Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575019

RESUMO

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Assuntos
Fertilizantes , Magnésio , Estruvita/química , Magnésio/química , Fertilizantes/análise , Óxido de Magnésio , Fósforo/química , Carvão Vegetal/química , Solo/química , Nitrogênio/análise
2.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575013

RESUMO

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Assuntos
Carvão Vegetal , Fertilizantes , Fertilizantes/análise , Carvão Vegetal/química , Anaerobiose , Agricultura/métodos , Nitrogênio/análise , Potássio/análise , Fósforo/análise , Biocombustíveis
3.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Assuntos
Carvão Vegetal , Compostagem , Substâncias Húmicas , Nitrogênio , Fósforo , Fósforo/análise , Carvão Vegetal/química , Nitrogênio/análise , Compostagem/métodos , Microbiologia do Solo , Medicamentos de Ervas Chinesas/química , Solo/química
4.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555671

RESUMO

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Petróleo , Serratia , Microbiologia do Solo , Poluentes do Solo , Serratia/metabolismo , Serratia/genética , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química
5.
Sci Rep ; 14(1): 6533, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503773

RESUMO

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Assuntos
Compostos de Amônio , Poluentes do Solo , Solo/química , Fósforo , Areia , Argila , Nitratos , Nitrogênio , Carvão Vegetal/química , Poluentes do Solo/análise
6.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474517

RESUMO

Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Águas Residuárias , Adsorção , Nitrogênio/química , Ecossistema , Carvão Vegetal/química , Água , Poluentes Químicos da Água/química
7.
Huan Jing Ke Xue ; 45(2): 898-908, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471928

RESUMO

Magnetic phosphorous biochar (MPBC) was prepared from Camellia oleifera shells using phosphoric acid activation and iron co-deposition. The materials were characterized and analyzed through scanning electron microscopy (SEM), X-ray diffractometry (XRD), specific surface area and pore size analysis (BET), Fourier infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). MPBC had a high surface area (1 139.28 m2·g-1) and abundant surface functional groups, and it could achieve fast solid-liquid separation under the action of an external magnetic field. The adsorption behavior and influencing factors of sulfamethoxazole (SMX) in water were investigated. The adsorbent showed excellent adsorption properties for SMX under acidic and neutral conditions, and alkaline conditions and the presence of CO32- had obvious inhibition on adsorption. The adsorption process conformed to the quasi-second-order kinetics and Langmuir model. The adsorption rate was fast, and the maximum adsorption capacity reached 356.49 mg·g-1. The adsorption process was a spontaneous exothermic reaction, and low temperature was beneficial to the adsorption. The adsorption mechanism was mainly the chemisorption of pyrophosphate surface functional groups (C-O-P bond) between the SMX molecule and MPBC and also included hydrogen bonding, π-π electron donor-acceptor (π-πEDA) interaction, and a pore filling effect. The development of MPBC adsorbent provides an effective way for resource utilization of waste Camellia oleifera shells and treatment of sulfamethoxazole wastewater.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fósforo , Cinética , Fenômenos Magnéticos
8.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1028-1037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467582

RESUMO

Biochar, an organic carbonaceous matter, is a unique feed additive that is now being used in aquaculture industry to formulate a cost-effective and eco-friendly diet. This experiment (in door) was conducted over course of 90 days to determine the most effective form of biochar, produced from various sources, for supplementation in Moringa oleifera seed meal-based diet. These sources were: farmyard manure biochar, parthenium biochar (PB), vegetable waste biochar, poultry waste biochar (PWB) and corncob waste biochar, added at 2 g/kg concentration to determine the effect of supplementation on the growth indices, nutrient absorption, carcass composition, haematology and mineral status of Labeo rohita (rohu) fingerlings. The research design consisted of six test diets with three replications (6 × 3) of each. Total of 270 fingerlings (6.30 ± 0.020 g) were fed at 5% body weight and 15 of them were kept in separate steel tanks. The results indicated that PWB was most effective in improving weight gain (285.58 ± 4.54%) and feed conversion ratio (1.060 ± 0.040) compared to control diet and other test diets. The same type of biochar (PWB) produced the best results for nutrient digestibility, that is, crude protein, crude fat and gross energy and carcass composition. In terms of haematology and mineral status, PWB showed the best results. In conclusion, it was found that PWB significantly enhanced (p < 0.05) L. rohita fingerling's growth, carcass composition, nutrient digestibility, haematological parameters (red blood cells, white blood cells, platelets and haemoglobin) and mineral composition (Ca, Na, P, Mg, Fe, Mn, Zn, K and Cu) whereas PB negatively affected all parameters. It is anticipated that the potential use of biochar will increase in aquaculture industry, as research on its incorporation in fish feeds is still limited.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Composição Corporal , Carvão Vegetal , Cyprinidae , Dieta , Minerais , Animais , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Carvão Vegetal/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Composição Corporal/efeitos dos fármacos , Minerais/administração & dosagem , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/fisiologia
9.
Chemosphere ; 353: 141565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423145

RESUMO

The growing global population has led to a heightened need for food production, and this rise in agricultural activity is closely tied to the application of phosphorus-based fertilizers, which contributes to the depletion of rock phosphate (RP) reserves. Considering the limited P reserves, different approaches were conducted previously for P removal from waste streams, while the adsorption of ions is a novel strategy with more applicability. In this study, a comprehensive method was employed to recover phosphorus from wastewater by utilizing biochar engineered with minerals such as calcium, magnesium, and iron. Elemental analysis of the wastewater following a batch experiment indicated the efficiency of the engineered biochar as an adsorbent. Subsequently, the phosphorus-enriched biochar, hereinafter (PL-BCsb), obtained from the wastewater, underwent further analysis through FTIR, XRD, and nutritional assessments. The results revealed that the PL-BCsb contained four times higher (1.82%) P contents which further reused as a fertilizer supplementation for Brassica napus L growth. PL-BCsb showed citric acid (34.03%), Olsen solution (10.99%), and water soluble (1.74%) P desorption. Additionally, phosphorous solubilizing bacteria (PSB) were incorporated with PL-BCsb along two P fertilizer levels P45 (45 kg ha-1) and P90 (90 kg ha-1) for evaluation of phosphorus reuse efficiency. Integrated application of PL-BCsb with half of the suggested amount of P45 (45 kg ha-1) and PSB increased growth, production, physiological, biochemical, and nutritional qualities of canola by almost two folds when compared to control. Similarly, it also improved soil microbial biomass carbon up to four times, alkaline and acid phosphatases activities both by one and half times respectively as compared to control P (0). Furthermore, this investigation demonstrated that waste-to-fertilizer technology enhanced the phosphorus fertilizer use efficiency by 55-60% while reducing phosphorus losses into water streams by 90%. These results have significant implications for reducing eutrophication, making it a promising approach for mitigating environmental pollution and addressing climate change.


Assuntos
Brassica napus , Fósforo , Fósforo/análise , Águas Residuárias , Fertilizantes/análise , Fosfatos/química , Bactérias , Carvão Vegetal/química , Solo/química , Nutrientes/análise , Água/análise
10.
J Hazard Mater ; 468: 133837, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401216

RESUMO

The sound disposal of the ensuing heavy metal-rich plants can address the aftermath of phytoremediation. In this study, the first attempt was made to obtain heavy metals-free and phosphorus-rich biochar from phytoremediation residue (PR) by pyrolysis, and the effects of chlorinating agent type, chlorine dosage, and pyrolysis residence time on heavy metal removal, phosphorus (P) transformation, and biochar properties were investigated. The results showed that as chlorine dosage and pyrolysis residence time increased, added polyvinyl chloride (PVC) reduced the concentration of Zn in biochar to one-tenth of that in PR by intensified chlorination, where both Zn concentration (2727.50 mg/kg) and its leaching concentration (29.13 mg/L) met the utilization requirements, in which the acid-base property of biochar plays a key role in heavy metal leaching. Meanwhile, more than 90% of P in PR remained in biochar and the bioavailability of P in biochar enhanced with the decomposition of organic P to inorganic P, where the concentration of plant-availability P (Pnac) expanded from 1878.40 mg/kg in PR to 8454.00 mg/kg in biochar. This study demonstrated that heavy metal hyperaccumulator can be converted into heavy metal-free and phosphorus-rich biochar with promising applications, which provides new perspectives for the treatment of such hazardous wastes.


Assuntos
Metais Pesados , Fósforo , Cloro , Pirólise , Metais Pesados/química , Carvão Vegetal/química
11.
Environ Geochem Health ; 46(3): 78, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367092

RESUMO

Industrial by-products are stored in large quantities in the open, leading to wasted resources and environmental pollution, and the natural environment is similarly faced with phosphate depletion and serious water and soil pollution. This study uses these by-products to produce a new sludge/biomass ash ceramsite that will be used to adsorb nitrogen and phosphorus from wastewater, and solidify heavy metals in the soil while releasing Olsen P. The sludge/biomass ash ceramsites are made using sewage sludge and biomass ash in a certain ratio calcined at high temperatures and modified for the adsorption of nitrogen and phosphorus from wastewater. Sludge/biomass ash ceramsites before and after phosphorus adsorption, biochar and biomass ash were compared to analyze their heavy metal adsorption capacity and potential as phosphate fertilizer. After phosphorus adsorption, the sludge/biomass ash ceramsites released effective phosphorus steadily and rapidly in the soil, with a greater initial release than biochar and biomass ash, and the ceramsites were in a granular form that could be easily recycled. Biochar and biomass residue, due to their surface functional groups, are better at solidifying heavy metals than sludge/biomass ash ceramsites. Biochar, biomass ash and sludge/biomass ash ceramsites significantly reduced the concentrations of Cd, Cu, Pb and Zn in the soil. Correlation analysis demonstrated that there was a synergistic relationship between the increase in soil Olsen P content and the change in pH, with the increase in soil Olsen P content and the increase in pH contributing to heavy metal solidification.


Assuntos
Misturas Complexas , Metais Pesados , Poluentes do Solo , Esgotos/química , Águas Residuárias , Biomassa , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Fósforo/análise , Fosfatos/análise , Nitrogênio/análise , Poluentes do Solo/análise
12.
Environ Res ; 252(Pt 1): 118425, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325789

RESUMO

This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.


Assuntos
Carvão Vegetal , Medicamentos de Ervas Chinesas , Tetraciclina , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Tetraciclina/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Medicamentos de Ervas Chinesas/química , Antibacterianos/química , Purificação da Água/métodos , Cinética , Cloretos , Compostos de Zinco
13.
J Hazard Mater ; 466: 133502, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266586

RESUMO

Uranium-stressed soil caused by nuclear industry development and energy acquisition have attracted extensive attentions for a long time. This study investigated the effects of biochar application with different pyrolysis temperatures (300 â„ƒ, 500 â„ƒ and 700 â„ƒ) on remediation of uranium-stressed soil. The results showed that higher pyrolysis temperature (700 â„ƒ) was benefit for ryegrass growing and caused a lower uranium accumulation in plants. At the same time, uranium immobilization was more effective at higher biochar pyrolysis temperature. Careful investigations indicated that activities of soil urease and sucrase were promoted, and bacterial diversity was strengthened in C700 group, which may contribute to uranium immobilization. The biochar application could activate metabolic of lipids and amino acids, organic acids and derivatives, and organic oxygen compounds. Nicotinate and nicotinamide metabolism, and Benzoxazinoid biosynthesis were unique metabolic pathways in the C700 group, which could enhance the uranium tolerance from different perspectives. Based on these results, we recommend to use biochar with 700 °C pyrolysis temperature when processing remediation of uranium-stressed soil. This study will facilitate the implementation of biochar screening and provide theoretical helps for remediation of uranium-stressed soil.


Assuntos
Poluentes do Solo , Urânio , Solo/química , Temperatura , Pirólise , Carvão Vegetal/química , Poluentes do Solo/química
14.
Sci Total Environ ; 917: 170198, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278277

RESUMO

Phosphorus modified biochar (P-BC) is an effective adsorbent for wastewater remediation, which has attracted widespread attention due to its low cost, vast source, unique surface structure, and abundant functional groups. However, there is currently no comprehensive analysis and review of P-BC in wastewater remediation. In this study, a detailed introduction is given to the synthesis method of P-BC, as well as the effects of pyrolysis temperature and residence time on physical and chemical properties and adsorption performance of the material. Meanwhile, a comprehensive investigation and evaluation were conducted on the different biomass types and phosphorus sources used to synthesize P-BC. This article also systematically compared the adsorption efficiency differences between P-BC and raw biochar, and summarized the adsorption mechanism of P-BC in removing pollutants from wastewater. In addition, the effects of P-BC composite with other materials (element co-doping, polysaccharide stabilizers, microbial loading, etc.) on physical and chemical properties and pollutant adsorption capacity of the materials were investigated. Some emerging applications of P-BC were also introduced, including supercapacitors, CO2 adsorbents, carbon sequestration, soil heavy metal remediation, and soil fertility improvement. Finally, some valuable suggestions and prospects were proposed for the future research direction of P-BC to achieve the goal of multiple utilization.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal/química , Solo/química , Poluentes Ambientais/análise , Adsorção , Fósforo , Poluentes Químicos da Água/análise
15.
Chemphyschem ; 25(4): e202300507, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38200663

RESUMO

The nettle, sage, mint and lemon balm herbs were used for biochars preparation. The physicochemical parameters of obtained materials were related to the lignocellulose composition of the precursors. It has been proved that the content of mineral substance has a significant influence on development of surface area, whereas the amount of hemicellulose affects the content of surface functional groups. It has been also shown that the obtained biochars are characterized by great energy parameters. The higher heating values (HHV) of the carbonaceous materials are comparable to the typical energy sources. The greatest HHV value (20.36 MJ/kg) was characteristic for the biochar obtained by pyrolysis of the lemon balm. In addition, the biochars were used for ionic polymers adsorption from one- and two-components solutions. Despite the adsorbed amounts of macromolecules are not great is has been proved that polyethylenimine and polyacrylic acid have positive influence on their mutual adsorption.


Assuntos
Carvão Vegetal , Pirólise , Adsorção , Carvão Vegetal/química , Íons
16.
Bioresour Technol ; 395: 130329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224785

RESUMO

Phosphorus (P) in nature mostly exists in an insoluble state, and humic reducing microorganisms (HRMs) can dissolve insoluble substances through redox properties. This study aimed to investigate the correlations between insoluble P and dominant HRMs amenable to individual culture during biochar composting. These analyses revealed that, in comparison to the control, biochar addition increased the relative abundance of dominant HRMs by 20.3% and decreased redox potential (Eh) levels by 15.4% hence, enhancing the moderately-labile-P and non-labile-P dissolution. The pathways underlying the observed effects were additionally assessed through structural equation modeling, revealing that biochar addition promoted insoluble P dissolution through both the direct effects of bacterial community structure as well as the direct effects of HRMs community structure and indirect effects based on Eh of HRMs community structure. This research offers a better understanding of the effect of HRMs on insoluble P during the composting process.


Assuntos
Compostagem , Solo/química , Fósforo , Carvão Vegetal/química , Oxirredução , Esterco
17.
Sci Rep ; 14(1): 2625, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297102

RESUMO

The main aim of this study is to determine the physical and chemical properties of biochar synthesized from different materials (straw rice, sawdust, sugar cane, and tree leaves) at different pyrolysis temperatures (400, 600, and 800 °C). The physical and chemical properties such as moisture content, water holding capacity, bulk density, and porosity; and pH, electrical conductivity (EC), organic matter, organic carbon, total nitrogen, potassium, phosphorus, calcium, magnesium, sodium, and sulfur were determined, respectively. The results show that the biochar yield decreased with increasing pyrolysis temperature, and the values of the analyzed properties varied depending on the type of biochar and pyrolysis temperature. The moisture content ranged from 1.11 to 4.18%, and the water holding capacity ranged from 12.9 to 27.6 g water g-1 dry sample. The highest value of bulk density (211.9 kg m-3) was obtained from sawdust at a pyrolysis temperature of 800 °C. The porosity values ranged from 45.9 to 63.7%. The highest values of pH and EC (10.4 and 3.46 dS m-1) were obtained from tree leaves at a pyrolysis temperature of 800 °C. Total organic matter ranged from 66.0 to 98.1%, total organic carbon ranged from 38.3 to 56.9%, and total nitrogen ranged from 0.4 to 1.9%. The highest values of phosphorus and calcium content (134.6 and 649.0 mg kg-1) were obtained from sugar cane at a pyrolysis temperature of 800 °C. The magnesium, sodium and sulfur content had ranges of 10.9-51.7, 1124-1703 and 3568-12,060 mg kg-1, respectively.


Assuntos
Cálcio , Pirólise , Temperatura , Magnésio , Carvão Vegetal/química , Carbono , Água , Nitrogênio , Fósforo , Sódio , Enxofre
18.
Sci Total Environ ; 915: 169841, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38215841

RESUMO

Agricultural waste biochar was widely used to absorb phosphorus (P) from eutrophicated water and soil remediation. However, the research on the reuse of the sorbed P on biochar in infertile saline soil is insufficient. Biochars derived from four kinds of agricultural wastes (cotton straws from two origins, maize stalk, and rice husk) were modified and applied to adsorb phosphate in waste water and then be reused in saline soil in this study. The co-modified method combining ball milling and metal coated treatment obtained the higher specific surface area (SSA) of ferrite/manganese modified-ball-milled biochars (Fe/Mn-BMBCs) (226.5-331.5 m2 g-1) than that of pristine biochars (14.02-30.35 m2 g-1) and ferrite/manganese modified biochar (Fe/Mn-BC) (223.7 m2 g-1), which could improve the pore structure of metal modified biochar. The phosphate adsorption capacity (qmax) of Fe/Mn-BMBCs with rich functional groups and high SSA were 44.0-53.8 mg g-1, which was 4.47-5.82 times higher than that of pristine biochars. Fe/Mn-BMBCs showed efficiently adsorption performance at low pH and high temperature. The application of BC to saline soil could promote the availability of P in saline soil. P-loaded biochars could afford P as a nutrient to promote the growth of lettuce (Lactuca sativa L.) in saline soil. The lettuce fresh weight in Fe/Mn-BMBC-P2 treated soil was 8.21 times higher than that grew in control check (CK) treatment. As a P element provider, P-loaded biochars not only improve saline soil fertility and crop productivity, but also convert the agricultural wastes and P in eutrophicated waters to the sustainable resource.


Assuntos
Compostos Férricos , Manganês , Solo , Solo/química , Fosfatos , Adsorção , Carvão Vegetal/química
19.
Sci Total Environ ; 915: 170116, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232831

RESUMO

Pyrolysis is an effective method for treating of livestock and poultry manure developed in recent years. It can completely decompose pathogens and antibiotics, stabilize heavy metals, and enrich phosphorus (P) in biochar. To elucidate the P migration mechanism under different pig manure pyrolysis temperatures, sequential fractionation, solution 31P nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction, and K-edge X-ray absorption near-edge structure techniques were used to analyze the P species in pig manure biochar (PMB). The results indicated that most of the organic P in the pig manure was converted to inorganic P during pyrolysis. Moreover, the transformation to different P groups pathways was clarified. The phase transition from amorphous to crystalline calcium phosphate was promoted when the temperature was above 600 °C. The content of P extracted by hydrochloric acid, which was the long-term available P for plant uptake, increased significantly. PMB pyrolyzed at 600 °C can be used as a highly effective substitute for P source. It provides the necessary P species (e.g. water-soluble P.) and metal elements for the growth of water spinach plants, and which are slow-release comparing with the Hogland nutrient solution.


Assuntos
Esterco , Pirólise , Animais , Suínos , Hidroponia , Fósforo/química , Carvão Vegetal/química
20.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36864716

RESUMO

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Assuntos
Solidago , Poluentes Químicos da Água , Alelopatia , Durapatita/química , Carvão Vegetal/química , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA