Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin J Nat Med ; 19(2): 120-133, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33641783

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating pulmonary circulation disease lacking high-efficiency therapeutics. The present study aims to decipher the therapeutic mechanism of Rhodiola crenulata, a well-known traditional chinese medicine with cardiopulmonary protection capacity, on PAH by exploiting functional lipidomics. The rat model with PAH was successfully established for first, following Rhodiola crenulata water extract (RCE) treatment, then analysis of chemical constituents of RCE was performed, additional morphologic, hemodynamic, echocardiographic measurements were examined, further targeted lipidomics assay was performed to identify differential lipidomes, at last accordingly mechanism assay was done by combining qRT-PCR, Western blot and ELISA. Differential lipidomes were identified and characterized to differentiate the rats with PAH from healthy controls, mostly assigned to acylcarnitines, phosphatidylcholines, sphingomyelin associated with the PAH development. Excitingly, RCE administration reversed high level of decadienyl-L-carnitine by the modulation of metabolic enzyme CPT1A in mRNA and protein level in serum and lung in the rats with PAH. Furthermore, RCE was observed to reduce autophagy, confirmed by significantly inhibited PPARγ, LC3B, ATG7 and upregulated p62, and inactivated LKB1-AMPK signal pathway. Notably, we accurately identified the constituents in RCE, and delineated the therapeutic mechansim that RCE ameliorated PAH through inhibition of fatty acid oxidation and autophagy. Altogether, RCE might be a potential therapeutic medicine with multi-targets characteristics to prevent the progression of PAH. This novel findings pave a critical foundation for the use of RCE in the treatment of PAH.


Assuntos
Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Extratos Vegetais/farmacologia , Hipertensão Arterial Pulmonar , Rhodiola , Animais , Autofagia , Carnitina/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Ratos , Rhodiola/química
2.
Am J Physiol Cell Physiol ; 312(6): C689-C696, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298333

RESUMO

Mutations in the gene that encodes the principal l-carnitine transporter, OCTN2, can lead to a reduced intracellular l-carnitine pool and the disease Primary Carnitine Deficiency. l-Carnitine supplementation is used therapeutically to increase intracellular l-carnitine. As AMPK and insulin regulate fat metabolism and substrate uptake, we hypothesized that AMPK-activating compounds and insulin would increase l-carnitine uptake in C2C12 myotubes. The cells express all three OCTN transporters at the mRNA level, and immunohistochemistry confirmed expression at the protein level. Contrary to our hypothesis, despite significant activation of PKB and 2DG uptake, insulin did not increase l-carnitine uptake at 100 nM. However, l-carnitine uptake was modestly increased at a dose of 150 nM insulin. A range of AMPK activators that increase intracellular calcium content [caffeine (10 mM, 5 mM, 1 mM, 0.5 mM), A23187 (10 µM)], inhibit mitochondrial function [sodium azide (75 µM), rotenone (1 µM), berberine (100 µM), DNP (500 µM)], or directly activate AMPK [AICAR (250 µM)] were assessed for their ability to regulate l-carnitine uptake. All compounds tested significantly inhibited l-carnitine uptake. Inhibition by caffeine was not dantrolene (10 µM) sensitive despite dantrolene inhibiting caffeine-mediated calcium release. Saturation curve analysis suggested that caffeine did not competitively inhibit l-carnitine transport. To assess the potential role of AMPK in this process, we assessed the ability of the AMPK inhibitor Compound C (10 µM) to rescue the effect of caffeine. Compound C offered a partial rescue of l-carnitine uptake with 0.5 mM caffeine, suggesting that AMPK may play a role in the inhibitory effects of caffeine. However, caffeine likely inhibits l-carnitine uptake by alternative mechanisms independently of calcium release. PKA activation or direct interference with transporter function may play a role.


Assuntos
Carnitina/antagonistas & inibidores , Ativadores de Enzimas/farmacologia , Mioblastos/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Berberina/farmacologia , Transporte Biológico/efeitos dos fármacos , Cafeína/farmacologia , Calcimicina/farmacologia , Cálcio/metabolismo , Carnitina/metabolismo , Linhagem Celular , Dantroleno/farmacologia , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Insulina/farmacologia , Camundongos , Mioblastos/citologia , Mioblastos/enzimologia , Proteínas de Transporte de Cátions Orgânicos/genética , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ribonucleotídeos/farmacologia , Rotenona/farmacologia , Azida Sódica/farmacologia , Membro 5 da Família 22 de Carreadores de Soluto
3.
BMC Genomics ; 15: 514, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24962334

RESUMO

BACKGROUND: The carnitine acetyltransferase (CrAT) is a mitochondrial matrix protein that directly influences intramitochondrial acetyl-CoA pools. Murine CrAT is encoded by a single gene located in the opposite orientation head to head to the PPP2R4 gene, sharing a very condensed bi-directional promoter. Since decreased CrAT expression is correlated with metabolic inflexibility and subsequent pathological consequences, our aim was to reveal and define possible activators of CrAT transcription in the normal embryonic murine liver cell line BNL CL. 2 and via which nuclear factors based on key metabolites mainly regulate hepatic expression of CrAT. Here we describe a functional characterization of the CrAT promoter region under conditions of L-carnitine deficiency and supplementation as well as fenofibrate induction in cell culture cells. RESULTS: The murine CrAT promoter displays some characteristics of a housekeeping gene: it lacks a TATA-box, is very GC-rich and harbors two Sp1 binding sites. Analysis of the promoter activity of CrAT by luciferase assays uncovered a L-carnitine sensitive region within -342 bp of the transcription start. Electrophoretic mobility shift and supershift assays proved the sequence element (-228/-222) to be an L-carnitine sensitive RXRα binding site, which also showed sensitivity to application of anti-PPARα and anti-PPARbp antibodies. In addition we analysed this specific RXRα/PPARα site by Southwestern Blotting technique and could pin down three protein factors binding to this promoter element. By qPCR we could quantify the nutrigenomic effect of L-carnitine itself and fenofibrate. CONCLUSIONS: Our results indicate a cooperative interplay of L-carnitine and PPARα in transcriptional regulation of murine CrAT, which is of nutrigenomical relevance. We created experimental proof that the muCrAT gene clearly is a PPARα target. Both L-carnitine and fenofibrate are inducers of CrAT transcripts, but the important hyperlipidemic drug fenofibrate being a more potent one, as a consequence of its pharmacological interaction.


Assuntos
Carnitina O-Acetiltransferase/genética , Carnitina/antagonistas & inibidores , Fenofibrato/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , PPAR alfa/antagonistas & inibidores , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Carnitina/metabolismo , Carnitina/farmacologia , Núcleo Celular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Camundongos , Dados de Sequência Molecular , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética
4.
Eur J Nutr ; 52(3): 1015-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22752262

RESUMO

PURPOSE: Dietary sesamin (1:1 mixture of sesamin and episesamin) decreases fatty acid synthesis but increases fatty acid oxidation in rat liver. Dietary α-lipoic acid lowers hepatic fatty acid synthesis. These changes can account for the serum lipid-lowering effect of sesamin and α-lipoic acid. It is expected that the combination of these compounds in the diet potentially ameliorates lipid metabolism more than the individual compounds. We therefore studied the combined effect of sesamin and α-lipoic acid on lipid metabolism in rats. METHODS: Male Sprague-Dawley rats were fed diets supplemented with 0 or 2 g/kg sesamin and containing 0 or 2.5 g/kg α-lipoic acid for 22 days. RESULTS AND CONCLUSIONS: Sesamin and α-lipoic acid decreased serum lipid concentrations and the combination of these compounds further decreased the parameters in an additive fashion. These compounds reduced the hepatic concentration of triacylglycerol, the lignan being less effective in decreasing this value. The combination failed to cause a stronger decrease in hepatic triacylglycerol concentration. The combination of sesamin and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid antagonized the stimulating effect of sesamin of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes and carnitine concentration in the liver. This may account for the failure to observe strong reductions in hepatic triacylglycerol concentration in rats given a diet containing both sesamin and α-lipoic acid.


Assuntos
Suplementos Nutricionais , Dioxóis/administração & dosagem , Regulação Enzimológica da Expressão Gênica , Hipolipemiantes/administração & dosagem , Lignanas/administração & dosagem , Metabolismo dos Lipídeos , Fígado/metabolismo , Ácido Tióctico/administração & dosagem , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/química , Carnitina/antagonistas & inibidores , Carnitina/metabolismo , Dioxóis/antagonistas & inibidores , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Hipolipemiantes/antagonistas & inibidores , Lignanas/antagonistas & inibidores , Lipogênese , Lipólise , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Masculino , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido Tióctico/antagonistas & inibidores , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Aumento de Peso
5.
Eur J Pharmacol ; 495(1): 67-73, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15219822

RESUMO

Mildronate [3-(2,2,2-trimethylhydrazine) propionate (THP)] is an antiischemic drug acting mainly via inhibition of fatty acid beta-oxidation. Some effects of the drug cannot be explained by the latter mechanism. We tested the eventual nitric oxide (NO) dependence of the mildronate action. Mildronate, gamma-butyrobetaine (GBB) and GBB methyl ester induced transient increases in nitric oxide (NO) concentrations in rat blood and myocardium. In vitro, these compounds neither modified the activities of purified neuronal and endothelial recombinant nitric oxide synthases (NOSs) nor were able to interact with their active site. GBB induced vasodilatation at high concentrations only (EC50 = 5 x 10(-5) M) while mildronate alone displayed no vasodilating effect although it enhanced the GBB vasodilating activity. GBB methyl and ethyl esters were found more potent vasodilators (EC50 = 2.5 x 10(-6) M). Pretreatment of aortic rings with NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) abolished vasodilating effects of the compounds. A hypothesis explaining NO and endothelium-dependent effects of mildronate and its analogues is proposed.


Assuntos
Betaína/análogos & derivados , Betaína/farmacologia , Carnitina/farmacologia , Endotélio/fisiologia , Metilidrazinas/uso terapêutico , Óxido Nítrico/fisiologia , Vasodilatação/fisiologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Betaína/antagonistas & inibidores , Betaína/classificação , Carnitina/antagonistas & inibidores , Carnitina/classificação , Ditiocarb/farmacologia , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Endotélio/efeitos dos fármacos , Masculino , Metilidrazinas/antagonistas & inibidores , Metilidrazinas/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/prevenção & controle , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA