Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570055

RESUMO

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Assuntos
Cartilagem Articular , Emodina , Osteoporose , Ratos Sprague-Dawley , Microtomografia por Raio-X , Animais , Emodina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Ratos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Feminino , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
2.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468339

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Assuntos
Alcaloides , Cartilagem Articular , Matrinas , Osteoartrite , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/toxicidade , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptose
3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473759

RESUMO

Osteoarthritis (OA) causes joint pain and disability due to the abnormal production of inflammatory cytokines and reactive oxygen species (ROS) in chondrocytes, leading to cell death and cartilage matrix destruction. Selenium (Se) intake can protect cells against oxidative damage. It is still unknown whether Se supplementation is beneficial for OA. This study investigated the effects of Se on sodium iodoacetate (MIA)-imitated OA progress in human chondrocyte cell line (SW1353 cells) and rats. The results showed that 0.3 µM of Se treatment could protect SW1353 cells from MIA-induced damage by the Nrf2 pathway by promoting the gene expression of glutathione-synthesis-related enzymes such as the glutamate-cysteine ligase catalytic subunit, the glutamate-cysteine ligase modifier subunit, and glutathione synthetase. In addition, glutathione, superoxide dismutase, glutathione peroxidase, and glutathione reductase expressions are also elevated to eliminate excessive ROS production. Moreover, Se could downregulate NF-κB, leading to a decrease in cytokines, matrix proteases, and glycosaminoglycans. In the rats, MIA-induced cartilage loss was lessened after 2 weeks of Se supplementation by oral gavage; meanwhile, glutathione synthesis was increased, and the expressions of pro-inflammatory cytokines were decreased. These results suggest that Se intake is beneficial for OA due to its effects of decreasing cartilage loss by enhancing antioxidant capacity and reducing inflammation.


Assuntos
Cartilagem Articular , Osteoartrite , Selênio , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Condrócitos/metabolismo , Selênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Glutationa/metabolismo , Cartilagem Articular/metabolismo
4.
Sci Rep ; 14(1): 2696, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302538

RESUMO

Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.


Assuntos
Benzoatos , Cartilagem Articular , Osteoartrite , Células-Tronco Pluripotentes , Retinoides , Humanos , Condrócitos/metabolismo , Tretinoína/farmacologia , Condrogênese/genética , Diferenciação Celular , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Osteoartrite/metabolismo
5.
J Med Food ; 27(4): 301-311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377551

RESUMO

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Assuntos
Cartilagem Articular , Flavonoides , Proteína Forkhead Box O1 , Osteoartrite , Animais , Humanos , Apoptose , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína Forkhead Box O1/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Homeostase , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo
6.
Aging (Albany NY) ; 16(5): 4250-4269, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407978

RESUMO

Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Condrócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo
7.
Biol Trace Elem Res ; 202(3): 1020-1030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37326932

RESUMO

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Selênio , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Selênio/metabolismo , Toxina T-2/toxicidade , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Doença de Kashin-Bek/metabolismo
8.
Adv Sci (Weinh) ; 11(5): e2305023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084002

RESUMO

Destruction of cartilage due to the abnormal remodeling of subchondral bone (SB) leads to osteoarthritis (OA), and restoring chondro-bone metabolic homeostasis is the key to the treatment of OA. However, traditional intra-articular injections for the treatment of OA cannot directly break through the cartilage barrier to reach SB. In this study, the hydrothermal method is used to synthesize ultra-small size (≈5 nm) selenium-doped carbon quantum dots (Se-CQDs, SC), which conjugated with triphenylphosphine (TPP) to create TPP-Se-CQDs (SCT). Further, SCT is dynamically complexed with hyaluronic acid modified with aldehyde and methacrylic anhydride (AHAMA) to construct highly permeable micro/nano hydrogel microspheres (SCT@AHAMA) for restoring chondro-bone metabolic homeostasis. In vitro experiments confirmed that the selenium atoms scavenged reactive oxygen species (ROS) from the mitochondria of mononuclear macrophages, inhibited osteoclast differentiation and function, and suppressed early chondrocyte apoptosis to maintain a balance between cartilage matrix synthesis and catabolism. In vivo experiments further demonstrated that the delivery system inhibited osteoclastogenesis and H-vessel invasion, thereby regulating the initiation and process of abnormal bone remodeling and inhibiting cartilage degeneration in SB. In conclusion, the micro/nano hydrogel microspheres based on ultra-small quantum dots facilitate the efficient penetration of articular SB and regulate chondro-bone metabolism for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Selênio , Humanos , Microesferas , Hidrogéis/metabolismo , Selênio/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
9.
Biomed Pharmacother ; 166: 115309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573656

RESUMO

Osteoarthritis (OA) is a common debilitating degenerative disease of the elderly. We aimed to study the therapeutic effects of combining curcumin and swimming in monosodium iodoacetate (MIA)-induced OA in a rat model. The rats were divided into 5 groups (n = 9). Group 1 received saline and served as a control group. Groups 2-5 were injected intra-articularly in the right knee with 100 µL MIA. One week later, groups 3 and 5 were started on daily swimming sessions that gradually increased to 20-mins per session, and for groups 4 and 5, oral curcumin was administered at a dose of 200 mg/kg for 4 weeks. The combination therapy (curcumin + swimming) showed the most effective results in alleviating pain and joint stiffness as well as improving histological and radiological osteoarthritis manifestations in the knee joints. The combination modality also reduced serum C-reactive protein and tissue cartilage oligomeric matrix protein levels. Mechanistically, rats received dual treatment exhibited restoration of miR-130a and HDAC3 expression. The dual treatment also upregulated PPAR-γ alongside downregulation of NF-κB and its inflammatory cytokine targets TNF-α and IL-1ß. Additionally, there was downregulation of MMP1 and MMP13 in the treated rats. In conclusion, our data showed that there is a therapeutic potential for combining curcumin with swimming in OA, which is attributed, at least in part, to the modulation of miR-130a/HDAC3/PPAR-γ signaling axis.


Assuntos
Cartilagem Articular , Curcumina , MicroRNAs , Osteoartrite , Ratos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Natação , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , MicroRNAs/metabolismo
10.
J Tradit Chin Med ; 43(4): 734-743, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454258

RESUMO

OBJECTIVE: To investigate the effects of acupotomy on the subchondral bone absorption and mechanical properties in rabbits with knee osteoarthritis (KOA). METHODS: The rabbits were divided into blank control, model, acupotomy and electroacupuncture (EA) groups, with 12 rabbits in each. Modified Videman's method was used to prepare KOA model. The acupotomy and EA group were given indicated intervention for 3 weeks. The behavior of rabbits in each group was recorded. Subsequently, cartilage-subchondral bone units were obtained and morphological changes were observed by optical microscope and micro computed tomography. Compression test was used to detect the mechanical properties of subchondral bone, Western blot and real-time polymerase chain reaction (RT-PCR) were applied to detect the expression of bone morphogenetic protein 2-Smad1 (BMP2-Smad1) pathway in subchondral bone. RESULTS: Compared with the control group, rabbits in the KOA group showed lameness, knee pain, and cartilage degradation; the subchondral bone showed active resorption, the mechanical properties decreased significantly and the BMP2-Smad1 pathway downregulated significantly. Both acupotomy and EA intervention could increase the thickness of trabecular bone (Tb. Th), the bone volume fraction (BV/TV) and the thickness of subchondral bone plate, reduce the separation of trabecular bone (Tb. Sp), improve the maximum load and elastic modulus of subchondral bone, and effectively delay cartilage degeneration in KOA rabbits. This process may be achieved through upregulation the related proteins of BMP2-Smad1 pathway. The maximum load and elastic modulus of subchondral bone in the acupotomy group were slightly better than those in the EA group. CONCLUSIONS: Acupotomy could effectively protect cartilage by inhibiting abnormal bone resorption and improving mechanical properties of subchondral bone thorough the related proteins of BMP2-Smad1 pathway in KOA rabbits.


Assuntos
Terapia por Acupuntura , Cartilagem Articular , Osteoartrite do Joelho , Animais , Coelhos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Microtomografia por Raio-X , Proteína Morfogenética Óssea 2/genética , Articulação do Joelho , Cartilagem Articular/metabolismo
11.
J Equine Vet Sci ; 128: 104865, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329926

RESUMO

No studies have evaluated the effect of culture in serum-free media (SF) vs. media supplemented with equine serum (ES) on co-culture of synovial membrane and cartilage tissue explants. The study objective was to evaluate the effects of equine serum supplementation on induced production of inflammatory and catabolic mediators from articular cartilage and synovial explants while in co-culture. Articular cartilage and synovial membrane explants were harvested from femoropatellar joints of five adult horses. Cartilage and synovial explants were harvested from the stifle of five horses, placed in co-culture, stimulated with IL-1ß (10 ng/ml) and maintained in culture for 3, 6 and 9 days in 10% ES or SF. At each time point, media was harvested for analysis of cellular viability (Lactate dehydrogenase) and elution of glycosaminoglycans (Dimethylene Blue Binding Assay). Tissue explants were harvested for histopathologic and gene expression analyses. No differences in cell viability were observed between SF and ES groups. SF culture produced an upregulation of TNF-α in synovial membrane and ADAMTS-4 and five in articular cartilage at 9 days of culture. ES produced an upregulation of aggrecan expression in cartilage at 9 days of culture. No differences in tissue viability were found between culture media, but SF media produced a higher glycosaminoglycan concentration in media at 3 days of culture. The addition of 10% ES produced a slight chondroprotective effect in an inflamed co-culture system. This effect should be considered when designing studies evaluating treatment of serum or plasma-based orthobiologic studies in vitro.


Assuntos
Cartilagem Articular , Membrana Sinovial , Cavalos , Animais , Técnicas de Cocultura/veterinária , Meios de Cultura/farmacologia , Meios de Cultura/metabolismo , Membrana Sinovial/metabolismo , Cartilagem Articular/metabolismo , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/farmacologia , Suplementos Nutricionais
12.
Carbohydr Polym ; 316: 121047, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321739

RESUMO

Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A­selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.


Assuntos
Cartilagem Articular , Selênio , Ratos , Animais , Sulfatos de Condroitina/metabolismo , Selênio/metabolismo , Cartilagem/metabolismo , Agrecanas/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo
13.
Drug Des Devel Ther ; 17: 1515-1529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249927

RESUMO

Introduction: Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration. OA usually manifests as joint pain, limited mobility, and joint effusion. Currently, the primary OA treatment is non-steroidal anti-inflammatory drugs (NSAIDs). Although they can alleviate the disease's clinical symptoms and signs, the drugs have some side effects. Selenium nanoparticles (SeNPs) may be an alternative to relieve OA symptoms. Materials and Results: We confirmed the anti-inflammatory effect of selenium nanoparticles (SeNPs) in vitro and in vivo experiments for OA disease in this study. In vitro experiments, we found that SeNPs could significantly reduce the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the major inflammatory factors, and had significant anti-inflammatory and anti-arthritic effects. SeNPs can inhibit reactive oxygen species (ROS) production and increased glutathione peroxidase (GPx) activity in interleukin-1beta (IL-1ß)-stimulated cells. Additionally, SeNPs down-regulated matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) expressions, while up-regulated type II collagen (COL-2) and aggrecan (ACAN) expressions stimulated by IL-1ß. The findings also indicated that SeNPs may exert their effects through suppressing the NF-κB p65 and p38/MAPK pathways. In vivo experiments, the prevention of OA development brought on by SeNPs was demonstrated using a DMM model. Discussion: Our results suggest that SeNPs may be a potential anti-inflammatory agent for treating OA.


Assuntos
Cartilagem Articular , Osteoartrite , Selênio , Humanos , Transdução de Sinais , NF-kappa B/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Selênio/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Anti-Inflamatórios/uso terapêutico , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos , Interleucina-1beta/metabolismo
14.
Sci Rep ; 13(1): 2760, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797333

RESUMO

Osteoarthritis (OA) is a complicated disorder that is the most prevalent chronic degenerative joint disease nowadays. Pudilan Tablets (PDL) is a prominent traditional Chinese medicine formula used in clinical settings to treat chronic inflammatory illnesses. However, there is currently minimal fundamental research on PDL in the therapy of joint diseases. As a result, this study looked at the anti-inflammatory and anti-OA properties of PDL in vitro and in vivo, as well as the mechanism of PDL in the treatment of OA. We investigated the anti-OA properties of PDL in OA mice that were generated by monosodium iodoacetate (MIA). All animals were administered PDL (2 g/kg or 4 g/kg) or the positive control drug, indomethacin (150 mg/kg), once daily for a total of 28 days starting on the day of MIA injection. The CCK-8 assay was used to test the vitality of PDL-treated RAW264.7 cells in vitro. RAW264.7 cells that had been activated with lipopolysaccharide (LPS) were used to assess the anti-inflammatory properties of PDL. In the MIA-induced OA model mice, PDL reduced pain, decreased OA-induced cartilage damages and degradation, decreased production of pro-inflammatory cytokines in serum, and suppressed IL-1ß, IL-6, and TNF-α mRNA expression levels in tibiofemoral joint. In RAW264.7 cells, PDL treatment prevented LPS-induced activation of the ERK/Akt signaling pathway and significantly decreased the levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α. In conclusion, these results suggest that PDL is involved in combating the development and progression of OA, exerts a powerful anti-inflammatory effect on the knee joint, and may be a promising candidate for the treatment of OA.


Assuntos
Anti-Inflamatórios , Cartilagem Articular , Medicamentos de Ervas Chinesas , Osteoartrite , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Ácido Iodoacético/toxicidade , Lipopolissacarídeos , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células RAW 264.7 , Medicamentos de Ervas Chinesas/farmacologia
15.
Int J Biol Sci ; 19(2): 610-624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632467

RESUMO

Emerging observational data suggest that vitamin D deficiency is associated with the onset and progression of knee osteoarthritis (OA). However, the relationship between vitamin D level and OA and the role of vitamin D supplementation in the prevention of knee OA are controversial. To address these issues, we analyzed the articular cartilage phenotype of 6- and 12-month-old wild-type and 1α(OH)ase-/- mice and found that 1,25(OH)2D deficiency accelerated the development of age-related spontaneous knee OA, including cartilage surface destruction, cartilage erosion, proteoglycan loss and cytopenia, increased OARSI score, collagen X and Mmp13 positive chondrocytes, and increased chondrocyte senescence with senescence-associated secretory phenotype (SASP). 1,25(OH)2D3 supplementation rescued all knee OA phenotypes of 1α(OH)ase-/- mice in vivo, and 1,25(OH)2D3 rescued IL-1ß-induced chondrocyte OA phenotypes in vitro, including decreased chondrocyte proliferation and cartilage matrix protein synthesis, and increased oxidative stress and cell senescence. We also demonstrated that VDR was expressed in mouse articular chondrocytes, and that VDR knockout mice exhibited knee OA phenotypes. Furthermore, we demonstrated that the down-regulation of Sirt1 in articular chondrocytes of 1α(OH)ase-/- mice was corrected by supplementing 1,25(OH)2D3 or overexpression of Sirt1 in mesenchymal stem cells (MSCs) and 1,25(OH)2D3 up-regulated Sirt1 through VDR mediated transcription. Finally, we demonstrated that overexpression of Sirt1 in MSCs rescued knee OA phenotypes in 1α(OH)ase-/- mice. Thus, we conclude that 1,25(OH)2D3, via VDR-mediated gene transcription, plays a key role in preventing the onset of aging-related knee OA in mouse models by up-regulating Sirt1, an aging-related gene that promotes articular chondrocyte proliferation and extracellular matrix protein synthesis, and inhibits senescence and SASP.


Assuntos
Envelhecimento , Cartilagem Articular , Osteoartrite do Joelho , Sirtuína 1 , Deficiência de Vitamina D , Vitamina D , Animais , Camundongos , Envelhecimento/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Regulação para Baixo , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/patologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações
16.
Acta Biomater ; 153: 85-96, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113725

RESUMO

Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes. The objectives of this work were 1) to determine the effects of iron sequestration on self-assembled neocartilage constructs using two doses of the iron chelator deferoxamine (DFO), and 2) to evaluate the performance of the combined treatment of DFO and ionomycin, a calcium ionophore that triggers cytoplasmic calcium accumulation. This study employed a two-phase approach. In Phase I, constructs treated with a high dose of DFO (100 µM) exhibited an 87% increase in pyridinoline crosslinks, a 57% increase in the Young's modulus, and a 112% increase in the ultimate tensile strength (UTS) of the neotissue. In Phase II, the combined use of both ion modulators resulted in 150% and 176% significant increases in the Young's modulus and UTS of neocartilage constructs, respectively; for the first time, neocartilage constructs achieved a Young's modulus of 11.76±3.29 MPa and UTS of 4.20±1.24 MPa. The results of this work provide evidence that ion modulation can be employed to improve the biomechanical properties in engineered neotissues. STATEMENT OF SIGNIFICANCE: The translation of tissue-engineered products requires the development of strategies capable of producing biomimetic neotissues in a replicable, controllable, and cost-effective manner. Among other functions, Fe2+ and Ca2+ are involved in the control of the hypoxic response and mechanotransduction, respectively. Both stimuli, hypoxia and mechanical forces, are known to favor chondrogenesis. This study utilized ion modulators to improve the mechanical properties self-assembled neocartilage constructs derived from expanded and rejuvenated costal chondrocytes via Fe2+ sequestration and Ca2+ influx, alone or in combination. The results indicate that ion modulation induced tissue maturation and a significant improvement of the mechanical properties, and holds potential as a tool to mitigate the need for bioreactors and engineer hyaline-like tissues.


Assuntos
Cartilagem Articular , Suínos , Animais , Cartilagem Articular/metabolismo , Cálcio/metabolismo , Mecanotransdução Celular , Porco Miniatura , Condrócitos/metabolismo , Engenharia Tecidual/métodos , Hipóxia , Ferro/farmacologia
17.
FEBS J ; 289(21): 6643-6658, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997219

RESUMO

Dampened peripheral clocks have been linked to osteoarthritis (OA), yet it is unclear whether drugging the clock can ameliorate OA. Given that RORs and REV-ERBs mediate respectively, positive and negative transcriptional feedback of the master clock gene BMAL1, we investigate whether RORs agonist Nobiletin (NOB) and SR1078, and REV-ERBs antagonist SR8278 can enhance BMAL1 expression and attenuate cartilage degeneration. NOB and SR8278 promoted BMAL1 expression and elicited mitigating effects against IL-1ß-induced degeneration of cartilage explants, as evidenced by increased cellular density and collagen synthesis along with alleviated catabolism and collagen denaturation. Despite promoted BMAL1 expression, SR1078 concomitantly suppressed chondrocyte anabolism and catabolism. Consistent with these findings, NOB and SR8278 treatment, but not SR1078, effectively attenuated structural destruction of articular cartilage in surgery-induced OA mouse models. Notably, the beneficial effects of NOB and SR8278 were evidently observed in IL-1ß-induced degeneration of human cartilage explants and immortalized human chondrocytes. Moreover, BMAL1 knockdown assays indicated that NOB and SR8278 enhanced clock function and concordantly rendered protection against altered anabolism and catabolism in a BMAL1-dependent regime. Collectively, our study suggests that targeting RORs and REV-ERBs to promote the dampened peripheral clocks could be a route taken to apply chronotherapy within the context of OA.


Assuntos
Cartilagem Articular , Relógios Circadianos , Osteoartrite , Camundongos , Animais , Humanos , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Retroalimentação , Condrócitos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem/metabolismo , Cartilagem Articular/metabolismo
18.
Sci Rep ; 12(1): 11957, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831464

RESUMO

Strategies for treating osteoarthritis (OA) have become a research focus because an effective treatment for OA is unavailable. The objective of this study was to explore the effects and underlying mechanisms of glutamine (Gln) in OA. First, the chondrocytes were identified and a standard IL-1ß-induced OA model was established. After treatment with Gln or saline, the viability and apoptosis of chondrocytes were evaluated using a CCK-8 assay and flow cytometry analysis, which revealed that Gln can improve the IL-1ß-induced OA cells. Meanwhile, Gln can enhance the expression of aggrecan and collagen II, which are protective proteins for articular cartilage. Instead, Gln inhibited the expression of matrix metalloproteinase-1 (MMP-1) and matrix metalloproteinase-13 (MMP-13), which can degrade cartilage. To better understand the underlying mechanisms of Gln in IL-1ß-induced chondrocytes, the classical OA pathways of JNK and NF-κB were examined at the protein and mRNA levels using western blot and qRT-PCR analyses. We found that JNK and NF-κB were downregulated gradually depending on the Gln dose and protective and destructive factors changed based on changes of JNK and NF-κB. The effects of high-dose Gln were more effective than low-dose. Moreover, Gln was applied to the animal OA model to check the effects in vivo. The results showed that Gln attenuated cartilage degeneration and decreased OARSI scores, which demonstrated that Gln can improve OA. The experiments showed that Gln can benefit mice with OA by inhibiting the JNK and NF-κB signaling pathways.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Modelos Animais de Doenças , Glutamina/metabolismo , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais
19.
PLoS One ; 17(6): e0270351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749420

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common degenerative joint disease and is characterized by breakdown of joint cartilage. Coenzyme Q10 (CoQ10) exerts diverse biological effects on bone and cartilage; observational studies have suggested that CoQ10 may slow OA progression and inflammation. However, any effect of CoQ10 on OA remains unclear. Here, we investigated the therapeutic utility of CoQ10-micelles. METHODS: Seven-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. CoQ10-micelles were administered orally to MIA-induced OA rats; celecoxib served as the positive control. Pain, tissue destruction, and inflammation were measured. The expression levels of catabolic and inflammatory cell death markers were assayed in CoQ10-micelle-treated chondrocytes. RESULTS: Oral supplementation with CoQ10-micelles attenuated OA symptoms remarkably, including pain, tissue destruction, and inflammation. The expression levels of the inflammatory cytokines IL-1ß, IL-6, and MMP-13, and of the inflammatory cell death markers RIP1, RIP3, and pMLKL in synovial tissues were significantly reduced by CoQ10-micelle supplementation, suggesting that CoQ10-micelles might attenuate the synovitis of OA. CoQ10-micelle addition to cultured OA chondrocytes reduced the expression levels of catabolic and inflammatory cell death markers. CONCLUSIONS: CoQ10-micelles might usefully treat OA.


Assuntos
Cartilagem Articular , Dor Nociceptiva , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Morte Celular , Condrócitos/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Iodoacético , Masculino , Micelas , Dor Nociceptiva/metabolismo , Osteoartrite/metabolismo , Ratos , Ratos Wistar , Ubiquinona/análogos & derivados
20.
J Tradit Chin Med ; 42(3): 389-399, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35610008

RESUMO

OBJECTIVE: To investigate the effects of acupotomy on inhibiting abnormal formation of subchondral bone in rabbits with knee osteoarthritis (KOA). METHODS: A total of 24 New Zealand rabbits were randomly divided into four groups of 6 rabbits each [control, model, electroacupuncture (EA) and acupotomy]. Eighteen KOA model rabbits were established using a modified Videman method. Rabbits in EA and acupotomy groups received the intervention for 3 weeks. Then, the cartilage and subchondral bone unit were obtained and the histomorphological changes were recorded. Osteo-protegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) in subchondral bone were evaluated by Western blotting, real-time polymerase chain reaction and immunohistochemistry. RESULTS: Compared with the model group, both the acupotomy and EA groups showed a significant decrease in the Lequesne index (both 0.01) and Mankin score ( 0.01, < 0.05). In addition, both EA and acupotomy groups had a higher expression of total articular cartilage (TAC) ( 0.05, < 0.01) and lower expression of articular calcified cartilage (ACC)/TAC ( 0.05, < 0.05) compared with the model group. The thickness of the subchondral bone plate in EA and acupotomy groups were decreased (both 0.01) compared to the model group. Moreover, trabecular bone volume (BV/TV), protein and relative expression of OPG and the ratio of OPG/RANKL in the subchondral bone of acupotomy group were decreased statistically significant, while these parameters were not significantly changed in the EA group compared with the model group. CONCLUSIONS: In the rabbit model of KOA, acupotomy inhibits aberrant formation of subchondral bone by suppressing OPG/RANKL ratio as a potential therapy for KOA.


Assuntos
Terapia por Acupuntura , Cartilagem Articular , Osteoartrite do Joelho , Animais , Cartilagem Articular/metabolismo , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/terapia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA