Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2022: 9380283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203531

RESUMO

Background: This study is aimed at investigating whether relaxin-3 exhibits protective effects against cardiomyopathy in diabetic rats by suppressing ERS. Methods: Eighty male SD rats were randomly divided into two groups: controls (n = 20) and diabetes (n = 60). The streptozotocin-treated rats were randomly divided into three groups: diabetic group (DM), low-dose relaxin-3 group (0.2 µg/kg/d), and high-dose relaxin-3 group (2 µg/kg/d). The myocardial tissues and collagen fiber were observed by hematoxylin and eosin (H&E) and Masson staining. Serum brain natriuretic peptide (BNP), troponin (TNI), myoglobin, interleukin (IL-17), interleukin (IL)-1α, and tumor necrosis factor (TNF)-α were determined by ELISA. The protein expression of glucose regulatory protein 78 (GRP78) and C/EBP homologous protein (CHOP) in the heart tissue of each group was detected by Western blot analysis. Results: (1) HE and Masson staining indicated that relaxin-3 could attenuate myocardial lesions and myocardial collagen volume fraction. (2) BNP, TnI, and myoglobin in the DM group at four and eight weeks were significantly higher than in the controls (P < 0.01). The relaxin-3-treated groups showed significantly reduced serum BNP, TnI, and myoglobin levels compared with the DM group (P < 0.05). (3) IL-17, IL-1α, and TNF-α levels in the DM rats at 4 weeks were higher than in the controls (P < 0.05). Low or high dose of relaxin-3-treated groups showed reduced serum IL-17 and TNF-α levels compared with the DM group at four and eight weeks (P < 0.05). (4) CHOP and GRP78 protein expression was increased in the DM group at four and eight weeks compared with the controls (P < 0.01), and small and large doses of relaxin-3 significantly reduced GRP78 and CHOP protein expression. Conclusions: Exogenous relaxin-3 ameliorates diabetic cardiomyopathy by inhibiting ERS in diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Relaxina , Animais , Apoptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Estresse do Retículo Endoplasmático , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Glucose , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Interleucina-17/farmacologia , Interleucina-17/uso terapêutico , Masculino , Mioglobina/farmacologia , Mioglobina/uso terapêutico , Peptídeo Natriurético Encefálico/farmacologia , Peptídeo Natriurético Encefálico/uso terapêutico , Ratos , Ratos Sprague-Dawley , Relaxina/farmacologia , Relaxina/uso terapêutico , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Troponina/farmacologia , Troponina/uso terapêutico , Fator de Necrose Tumoral alfa
2.
J Food Biochem ; 46(11): e14475, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219759

RESUMO

One of the major complications of diabetes mellitus (DM) is diabetic cardiomyopathy (DCM) due to the multifaceted therapy involved. Here, we evaluated the combinatorial effect of Moringa leaf (ML) and seed (MS) supplemented diets plus acarbose (ACA) on cardiac acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), adenosine deaminase (ADA), monoamine oxidase (MAO), arginase, angiotensin-I converting enzyme (ACE), and lactate dehydrogenase (LDH) activities, thiobarbituric acid reactive species (TBARS), and thiols levels. The diets and ACA (25 mg/kg) were administered for 14 days. The fasting blood glucose level (FBGL), cardiac AChE, ATPase, ADA, MAO, arginase, ACE, LDH activities, and TBARS and thiol levels were determined. Relative to the normal rats, the biomarkers were significantly increased in DM rats but were suppressed significantly in the diets plus ACA-treated rats while improving antioxidant status, with the 4% Moringa plus ACA proving outstanding compared to individual ML/MS and ACA. In addition, ML-supplemented diets with/without ACA had better effects compared to MS with/without ACA, respectively. In conclusion, the combination of ML/MS supplemented diets and ACA synergistically modulates the tested biochemicals. However, the effect on blood vessels and the nerves that control the heart, stiffness of left ventricular (LV) hypertrophy, fibrosis, cell signaling abnormalities, related gene expression, clinical trials, and echocardiology studies should be further investigated to affirm this claim. PRACTICAL APPLICATIONS: Moringa oleifera has been a vocal appetite in mitigating cardiovascular disease induced by diabetes, but the formulation of a medicinal diet as an ameliorative route of attention to the pathology is fairly addressed, not talking of its combination with the synthetic antidiabetic drug, such as ACA. Based on this experiment, it is imperative to explore such an idea. This research shows that co-administration of moringa leaf/seed formulated diets plus ACA exhibits a synergistic effect in DCM management. However, further research is needed in this field of experiment.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Suplementos Nutricionais , Moringa , Animais , Ratos , Acarbose/uso terapêutico , Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/metabolismo , Antioxidantes/metabolismo , Arginase , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/patologia , Dieta , Monoaminoxidase/metabolismo , Moringa/química , Ratos Wistar , Sistema Renina-Angiotensina , Substâncias Reativas com Ácido Tiobarbitúrico
3.
J Food Biochem ; 46(8): e14206, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35474577

RESUMO

Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes that emphasizes the urgency of developing new drug therapies. With an illustrious history in traditional medicine to improve diabetes, cinnamon has been shown to possess blood lipids lowering effects and antioxidative and anti-inflammatory properties. However, the extent to which it protects the diabetic heart has yet to be determined. Forty-eight rats were administered in the study and grouped as: control; diabetic; diabetic rats given 100, 200, or 400 mg/kg cinnamon extract, metformin (300 mg/kg), valsartan (30 mg/kg), or met/val (combination of both drugs), via gavage for six weeks. Fasting blood sugar (FBS) and markers of cardiac injury including creatine kinase-muscle/brain (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were evaluated in blood samples. Malondialdehyde (MDA) levels, the total contents of thiol, superoxide dismutase (SOD), and catalase (CAT) activities were measured. Histopathology study and gene expression measurement of angiotensin II type 1 receptor (AT1), atrial natriuretic peptide (ANP), beta-myosin heavy chain (ß-MHC), and brain natriuretic peptide (BNP) were done on cardiac tissue. FBS and cardiac enzyme indicators were reduced in all treated groups. A reduction in MDA level and enhancement in thiol content alongside with increase of SOD and CAT activities were observed in extract groups. The decrease of inflammation and fibrosis was obvious in treated groups, notably in the high-dose extract group. Furthermore, all treated diabetic groups showed a lowering trend in AT1, ANP, ß-MHC, and BNP gene expression. Cinnamon extract, in addition to its hypoglycemic and antioxidant properties, can prevent diabetic heart damage by alleviating cardiac inflammation and fibrosis. PRACTICAL APPLICATIONS: This study found that cinnamon extract might protect diabetic heart damage by reducing inflammation and fibrosis in cardiac tissue, in addition to lowering blood glucose levels and increasing antioxidant activity. Our data imply that including cinnamon in diabetic participants' diets may help to reduce risk factors of cardiovascular diseases.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Traumatismos Cardíacos , Animais , Antioxidantes/farmacologia , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/uso terapêutico , Cinnamomum zeylanicum/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Fibrose , Traumatismos Cardíacos/complicações , Humanos , Hipertrofia/complicações , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos , Compostos de Sulfidrila/uso terapêutico , Superóxido Dismutase/metabolismo
4.
J Cardiovasc Pharmacol ; 79(1): e75-e86, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740211

RESUMO

ABSTRACT: The present study was intended to evaluate the effect of polyherbal formulation (PHF) made with 3 nutraceuticals, such as Piper nigrum, Terminalia paniculata, and Bauhinia purpurea on inflammation and oxidative stress in diabetic cardiomyopathy (DCM), which is induced by streptozotocin and nicotinamide administration in rats. We supplemented DCM rats with PHF (250 and 500 mg/kg/BW) for 45 days and evaluated their effects on oxidative stress markers, proinflammatory cytokines, and messenger RNA expressions of the nuclear factor erythroid 2-related factor-2 (Nrf-2) and its linked genes [heme oxygenase-1 (HO-1), superoxide dismutase, catalase] along with inflammatory genes [tumour necrosis factor α and nuclear factor kappa B (NF-κB)]. Our study demonstrated that PHF successfully attenuated inflammation and oxidative stress via messenger RNA upregulation of Nrf-2, HO-1, superoxide dismutase, and catalase and concomitantly with downregulation of tumour necrosis factor α and NF-κB. Conversely, PHF also protected hyperglycemia-mediated cardiac damage, which was confirmed with histopathological and scanning electron microscopy analysis. In conclusion, our results suggested that PHF successfully ameliorated hyperglycemia-mediated inflammation and oxidative stress via regulation of NF-κB/Nrf-2/HO-1 pathway. Therefore, these results recommend that PHF may be a prospective therapeutic agent for DCM.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Heme Oxigenase (Desciclizante)/metabolismo , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/farmacologia , Animais , Glicemia/metabolismo , Citocinas/genética , Citocinas/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Heme Oxigenase (Desciclizante)/genética , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Ratos Wistar , Transdução de Sinais
5.
Braz. J. Pharm. Sci. (Online) ; 58: e19652, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1384005

RESUMO

Abstract Background and aim: Stingless bee propolis, a resinous compound processed by mandibular secretion of stingless bees, is used for maintenance of hygiene and stability of beehives. Research on stingless bee propolis shows therapeutic properties attributed to polyphenols exhibiting antioxidative, antihyperglycemic and antiischemic effect. However, the cardioprotective effect of stingless bee propolis on diabetic cardiomyopathy is unknown. Methods: Adult male Sprague Dawley rats were randomised to five groups: normal group, diabetic group, diabetic given metformin (DM+M), diabetic given propolis (DM+P) and diabetic given combination therapy (DM+M+P) and treated for four weeks. Body weight, fasting blood glucose, food and water intake were taken weekly. At the end of experiment, biomarkers of oxidative damage were measured in serum and heart tissue. Antioxidants in heart tissue were quantified. Part of left ventricle of heart was processed for histological staining including Haematoxylin and Eosin (H&E) stain for myocyte size and Masson's Trichrome (MT) stain for heart fibrosis and perivascular fibrosis. Results: Propolis alleviated features of diabetic cardiomyopathy such as myocyte hypertrophy, heart fibrosis and perivascular fibrosis associated with improvement in antioxidative status. Conclusion: This study reports beneficial effect of propolis and combination with metformin in alleviating histopathological feature of diabetic cardiomyopathy by modulating antioxidants, making propolis an emerging complementary therapy.


Assuntos
Animais , Masculino , Ratos , Própole/efeitos adversos , Abelhas/classificação , Cardiomiopatias Diabéticas/patologia , Coloração e Rotulagem/instrumentação , Glicemia/metabolismo , Ratos Sprague-Dawley/classificação , Cardiomegalia/patologia , Amarelo de Eosina-(YS) , Ingestão de Líquidos , Ventrículos do Coração/anormalidades , Hipoglicemiantes , Metformina/agonistas , Antioxidantes/efeitos adversos
6.
J Diabetes Res ; 2021: 9944589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926700

RESUMO

The incidence of heart failure was significantly increased in patients with diabetic cardiomyopathy (DCM). The therapeutic effect of triptolide on DCM has been reported, but the underlying mechanisms remain to be elucidated. This study is aimed at investigating the potential targets of triptolide as a therapeutic strategy for DCM using a network pharmacology approach. Triptolide and its targets were identified by the Traditional Chinese Medicine Systems Pharmacology database. DCM-associated protein targets were identified using the comparative toxicogenomics database and the GeneCards database. The networks of triptolide-target genes and DCM-associated target genes were created by Cytoscape. The common targets and enriched pathways were identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The gene-gene interaction network was analyzed by the GeneMANIA database. The drug-target-pathway network was constructed by Cytoscape. Six candidate protein targets were identified in both triptolide target network and DCM-associated network: STAT3, VEGFA, FOS, TNF, TP53, and TGFB1. The gene-gene interaction based on the targets of triptolide in DCM revealed the interaction of these targets. Additionally, five key targets that were linked to more than three genes were determined as crucial genes. The GO analysis identified 10 biological processes, 2 cellular components, and 10 molecular functions. The KEGG analysis identified 10 signaling pathways. The docking analysis showed that triptolide fits in the binding pockets of all six candidate targets. In conclusion, the present study explored the potential targets and signaling pathways of triptolide as a treatment for DCM. These results illustrate the mechanism of action of triptolide as an anti-DCM agent and contribute to a better understanding of triptolide as a transcriptional regulator of cytokine mRNA expression.


Assuntos
Fármacos Cardiovasculares/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Diterpenos/farmacologia , Simulação de Acoplamento Molecular , Miócitos Cardíacos/efeitos dos fármacos , Farmacologia em Rede , Fenantrenos/farmacologia , Células CACO-2 , Bases de Dados Genéticas , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Compostos de Epóxi/farmacologia , Redes Reguladoras de Genes , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mapas de Interação de Proteínas , Transdução de Sinais , Relação Estrutura-Atividade
7.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885867

RESUMO

Metabolic disorders often lead to cardiac complications. Metabolic deregulations during diabetic conditions are linked to mitochondrial dysfunctions, which are the key contributing factors in cardiac hypertrophy. However, the underlying mechanisms involved in diabetes-induced cardiac hypertrophy are poorly understood. In the current study, we initially established a diabetic rat model by alloxan-administration, which was validated by peripheral glucose measurement. Diabetic rats displayed myocardial stiffness and fibrosis, changes in heart weight/body weight, heart weight/tibia length ratios, and enhanced size of myocytes, which altogether demonstrated the establishment of diabetic cardiac hypertrophy (DCH). Furthermore, we examined the expression of genes associated with mitochondrial signaling impairment. Our data show that the expression of PGC-1α, cytochrome c, MFN-2, and Drp-1 was deregulated. Mitochondrial-signaling impairment was further validated by redox-system dysregulation, which showed a significant increase in ROS and thiobarbituric acid reactive substances, both in serum and heart tissue, whereas the superoxide dismutase, catalase, and glutathione levels were decreased. Additionally, the expression levels of pro-apoptotic gene PUMA and stress marker GATA-4 genes were elevated, whereas ARC, PPARα, and Bcl-2 expression levels were decreased in the heart tissues of diabetic rats. Importantly, these alloxan-induced impairments were rescued by N-acetyl cysteine, ascorbic acid, and selenium treatment. This was demonstrated by the amelioration of myocardial stiffness, fibrosis, mitochondrial gene expression, lipid profile, restoration of myocyte size, reduced oxidative stress, and the activation of enzymes associated with antioxidant activities. Altogether, these data indicate that the improvement of mitochondrial dysfunction by protective agents such as N-acetyl cysteine, selenium, and ascorbic acid could rescue diabetes-associated cardiac complications, including DCH.


Assuntos
Acetilcisteína/uso terapêutico , Ácido Ascórbico/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Mitocôndrias Cardíacas/metabolismo , Selênio/uso terapêutico , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/sangue , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Cálcio/sangue , Cardiomegalia/sangue , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Citocromos c/metabolismo , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Fator de Transcrição GATA4/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/patologia , Oxirredução , Estresse Oxidativo , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia
8.
Mol Med Rep ; 24(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34036388

RESUMO

Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription­quantitative PCR and western blotting were performed to evaluate the expression of apoptosis­associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model­induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl­2 expression and decreasing the expression levels of Bax, cleaved caspase­3 and cleaved caspase­9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2­related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.


Assuntos
Cardiomegalia/prevenção & controle , Cardiotônicos/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Resistência à Insulina , Lipídeos/sangue , Masculino , Camundongos Endogâmicos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Biomed Pharmacother ; 137: 111343, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761594

RESUMO

BACKGROUND AND PURPOSE: Diabetes mellitus (DM) is a major risk factor for coronary heart disease (CHD). Previous research has reported that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula has obvious effects on the treatment of dyslipidemia and hyperglycemia. In the present study, we intended to establish a convenient DM-CHD model in minipigs and investigated the protective effect of FTZ against myocardial injury and its mechanism. METHODS: The DM-CHD model was established by a high-fat/high-sucrose/high-cholesterol diet (HFSCD) combined with balloon injury in the coronary artery. Subsequently, sixteen Wuzhishan minipigs were assigned to three groups: control group, model group, and FTZ group. The model group and FTZ group were given a HFSCD, while the control group was given a normal diet (ND). FTZ was given with meals in the FTZ group. During this time, biochemical parameters, such as total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein (HDL-C), and fasting blood glucose (FBG), were measured by using testing kits. Insulin (INS) was determined by ELISA, and the homeostasis model assessment index of insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance levels. After FTZ administration, the plasma levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and cardiac troponin I (cTnI) were measured by using ELISA kits to evaluate myocardial injury. Coronary artery stenosis was analyzed by angiographic and HE staining. Myocardial ischemia was assayed with electrocardiogram (ECG). Moreover, cytokines, including interleukin-6 (IL-6), hypersensitive C-reactive protein (hs-CRP), and tumor necrosis factor-alpha (TNF-α), were measured by ELISA kits to assess inflammation. The myocardial tissue was collected, and the pathological morphology was observed by transmission electron microscopy (TEM), HE staining, and Masson staining. Western blots were used to detect the expression of PI3K, AKT, p-AKT, p-NF-κB, and NF-κB. RESULTS: A DM-CHD model in minipigs with glucose-lipid metabolism disorder, coronary artery incrassation and myocardial damage was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ effectively inhibited coronary artery incrassation and protected the myocardium against injury in DM-CHD minipigs. FTZ decreased proinflammatory cytokine levels and upregulated the protein expression of the PI3K/Akt pathway in the myocardium. CONCLUSIONS: A novel DM-CHD model in minipigs was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ has a protective effect against myocardial injury in DM-CHD by inhibiting inflammation and activating the PI3K/AKT signaling pathway.


Assuntos
Cardiotônicos/uso terapêutico , Doença das Coronárias/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Miocárdio/patologia , Angiografia , Animais , Glicemia/análise , Doença das Coronárias/patologia , Cardiomiopatias Diabéticas/patologia , Eletrocardiografia , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Medicina Tradicional Chinesa , Suínos , Porco Miniatura
10.
J Ethnopharmacol ; 271: 113853, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33485986

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiopogonin D (OP-D) is a steroidal saponin extracted from Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), that has been traditionally used to treat cough, sputum, and thirst in some Asian countries. Recently, various pharmacological roles of OP-D have been identified, including anti-inflammatory, cardioprotective, and anti-cancer effects. However, whether OP-D can prevent diabetic myocardial injury remains unknown. AIM OF THE STUDY: In this study, we aimed to observe the effects of OP-D on the diabetic myocardium. MATERIALS AND METHODS: Leptin receptor-deficient db/db mice were used as an animal model for type 2 diabetes. The effects of OP-D on blood glucose, blood lipids, myocardial ultrastructure, and mitochondrial function in mice were observed after four weeks of intragastric administration. Palmitic acid was used to stimulate cardiomyocytes to establish a myocardial lipotoxicity model. Cell apoptosis, mitochondrial morphology, and function were observed. RESULTS: Blood glucose and blood lipid levels were significantly increased in db/db mice, accompanied by myocardial mitochondrial injury and dysfunction. OP-D treatment reduced blood lipid levels in db/db mice and relieved mitochondrial injury and dysfunction. OP-D inhibited palmitic acid induced-mitochondrial fission and dysfunction, reduced endogenous apoptosis, and improved cell survival rate in H9C2 cardiomyocytes. Both in vivo and in vitro models showed increased phosphorylation of DRP1 at Ser-616, reduced phosphorylation of DRP1 at Ser-637, and reduced expression of fusion proteins MFN1/2 and OPA1. Meanwhile, immunofluorescence co-localization analysis revealed that palmitic acid stimulated the translocation of DRP1 protein from the cytoplasm to the mitochondria in H9C2 cardiomyocytes. The imbalance of mitochondrial dynamics, protein expression, and translocation of DRP1 were effectively reversed by OP-D treatment. In isolated mice ventricular myocytes, palmitic acid enhanced cytoplasmic Ca2+ levels and suppressed contractility in ventricular myocytes, accompanied by activation of calcineurin, a key regulator of DRP1 dephosphorylation at Ser-637. OP-D reversed the changes caused by palmitic acid. CONCLUSIONS: Our findings indicate that OP-D intervention could alleviate lipid accumulation and mitochondrial injury in diabetic mouse hearts and palmitic acid-stimulated cardiomyocytes. The cardioprotective effect of OP-D may be mediated by the regulation of mitochondrial dynamics.


Assuntos
Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Cardiomiopatias Diabéticas/prevenção & controle , Dinâmica Mitocondrial/efeitos dos fármacos , Saponinas/farmacologia , Saponinas/uso terapêutico , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Calcineurina/metabolismo , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Dinaminas/antagonistas & inibidores , Lipídeos/sangue , Fígado/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ácido Palmítico/toxicidade , Ratos
11.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 349-360, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32984914

RESUMO

Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients, which is currently without available specific treatment. This study aimed to investigate the potential protective effects of pioglitazone (Pio) and curcumin (Cur) against DCM in type 1 diabetes mellitus (T1DM), with pointing to their role on Ca+2/calmodulin-dependent protein kinase II (CaMKII) and peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. Diabetes was induced in adult male Sprague Dawley rats by administration of single intraperitoneal injection of streptozotocin (STZ) (52.5 mg/kg). Diabetic rats were administered either Pio (20 mg/kg/day) or Cur (100 mg/kg/day) orally for 6 weeks. Treatment with Pio and/or Cur markedly reduced serum cardiac injury markers and lipid profile markers in diabetic animals. Additionally, Pio and/or Cur treatment mitigated oxidative stress and fibrosis in diabetic rats as evident from the significant suppression in myocardial lipid peroxidation and tumor growth factor beta 1 (TGF-ß1) level, with concomitant significant elevation in total antioxidant capacity (TAC) and improvement in histopathological architecture of heart tissue. Pio/Cur treatment protocol accomplished its cardioprotective effect by depressing cardiac CaMKII/NF-κB signaling accompanied by enhancement in PPAR-γ expression. Conclusively, these findings demonstrated the therapeutic potential of Pio/Cur regimen in alleviating DCM in T1DM through modulation of CaMKII and PPAR-γ expression. Graphical Abstract.


Assuntos
Cardiotônicos/uso terapêutico , Curcumina/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Pioglitazona/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotônicos/farmacologia , Curcumina/farmacologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Quimioterapia Combinada , Hipoglicemiantes/farmacologia , Interleucina-6/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Pioglitazona/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Cardiovasc Res ; 117(3): 694-711, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32365198

RESUMO

Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.


Assuntos
Cardiomiopatias/metabolismo , Metabolismo Energético , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Antraciclinas/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiotoxicidade , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Período Periparto , Fenótipo , Gravidez , Complicações Cardiovasculares na Gravidez/genética , Complicações Cardiovasculares na Gravidez/metabolismo , Complicações Cardiovasculares na Gravidez/patologia
13.
Biosci Biotechnol Biochem ; 84(12): 2533-2544, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892714

RESUMO

The objective of present investigation was to appraise the effects of piperine on STZ-induced diabetic cardiomyopathy in rats. Diabetes was induced in Sprague-Dawley rats with intraperitoneal STZ injection, and the rats were assigned to seven groups. Electrocardiograph, hemodynamic, various biochemical, molecular, and histological parameters were examined. Treatment with piperine significantly (p < 0.05) restored altered myocardial functions, inhibited cardiac marker, and restored electrocardiogram and hemodynamic alterations. The elevated level of cardiac oxido-nitrosative stress and decreased cardiac Na-K-ATPase concentration, after STZ administration, were significantly (p < 0.05) attenuated by piperine treatment. Piperine also considerably (p < 0.05) increased myocardial mitochondrial enzyme activity. STZ-induced alteration in heart ANP, BNP, cTn-I, Bcl2, Bax/Bcl2, and caspase3 mRNA expression was significantly (p < 0.05) restored by piperine treatment. Piperine administration reduced histopathological aberrations induced by STZ. In conclusion, the present investigation suggests that piperine ameliorates STZ-induced diabetic cardiomyopathy via modulation of caspase-3, Bcl2, Bax/Bcl2 pathways. Abbreviations: ACE: Angiotensin-Converting Enzyme; ANOVA: Analysis of Variance; ANP: Atrial Natriuretic Peptide; APAF: Apoptotic Protease-Activating Factor; ARB: Angiotensin Receptor Blockers; ATP: Adenosine Triphosphate; Bax: Bcl-2-associated X protein; Bcl2: B-cell lymphoma 2; BPM: Beats Per Minute; BNP: brain natriuretic peptide; CAD: Caspase-3-Activated DNase; cDNA: Complementary DNA; CK-MB: Creatine Kinase-MB; CPCSEA: Committee for the Purpose of Control And Supervision of Experiments on Animals; cTn-I: cardiac troponin I; DBP: Diastolic Blood Pressure; DCM: Diabetic Cardiomyopathy; DNA: Deoxyribonucleic Acid; DPX: DisterenePhthalate Xylene; ECG: Electrocardiogram; ETC: Electron Transport Chain; GOD-POD: Glucose Oxidase Peroxidase; GSH: Glutathione; IAEC: Institutional Animal Ethics Committee; IL-6: Interleukin-6; IL-1b: Interleukin-1b; LDH: Lactate Dehydrogenase; LV: Left Ventricle; LVEDP: left ventricular end-diastolic Pressure; MABP: Mean Arterial Blood Pressure; MDA: Malondialdehyde; mRNA: Messenger Ribonucleic Acid; MTT: 3- (4,5-Dimethylthiazol-2-yl)-2,5-DiphenyltetrazoliumBromide; NADH: Nicotinamide Adenine Dinucleotide Phosphate; NADPH: Nicotinamide Adenine Dinucleotide Phosphate Hydrogen; NO: nitric oxide; NP: Natriuretic Peptides; OXPHOS: Oxidative Phosphorylation; p.o.: per os; PCR: Polymerase Chain Reaction; RT-PCR: Reverse Transcriptionpolymerase Chain Reaction; PPAR: Peroxisome Proliferator-Activated Receptor Gamma; RAS: Renin-Angiotensin System; RNA: Ribonucleic Acid; ROS: Reactive Oxygen Species; SBP: Systolic Blood Pressure; SDH: Succinate Dehydrogenase; SEM: Standard Error Means; SOD: superoxide dismutase: STZ: Streptozotocin; TNF: Tumor Necrosis Factor Alpha; TnI: Troponin I.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estreptozocina/efeitos adversos , Proteína X Associada a bcl-2/metabolismo , Alcaloides/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Benzodioxóis/uso terapêutico , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Miocárdio/patologia , Óxido Nítrico/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Urina/química
14.
Biomed Res Int ; 2020: 7136075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775437

RESUMO

Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.


Assuntos
Antioxidantes , Cardiotônicos , Cardiomiopatias Diabéticas , Extratos Vegetais , Reishi/química , Antioxidantes/química , Antioxidantes/uso terapêutico , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
15.
Cardiovasc Drugs Ther ; 34(6): 835-848, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32767170

RESUMO

PURPOSE: To assess the effects of electro-acupuncture (EA) on glycemic control, myocardial inflammation, and the progression of diabetic cardiomyopathy in mice with type 2 diabetes. METHODS: Db/Db mice received EA at PC6+ST36 (DM-Acu), non-acupoint simulation (DM-Sham), or no treatment (DM). EA was applied for 30 min per day, 5 days a week for 4 weeks. Heart function was assessed by echocardiography. Myocardium was assessed by RT-PCR, immunoblotting, and histology. Serum TNF-α, IL-1α, IL-1ß, IL-6, and IL-8 were measured. RESULTS: DM-Acu, but not DM-Sham, reduced fasting blood glucose without affecting body weight. DM decreased systolic function. DM-Acu, but not DM-Sham, attenuated the decrease in systolic function. Heart weight was significantly smaller in the DM-Acu than in the DM and DM-Sham groups. Percent fibrosis and apoptosis were reduced in the DM-Acu, but not the DM-Sham, group. Serum levels of IL-1α, IL-1ß, IL-6, IL-8, ICAM-1, MCP-1, and TNF-α were significantly lower in the DM-Acu than in the DM or DM-Sham groups. Protein levels of P-Akt and P-AMPK and mRNA levels of phosphoinositide-3-kinase regulatory subunit 6 (PIK3r6) were significantly higher in the DM-Acu group. Myocardial mRNA and protein levels of insulin-like growth factor 1 receptor (IGF1R) were significantly lower in the DM and DM-Sham groups compared with the DM-Acu group. CONCLUSIONS: EA reduced serum glucose; prevented DM-induced hypertrophy and deterioration of systolic function, inflammation, and fibrosis; and restored IGF1R, P-Akt, and P-AMPK levels in mice with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Eletroacupuntura , Hipertrofia Ventricular Esquerda/prevenção & controle , Miocárdio/patologia , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/sangue , Glicemia/metabolismo , Citocinas/sangue , Citocinas/genética , Diabetes Mellitus Tipo 2/sangue , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
16.
Mol Nutr Food Res ; 64(18): e2000231, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729956

RESUMO

SCOPE: Syringaresinol (SYR) is a phenolic compound, which could be found in various cereals and medicinal plants. It exerts both anti-inflammatory and antioxidant pharmacological properties. However, little is known about the effect of SYR on modulating diabetic cardiomyopathy. The present study aimed to investigate the pharmacodynamic effect of SYR on diabetic cardiomyopathy and the underlying molecular mechanism. METHODS AND RESULTS: In STZ-induced type 1 diabetic mice, orally administration with SYR in every other day for 8 weeks significantly improves cardiac dysfunction and preventes cardiac hypertrophy and fibrosis. The macrophage infiltration and oxidative stress biomarkers are also suppressed by SYR without affecting hyperglycemia and body weight. In neonatal cardiomyocytes, high glucose-induced cell apoptosis and fibrosis are potently decreased by SYR, and the inflammatory response and oxidant stress are also alleviated by SYR incubation. Mechanistically, SYR may exert protective effects by restoring suppression of antioxidant kelch-like ECH-associated protein 1 (Keap1)/nuclear factor-E2-related factor 2 (Nrf2) system and abnormal activation of transforming growth factor-ß (TGF-ß)/mothers against decapentaplegic homolog (Smad) signaling pathway in vitro and in vivo. CONCLUSION: The results indicated that SYR could be a potential therapeutic agent for the treatment of diabetic cardiomyopathy by inhibiting inflammation, fibrosis, and oxidative stress. The signaling pathway of Keap1/Nrf2 and TGF-ß/Smad could be used as therapeutic targets for diabetic complications.


Assuntos
Cardiotônicos/farmacologia , Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Furanos/farmacologia , Lignanas/farmacologia , Animais , Apoptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Fibrose , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocardite/tratamento farmacológico , Miocardite/etiologia , Miocardite/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos
17.
J Diabetes Res ; 2020: 4745389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509880

RESUMO

BACKGROUND: T2DM may cause increased levels of oxidative stress and cardiac apoptosis through elevated blood glucose. The present study investigated the effects of Lactobacillus plantarum (L. plantarum) as a probiotic strain and inulin as a prebiotic supplement on cardiac oxidative stress and apoptotic markers in type 2 diabetes mellitus (T2DM) rats. METHODS: A high-fat diet and a low dose of streptozotocin were used to induce type 2 diabetes. The rats were divided into six groups which were supplemented with L. plantarum, inulin, or their combination for 8 weeks. RESULTS: The results showed improved activity of cardiac antioxidant parameters including total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (P < 0.001, P < 0.01, and P < 0.01, respectively) and decreased level of cardiac malondialdehyde (MDA) concentration (P < 0.05). These changes were accompanied with increased protein expression of cardiac obesity receptor (Ob-R) (P = 0.05) and reduced apoptotic markers such as tumor necrosis factor-alpha (TNF-α), Fas ligand (FasL), and caspase proteins (P < 0.001, P = 0.003, and P < 0.01, respectively) in T2DM rats after concurrent L. plantarum and inulin supplementation. Moreover, a remarkable correlation of cardiac Ob-R and oxidative stress parameters with cardiac apoptotic markers was observed (P < 0.01). CONCLUSION: The concurrent use of L. plantarum and inulin seems to be beneficial, as they can lead to decreased heart complications of T2DM via reducing cardiac apoptotic markers.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Cardiomiopatias Diabéticas/prevenção & controle , Coração/fisiologia , Inulina/administração & dosagem , Lactobacillus plantarum , Receptores para Leptina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/patologia , Suplementos Nutricionais , Coração/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/administração & dosagem , Ratos , Ratos Wistar
18.
Sci Rep ; 10(1): 6427, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286474

RESUMO

Diabetic cardiomyopathy (DCM) is the principal cause of death in people with diabetes. However, there is currently no effective strategy to prevent the development of DCM. Although cyclovirobuxine D (CVB-D) has been widely used to treat multiple cardiovascular diseases, the possible beneficial effects of CVB-D on DCM remained unknown. The present aim was to explore the potential effects and underlying mechanisms of CVB-D on DCM. We explored the effects of CVB-D in DCM by using high fat high sucrose diet and streptozotocin-induced rat DCM model. Cardiac function and survival in rats with DCM were improved via the amelioration of oxidative damage after CVB-D treatment. Our data also demonstrated that pre-treatment with CVB-D exerted a remarkable cytoprotective effect against high glucose -or H2O2 -induced neonatal rat cardiomyocyte damage via the suppression of reactive oxygen species accumulation and restoration of mitochondrial membrane potential; this effect was associated with promotion of Nrf2 nuclear translocation and its downstream antioxidative stress signals (NQO-1, Prdx1). Overall, the present data has provided the first evidence that CVB-D has potential therapeutic in DCM, mainly by activation of the Nrf2 signalling pathway to suppress oxidative stress. Our findings also have positive implications on the novel promising clinical applications of CVB-D.


Assuntos
Antioxidantes/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Glucose/toxicidade , Testes de Função Cardíaca , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley
19.
Artigo em Inglês | MEDLINE | ID: mdl-32310054

RESUMO

BACKGROUND AND AIMS: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. METHODS: Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. RESULTS: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). CONCLUSION: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Condicionamento Físico Animal/fisiologia , Extratos Vegetais/uso terapêutico , Stevia/química , Animais , Glicemia/metabolismo , Terapia Combinada/métodos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Stevia/fisiologia
20.
Trends Endocrinol Metab ; 31(4): 287-295, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033865

RESUMO

Chronic-diabetes-related complications simultaneously compromise both the micro- and macrovascular trees, with target organs considered as the paradigm of large vessel injury also entailing microangiopathic changes. However, complications independent or partially independent from vascular damage are often overlooked. This includes neuronal dysfunction (e.g., retinal neurodegeneration), interstitial injury (e.g., tubulointerstitial disease), metabolic damage (e.g., in the heart and liver), and nonclassical conditions such as cognitive decline, impaired pulmonary function, or increased risk of cancer. In this scenario, researchers, endocrinologists and primary care physicians should have a holistic view of the disease and pay further attention to all organs and all potential clinical repercussions, which would certainly contribute to a more rational and integrated patient health care.


Assuntos
Encefalopatias , Complicações do Diabetes , Angiopatias Diabéticas , Cardiomiopatias Diabéticas , Nefropatias Diabéticas , Neuropatias Diabéticas , Pneumopatias , Neoplasias , Hepatopatia Gordurosa não Alcoólica , Encefalopatias/etiologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Complicações do Diabetes/complicações , Complicações do Diabetes/patologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/fisiopatologia , Humanos , Pneumopatias/etiologia , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Neoplasias/etiologia , Neoplasias/patologia , Neoplasias/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA