Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 26(9): 654-662, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37638838

RESUMO

Pecans are rich in bioactive compounds known to reduce oxidative stress and provide glucoregulatory benefits. Few studies assessing the effect of a pecan-enriched diet on such health outcomes suggest potential improvements to cardiometabolic health; however, this has not been studied in an older adult population. Thus, we aimed to examine the effect of daily pecan consumption for 4-weeks on fasting and postmeal antioxidant status, oxidative stress, and markers of glycemia in healthy aging adults. In this randomized, parallel, controlled trial, 41 healthy adults (50-75 years) either consumed 68 g of pecans/day (pecan; n = 21) or avoided all nuts (control; n = 20). At pre- (V1) and postintervention visits (V2), blood samples were obtained at fasting, and 30, 60, and 120 min following a high saturated fat meal to assess changes in malondialdehyde, which is a measure of lipid peroxidation, total antioxidant capacity (TAC), glucose, and insulin. Across the intervention, there were no differences in fasting or postprandial TAC, glucose, or insulin for pecan versus control. There was a trend for a difference in fasting lipid peroxidation from V1 to V2 by treatment (P = .06) driven by a slight reduction for pecan versus control (Δpecan: -2.0 ± 1.1 vs. Δcontrol: +0.6 ± 0.8 µM). In addition, postprandial lipid peroxidation was suppressed at V2 for pecan, and this was different from control (pecan areas under the curve (AUC): 10.6 ± 1.3 µM/h to 9.1 ± 1.2 µM/h vs. control AUC: 8.9 ± 1.3 µM/h to 9.2 ± 1.1 µM/h; P = .03). These findings suggest that a 1 month, pecan-enriched diet is protective against postmeal oxidative stress. Longer interventions or a diabetic population may be needed to observe glucoregulatory benefits. Clinical Trial Registration: NCT04385537.


Assuntos
Antioxidantes , Carya , Humanos , Idoso , Antioxidantes/metabolismo , Carya/metabolismo , Peroxidação de Lipídeos , Dieta , Insulina , Glucose , Período Pós-Prandial , Glicemia , Estudos Cross-Over
2.
J Agric Food Chem ; 71(17): 6763-6774, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014130

RESUMO

Hickory (Carya cathayensis Sarg.) is a kind of important woody oil tree species, and its nut has high nutritional value. Previous gene coexpression analysis showed that WRINKLED1 (WRI1) may be a core regulator during embryo oil accumulation in hickory. However, its specific regulatory mechanism on hickory oil biosynthesis has not been investigated. Herein, two hickory orthologs of WRI1 (CcWRI1A and CcWRI1B) containing two AP2 domains with AW-box binding sites and three intrinsically disordered regions (IDRs) but lacking the PEST motif in the C-terminus were characterized. They are nucleus-located and have self-activated ability. The expression of these two genes was tissue-specific and relatively high in the developing embryo. Notably, CcWRI1A and CcWRI1B can restore the low oil content, shrinkage phenotype, composition of fatty acid, and expression of oil biosynthesis pathway genes of Arabidopsis wri1-1 mutant seeds. Additionally, CcWRI1A/B were shown to modulate the expression of some fatty acid biosynthesis genes in the transient expression system of nonseed tissues. Transcriptional activation analysis further indicated that CcWRI1s directly activated the expression of SUCROSE SYNTHASE2 (SUS2), PYRUVATE KINASE ß SUBUNIT 1 (PKP-ß1), and BIOTIN CARBOXYL CARRIER PROTEIN2 (BCCP2) involved in oil biosynthesis. These results suggest that CcWRI1s can promote oil synthesis by upregulating some late glycolysis- and fatty acid biosynthesis-related genes. This work reveals the positive function of CcWRI1s in oil accumulation and provides a potential target for improving plant oil by bioengineering technology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Carya , Carya/genética , Carya/metabolismo , Ácidos Graxos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo
3.
Food Chem ; 355: 129577, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799236

RESUMO

An excellent high-efficiency natural deep eutectic solvent (NADES, ChCl-MA) was screened out and integrated with pulse-ultrasonication technique for extracting phenolic compounds from Carya cathayensis Sarg. peels (CCSPs). Single factor experiment combined with response surface methodology (RSM) using Box-Behnken design (BBD) were employed to investigate significant factors and optimize their influence on extraction of phenolic compounds. Significant synergistic effect triggered by ChCl-MA based pulse-ultrasonication over other methods used alone were proved by comparative study concerning a variety of bioactive components and antioxidant activities. The second-order kinetic model was developed and validated (R2 > 0.99) to describe the extraction process and its mechanism; and second-order kinetic extraction rate constant (k), saturation concentration (Cs), and initial extraction rate (h) were calculated. FT-IR, DSC and SEM results further demonstrated synergistic effect and influence during extraction. Overall, this study provided a green and high-efficiency alternative for the recovery of various phenolics compounds from plant source by-products.


Assuntos
Carya/química , Extração Líquido-Líquido/métodos , Fenóis/química , Extratos Vegetais/química , Solventes/química , Antioxidantes/química , Carya/metabolismo , Frutas/química , Frutas/metabolismo , Fenóis/isolamento & purificação , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Food Chem ; 293: 511-519, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151642

RESUMO

Clinical trials show an inverse relationship between the consumption of antioxidant-rich tree nuts and the development of chronic diseases. This study examined antioxidant efficacy of U.S. pecans using a modified cellular antioxidant activity (CAA) assay with comparisons to data from in vitro antioxidant assays (hydrophilic-oxygen radical absorbance capacity {H-ORACFL} and ferric reducing antioxidant power {FRAP}). Crude phenolic extracts from both raw and roasted pecans were analyzed. In the CAA assay, pecan phenolics were taken up by human colorectal adenocarcinoma (Caco-2) cells and bestowed CAA, determined by monitoring the fluorescence of 2',7'-dichlorofluorescein. Phenolics (25-100 µg/mL) demonstrated a reduction in fluorescence by 37-69% for raw and 26-68% for roasted pecans. The primary active phenolic constituents were determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) to be epi(catechin) dimers and trimers. These oligomeric procyanidins, ranging in size from 560 to 840 g/mol appear to be small enough for cellular uptake, showing pecans are an effective antioxidant in biological systems, regardless of roasting.


Assuntos
Antioxidantes/química , Carya/química , Células CACO-2 , Carya/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Nozes/química , Nozes/metabolismo , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray
5.
BMC Genomics ; 17: 113, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26878846

RESUMO

BACKGROUND: Hickory (Carya cathayensis Sarg.) accumulates more than 70% oil and 90% unsaturated fatty acids with considerably high oleic acid in its mature embryo. The concurrent global trancriptomic and lipidomic analyses provided a framework for better understanding of glycerolipid biosynthesis and metabolism in the hickory nut. RESULTS: The synthetical regulation of numerous leading lipid-related genes harmonized with the oil accumulation and fatty acid conversion in embryo development. The high level of ACCase correlated positively with fatty acids de novo synthesis, and the synergy of DGAT2 and PDAT promoted the TAG assembly, and oleosins, caleosins and steroleosins were transcribed considerably high for timely energy reserve in oil body. Glycolysis possibly provided sufficient precursors and energy for lipid synthesis. The perfect harmonization of the high level of SAD with low level of FAD2 facilitated the oleic acid accumulation. And the ratio of FATA/FATB or SAD/FATB was proposed for determining the saturated degree of oil. The gene multi-copy event was generated probably for accommodating various survival environments. A thermotolerant defense system including TAG hydrolysis determinants, heat shock proteins, and high ratio of MUFA to PUFA constrained the lipid degradation and provided a guarantee for high lipid content. A batch of potential genes recruited from the co-expression network helps us to understand the lipid synthesis and the response to high temperature better. CONCLUSIONS: The high transcriptional levels of key genes in lipid synthesis promoted the oil accumulation, and the harmonious expression of key ones for unsaturated fatty acids led oleic acid to high levels.


Assuntos
Carya/genética , Carya/metabolismo , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Ácido Oleico/metabolismo , Óleos de Plantas/metabolismo , Desenvolvimento Embrionário/genética , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glicólise , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Fenótipo , Sementes/embriologia , Sementes/genética , Transcrição Gênica , Transcriptoma
6.
Sci Total Environ ; 376(1-3): 324-34, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17306861

RESUMO

Arsenic concentrations were measured in annual rings, pith, bark, and leaves of five tree species (four genera) from a site highly contaminated with As in Vineland, New Jersey, and two nearby uncontaminated areas. The highest As concentrations were found in bark (0.68+/-0.89 mg/kg, n=16) and leaves (1.9+/-1.8 mg/kg, n=4) from the contaminated area. Tree-ring As levels from the contaminated area (0.28+/-0.15 mg/kg, n=32) were low but still considerably higher than those from the control areas (0.06+/-0.06 mg/kg, n=30). There is a generally positive relationship between soil and tree-ring As levels. The overall low uptake of As by trees contrasts with that of P, a chemical analog for As(V) in aerated soils. Much higher P concentration in sapwood than in heartwood indicates that P is exported into more recently formed wood during the conversion from sapwood to heartwood; this again is drastically different than the behavior of As which is present in sapwood and heartwood at comparable levels. Variable sapwood As concentrations observed in detailed radial profiles of tree-ring chemistry of a pine and an oak from the contaminated site suggest that As is most likely transported among multiple rings within the sapwood. Therefore, tree species for which sapwood is thin (e.g., oak as in this study) should be preferred for reconstructing the history of contamination of a site. Due to the possibility of lateral translocation between growth rings, further studies are necessary to understand within-tree As transport and storage before dendrochemistry can be confidently accepted for such applications.


Assuntos
Arsênio/análise , Poluentes do Solo/análise , Madeira/metabolismo , Arsênio/metabolismo , Carya/metabolismo , Resíduos Perigosos , Juniperus/metabolismo , New Jersey , Fósforo/análise , Fósforo/metabolismo , Pinus/metabolismo , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Quercus/metabolismo , Poluentes do Solo/metabolismo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA