and functions of the myocardial cells in reversing Ang II induced myocardial cell hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Pirazinas/farmacologia , Angiotensina II/efeitos adversos , Animais , Cardiomiopatia Hipertrófica/induzido quimicamente , Cardiomiopatia Hipertrófica/metabolismo , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Monoaminoxidase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
13.
Physiol Genomics ; 43(12): 772-80, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21487031

RESUMO

The perception that soy food products and dietary supplements will have beneficial effects on cardiovascular health has led to a massive consumer market. However, we have previously noted that diet profoundly affects disease progression in a genetic model of hypertrophic cardiomyopathy (HCM). In this model, a soy-based diet negatively impacts cardiac function in male mice. Given the frequent connection between functional changes and transcriptional changes, we investigated the effect of diet (soy- vs. milk-based) on cardiac gene expression and how it is affected by the additional factors of sex and disease. We found that gene expression in the heart is altered more by diet than by sex or an inherited disease. We also found that the healthy male heart may be sensitized to dietary perturbations of gene expression in that it displays a gene expression profile more similar to diseased male and female hearts than to healthy female hearts. These observations may in part account for documented divergence in HCM phenotypes between males and females and between diets.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Dieta , Regulação da Expressão Gênica/fisiologia , Miocárdio/metabolismo , Animais , Cardiomiopatia Hipertrófica/dietoterapia , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Fatores Sexuais
14.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 29(3): 233-7, 2009 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-19548441

RESUMO

OBJECTIVE: To investigate the alteration of the adiponectin signal pathway in hypertrophic myocardium of spontaneous hypertensive rats (SHR) and to observe the effects of Gadol (GD) and Ganoderma spores (GS) on the hemodynamic parameters and the adiponectin signal pathway of SHR. METHODS: SHRs, 8 weeks old, were randomly divided into four groups: the untreated group, and the three treated groups treated with GD, GS, and GD + GS respectively by gastrogavage for 4 weeks. Controlled with 8-week-old WKY rats, the hemodynamic parameters in all rats were recorded through the carotid artery intubation; the serum level of adiponectin was determined with ELISA; the mRNA expressions of adiponectin receptors (AdipoRs) and carnitine palmitoyl transferase (CPT-1) were determined by RT-PCR; and the protein expression of adenosine monophosphate activated protein kinase (AMPK), both phosphorylated and un-phosphorylated, was detected by Western blot. RESULTS: Compared with the WKY rats, the systolic blood pressure (SBP), diastolic blood pressure (DBP) and myocardial hypertrophy index (MHI) in SHR were significantly higher; the serum levels of adiponectin and phosphorylated AMPK, mRNA expressions of AdipoR1 and CPT-1 in SHR heart tissue were lower (P < 0.05). Compared with the SHR, medication of GD and GS, either alone or in combination, could reduce SBP, DBP and MHI significantly (P < 0.01, P < 0.05), and elevate the mRNA expression of CPT-1 (P < 0.05) in heart, but levels of adiponectin, AdipoR1 and phosphorylated AMPK could only be raised by combined use of the two (P < 0.05). CONCLUSIONS: Adiponectin signal transduction pathway alteration presents in the myocardium of SHR, which might be one of the molecular mechanisms that cause hypertrophic metabolic abnormality. GD and GS could improve the hemodynamic index in SHR, and enhance the level of adiponectin and the expression of its related signal transduction molecules.


Assuntos
Adiponectina/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Ganoderma/química , Hipertensão/complicações , Rhodiola/química , Adiponectina/fisiologia , Animais , Cardiomiopatia Hipertrófica/etiologia , Medicamentos de Ervas Chinesas/farmacologia , Hemodinâmica/efeitos dos fármacos , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Esporos
15.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 28(7): 632-6, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18822915

RESUMO

OBJECTIVE: To explore the molecular biological mechanism of tanshinone II A (TSN) in preventing hypertensive left ventricular hypertrophy (HLVH) through studying the effects of TSN on angiotensin receptor (ATR) expression and free calcium ion ([Ca2+]i) in rats with hypertrophic myocardium caused by abdominal aorta constriction. METHODS: SD rats were established into HLVH model by abdominal aorta constriction operation, they were randomly divided into the model group, the three treated groups treated respectively with intra peritoneal injection of low dose TSN (10 mg/kg) and high dose TSN (20 mg/kg) and gastrogavage of Valsartan (10 mg/kg) once a day 4 weeks after modeling. Besides, 8 sham-operated SD rats were set up as the control group. Eight weeks later, rats' caudal arterial pressure was measured, and their hearts were taken for measuring the left ventricular mass index (LVMI) and myocardial fiber diameter (MFD) by HE stain of the pathological section. Moreover, the mRNA and protein expressions of AT1 and AT2 receptors in the left ventricular tissue were detected by RT-PCR and Western blot, and [Ca2+]i concentration was determined with laser-scanning confocal microscope. RESULTS: (1) The elevated blood pressure in the TSN treated groups, either high or low dose, remained unchanged, significantly higher than that in the control group and the Valsartan treated group (P < 0.01, P < 0.05). (2) LVMI and MFD in the three treated groups were significantly lower than those in the model group (P <0.01), respectively, although they were higher than those in the control group (P <0.05). (3) The mRNA and protein expressions of AT1 receptor were obviously lower in the three treated groups than those in the model groups (P < 0.05); but the lowering was more significant in the valsartan treated group (P < 0.05). (4) The mRNA and protein expressions of AT2 receptor were significantly higher in the Valsartan treated group as compared with other groups (P < 0.05), while the difference among the other groups showed no statistical significance (P > 0.05). (5) The elevated (Ca2+]i concentration in hypertrophic myocardium after modeling was significantly lowered after treatment in the three treated groups (P < 0.05), but the lowering in the high TSN treated group was more significant than that in the Valsartan treated group (P <0.05). CONCLUSION: The inhibition of TSN on myocardial hypertrophy is blood pressure independent, its mechanism is possibly related with the inhibition on AT1R gene expression and the blocking of free calcium ion influx in cardiac muscle cells. AT2 receptor may participate the effect of Valsartan in lowering blood pressure and reversing myocardial hypertrophy.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Fenantrenos/uso terapêutico , Receptores de Angiotensina/metabolismo , Abietanos , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Miocárdio/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
16.
Zhong Yao Cai ; 31(11): 1691-5, 2008 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-19260283

RESUMO

OBJECTIVE: To investigate the effects of Semen descurainiae and Captopril on CYP11B1, CYP11B2 and TGF-beta1 mRNA expression of heart tissue in rats treated with Abdominal Aortic Banding. METHODS: Ventricular remodeling was induced by abdominal aortic banding (AAB) in rats. After 30 days' treatment, the ratios of LVW/BW (left ventricle weight/body weight), HW/BW (heart weight/body weight) were calculated; Then the CYP11B, CYP11B2 and TGF-beta1 mRNA expression of left ventricle were detected by Real-time PCR, respectively. RESULTS: The experimental data demonstrated that Semen descurainiae decreased the indexes of LVW/BW and HW/BW, down-regulated CYP11B, CYP11B2 and TGF-beta1 mRNA expression in left ventricle (P<0.05). CONCLUSION: Semen desceurainiae can significantly inhibit the experimental ventricular remodeling; the mechanism is related to its ability to attenuate the mRNA expression of CYP11B1, CYP11B2 and TGF-beta1 in left ventricle. The inhibition of aldosterone key gene expression by Semen descurainiae may contribute to its effect on restraint cardiac remodeling.


Assuntos
Brassicaceae/química , Cardiomiopatia Hipertrófica/patologia , Citocromo P-450 CYP11B2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Miocárdio/metabolismo , Esteroide 11-beta-Hidroxilase/metabolismo , Animais , Aorta Abdominal/cirurgia , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Citocromo P-450 CYP11B2/genética , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Plantas Medicinais/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sementes/química , Esteroide 11-beta-Hidroxilase/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular/efeitos dos fármacos
17.
Cardiovasc Res ; 70(3): 566-77, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16546150

RESUMO

OBJECTIVE: Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily and are key regulators of fatty acid oxidation (FAO) in the heart. Systemic carnitine deficiency (SCD) causes disorders of FAO and induces hypertrophic cardiomyopathy with lipid accumulation. We hypothesized that activation of PPARalpha by fenofibrate, a PPARalpha agonist, in addition to conventional L-carnitine supplementation may exert beneficial effects on the lipotoxic cardiomyopathy in juvenile visceral steatosis (JVS) mouse, a murine model of SCD. METHODS: Both wild-type (WT) and JVS mice were fed a normal chow, 0.2% fenofibrate containing chow (FE), a 0.1% L-carnitine containing chow (CA) or a 0.1% L-carnitine + 0.2% fenofibrate containing chow (CA + FE) from 4 weeks of age. Four to 8 animals per group were used for each experiment and 9 to 11 animals per group were used for survival analysis. RESULTS: At 8 weeks of age, JVS mice exhibited marked ventricular hypertrophy, which was more attenuated by CA + FE than by CA or FE alone. CA + FE markedly reduced the high plasma and myocardial triglyceride levels and increased the low myocardial ATP content to control levels in JVS mice. In JVS mice, myocardial 1,2-diacylglycerol (DAG) was significantly increased and showed a distinct fatty acid composition with elevation of 18:1(n-7,9) and 18:2(n-6) fatty acids compared with that in WT mice. CA + FE significantly altered the fatty acid composition of DAG and inhibited the membrane translocation of cardiac protein kinase C beta2 in JVS mice. Furthermore, CA + FE prevented the progressive left ventricular dysfunction and dramatically improved the survival rate in JVS mice (survival rate at 400 days after birth: 89 vs. 0%, P < 0.0001). CONCLUSIONS: PPARalpha activation, in addition to l-carnitine supplementation, may rescue the detrimental lipotoxic cardiomyopathy in SCD by improving cardiac energy and lipid metabolism as well as systemic lipid metabolism.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Carnitina/deficiência , Fenofibrato/uso terapêutico , PPAR alfa/agonistas , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/metabolismo , Carnitina/uso terapêutico , Diglicerídeos/química , Diglicerídeos/metabolismo , Quimioterapia Combinada , Ecocardiografia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Modelos Animais , Miocárdio/metabolismo , Miocárdio/patologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína Quinase C/metabolismo , Distribuição Aleatória , Resultado do Tratamento , Triglicerídeos/metabolismo
18.
J Inherit Metab Dis ; 27(1): 67-79, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14970747

RESUMO

Mutations in Sco2, a protein involved in copper trafficking to the terminal enzyme of the respiratory chain, cytochrome c oxidase, results in infantile hypertrophic cardioencephalomyopathy. We have recently shown that copper-histidine (Cu-his) supplementation of Sco2-deficient myoblasts rescues COX activity in vitro. Here, we report a patient with SCO 2 mutations and with resolution of severe hypertrophic cardiomyopathy. Weighing up the evidence, the most likely explanation for the improved cardiac function in this patient was the subcutaneous application of Cu-his.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Histidina/análogos & derivados , Histidina/uso terapêutico , Mitocôndrias/metabolismo , Mutação , Compostos Organometálicos/uso terapêutico , Proteínas/genética , Cardiomiopatia Hipertrófica/sangue , Cardiomiopatia Hipertrófica/diagnóstico , Proteínas de Transporte , Ecocardiografia , Eletrocardiografia , Evolução Fatal , Feminino , Seguimentos , Histidina/administração & dosagem , Humanos , Injeções Subcutâneas , Ácido Láctico/sangue , Proteínas Mitocondriais , Chaperonas Moleculares , Compostos Organometálicos/administração & dosagem , Indução de Remissão
19.
Jpn Circ J ; 64(11): 861-7, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11110432

RESUMO

Volume overload results in eccentric cardiac hypertrophy, but it is still unknown how this mechanical overload modulates the inotropic response to exogenous Ca2+ or adenylyl cyclase stimulation. Inotropic responsiveness in vivo and the levels of gene expression of Ca2+ signaling proteins were studied in rabbit hearts hypertrophied as a result of volume overload at 4 and 12 weeks after arteriovenous shunt formation. In sham-operated control rabbits, left ventricular (LV)+dP/dt was augmented in response to graded doses of CaCl2. Dose-related changes of LV+dP/dt to CaCl2 were attenuated significantly in shunt rabbits with volume overload. Forskolin dose-dependently augmented LV+dP/dt in sham rabbits, which was also attenuated significantly in rabbits with volume overload. The mRNA levels of dihydropyridine receptor, Na+/Ca2+ exchanger, sarcoplasmic reticulum Ca2+-ATPase, and ryanodine receptor decreased significantly at 4 and 12 weeks in the volume-overload rabbits compared with the sham rabbits, but the mRNA levels of phospholamban and calsequestrin remained unchanged. Chronic volume overload alters contractile responsiveness to Ca2+ or adenylyl cyclase stimulation, and downregulation of steady state mRNA levels of Ca2+ signaling proteins might be, at least in part, related to this pathologic process.


Assuntos
Cloreto de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cardiomiopatia Hipertrófica/metabolismo , Cardiotônicos/farmacologia , Colforsina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Proteínas Musculares/biossíntese , Animais , Northern Blotting , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio/biossíntese , ATPases Transportadoras de Cálcio/genética , Calsequestrina/biossíntese , Calsequestrina/genética , Cardiomiopatia Hipertrófica/genética , DNA Complementar/genética , Hemodinâmica , Masculino , Proteínas Musculares/genética , RNA Mensageiro/biossíntese , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Trocador de Sódio e Cálcio/biossíntese , Trocador de Sódio e Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA