Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.701
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2798: 213-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587746

RESUMO

Catalase, a pivotal enzyme in plant antioxidative defense mechanisms, plays a crucial role in detoxifying hydrogen peroxide, a reactive oxygen species (ROS). In this chapter, a comparative analysis of catalase activity was conducted using two distinct methodologies: spectrophotometry and non-denaturing polyacrylamide gel electrophoresis (PAGE). The spectrophotometric approach allowed the quantification of catalase activity by measuring the breakdown rate of hydrogen peroxide, while native PAGE enabled the separation and visualization of catalase isozymes, based on their native molecular weight and charge characteristics, and specific staining assay. Both methods provide valuable insights into catalase activity, offering complementary information on the enzyme's functional diversity and distribution within different plant tissues. This study integrates different techniques, previously described, to comprehensively elucidate the role of catalase in plant metabolism. Furthermore, it provides the possibility of obtaining a holistic understanding of antioxidant defense mechanisms by considering both total activity and isoenzyme distribution of catalase enzyme.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Catalase , Eletroforese em Gel de Poliacrilamida Nativa , Espectrofotometria
2.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Lactuca , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
3.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564033

RESUMO

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Assuntos
Cymbopogon , Água Potável , Cálculos Renais , Polietilenoglicóis , Polietilenoimina , Urolitíase , Animais , Ratos , Petroselinum , Cloreto de Amônio , Goma Arábica , Emulsões , Catalase , Magnésio , Nanogéis , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/prevenção & controle , Sementes , Antioxidantes/uso terapêutico , Etanol , Glutationa , Oxalatos , Etilenoglicóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
4.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593652

RESUMO

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Assuntos
Catalase , Raios Ultravioleta , Catalase/metabolismo , Catalase/química , Humanos , Epiderme/efeitos da radiação , Epiderme/metabolismo , Epiderme/enzimologia , Pele/efeitos da radiação , Pele/metabolismo , Pele/química , Queratinas/química , Queratinas/metabolismo
5.
Sci Rep ; 14(1): 8288, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594299

RESUMO

Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Animais , Camundongos , Catalase , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/terapia , Diálise Renal , Força Muscular , Falência Renal Crônica/terapia
6.
Sci Rep ; 14(1): 7617, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556603

RESUMO

The study presented here aims at assessing the effects of hypobaric hypoxia on RAAS pathway and its components along with mitigation of anomalies with quercetin prophylaxis. One hour prior to hypobaric hypoxia exposure, male SD rats were orally supplemented with quercetin (50 mg/kg BW) and acetazolamide (50 mg/kg BW) and exposed them to 25,000 ft. (7,620 m) in a simulated environmental chamber for 12 h at 25 ± 2 °C. Different biochemical parameters like renin activity, aldosterone, angiotensin I, ACE 2 were determined in plasma. As a conventional response to low oxygen conditions, oxidative stress parameters (ROS and MDA) were elevated along with suppressed antioxidant system (GPx and catalase) in plasma of rats. Quercetin prophylaxis significantly down regulated the hypoxia induced oxidative stress by reducing plasma ROS & MDA levels with efficient enhancement of antioxidants (GPx and Catalase). Further, hypoxia mediated regulation of renin and ACE 2 proves the outstanding efficacy of quercetin in repudiating altercations in RAAS cascade due to hypobaric hypoxia. Furthermore, differential protein expression of HIF-1α, NFκB, IL-18 and endothelin-1 analyzed by western blotting approves the biochemical outcomes and showed that quercetin significantly aids in the reduction of inflammation under hypoxia. Studies conducted with Surface Plasmon Resonance demonstrated a binding among quercetin and ACE 2 that indicates that this flavonoid might regulate RAAS pathway via ACE 2. Henceforth, the study promotes the prophylaxis of quercetin for the better adaptability under hypobaric hypoxic conditions via modulating the RAAS pathway.


Assuntos
Quercetina , Renina , Ratos , Masculino , Animais , Quercetina/uso terapêutico , Renina/metabolismo , Catalase/metabolismo , Aldosterona/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Hipóxia/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Angiotensina I/farmacologia , Rim/metabolismo
7.
Drug Res (Stuttg) ; 74(4): 156-163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458224

RESUMO

Diosgenin is a sapogenin with antidiabetic, antioxidant, and anti-inflammatory properties. The current study investigated whether diosgenin could ameliorate carbon tetrachloride (CCL4)-induced liver injury. To cause liver injury, CCL4 was injected intraperitoneally twice a week for 8 weeks. Daily oral administration of diosgenin at doses of 20, 40, and 80 mg/kg was started one day before CCL4 injection and continued for 8 weeks. Finally, serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and also albumin were assessed. Catalase and superoxide dismutase (SOD) activities in addition to glutathione (GSH) and malondialdehyde (MDA) levels were also quantified in the liver homogenate and routine histological evaluation was also conducted. Elevated serum levels of liver enzymes and decreased serum level of albumin caused by CCL4 were significantly restored following diosgenin administration at doses of 40 and 80 mg/kg. Long-term administration of CCL4 increased inflammatory and apoptotic factors such as IL-1ß, caspase 3, TNF-α, and IL-6 and decreased SOD and catalase activities as well as GSH level in liver homogenates; while MDA level was increased. Treatment with diosgenin increased SOD and catalase activities and GSH levels in the liver of injured animals. In addition, liver MDA, IL-1ß, caspase 3, TNF-α, and IL-6 level or activity decreased by diosgenin treatment. Additionally, diosgenin aptly prevented aberrant liver histological changes. According to obtained results, diosgenin can dose-dependently diminish CCl4-induced liver functional deficits and histological changes in a dose-dependent manner, possibly due to its antioxidant and anti-inflammation properties, and its beneficial effect is comparable to known hepatoprotective agent silymarin.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Tetracloreto de Carbono/toxicidade , Catalase , Caspase 3 , Fator de Necrose Tumoral alfa , Interleucina-6 , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado , Glutationa , Anti-Inflamatórios/farmacologia , Superóxido Dismutase , Albuminas/farmacologia , Alanina Transaminase
8.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523449

RESUMO

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Assuntos
Antioxidantes , Auricularia , Basidiomycota , Antioxidantes/metabolismo , Umidade , Frutas/metabolismo , Catalase/metabolismo , Ácido Ascórbico , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Basidiomycota/metabolismo , Peroxidação de Lipídeos
9.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
10.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338758

RESUMO

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Assuntos
Arecaceae , Peróxido de Hidrogênio , Catalase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
12.
Cardiovasc Toxicol ; 24(2): 122-132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165500

RESUMO

Doxorubicin is one of the most important antitumor drugs used in oncology; however, its cardiotoxic effect limits the therapeutic use and raises concerns regarding patient prognosis. Leucine is a branched-chain amino acid used in dietary supplementation and has been studied to attenuate the toxic effects of doxorubicin in animals, which increases oxidative stress. Oxidative stress in different organs can be estimated using several methods, including catalase expression analysis. This study aimed to analyze the effect of leucine on catalase levels in rat hearts after doxorubicin administration. Adult male Wistar rats were separated into two groups: Standard diet (SD) and 5% Leucine-Enriched Diet (LED). The animals had free access to diet from D0 to D28. At D14, the groups were subdivided in animals injected with Doxorubicin and animals injected with vehicle, until D28, and the groups were SD, SD + Dox, LED and LED + Dox. At D28, the animals were submitted do Transthoracic Echocardiography and euthanized. Despite Dox groups had impaired body weight gain, raw heart weight was not different between the groups. No substantial alterations were observed in macroscopic evaluation of the heart. Although, Doxorubicin treatment increased total interstitial collagen in the heart, which in addition to Type I collagen, is lower in LED groups. Western blot analysis showed that catalase expression in the heart of LED groups was lower than that in SD groups. In conclusion, leucine supplementation reduced both the precocious Dox-induced cardiac remodeling and catalase levels in the heart.


Assuntos
Cardiotoxicidade , Doxorrubicina , Humanos , Ratos , Animais , Masculino , Catalase/metabolismo , Leucina/farmacologia , Leucina/metabolismo , Leucina/uso terapêutico , Ratos Wistar , Doxorrubicina/farmacologia , Estresse Oxidativo , Suplementos Nutricionais
13.
Toxicon ; 237: 107553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072319

RESUMO

Aflatoxin B1 (AFB1) is a widely distributed mycotoxin, causing hepatotoxicity and oxidative stress. One of the most famous unicellular cyanobacteria is Spirulina platensis (SP) which is well known for its antioxidant characteristics against many toxicants. Therefore, this study aimed to investigate the antioxidant potential and hepatoprotective ability of SP against oxidative stress and cytotoxicity in male Wistar albino rats intraperitoneally injected with AFB1. Rats were separated into five groups as follows: negative control administered with saline; SP (1000 mg/kg BW) for two weeks; AFB1 (2.5 mg/kg BW) twice on days 12 and 14; AFB1 (twice) + 500 mg SP/kg BW (for two weeks) and AFB1 (twice) + 1000 mg SP/kg BW (for two weeks). Liver and blood samples were assembled for histological and biochemical analyses. AFB1 intoxicated rats showed a marked elevation in serum biochemical parameters (ALP, ALT, and AST), hepatic lipid peroxidation (MDA and NO), and proliferating cell nuclear antigen (PCNA) indicating DNA damage. Moreover, AFB1 caused suppression of antioxidant biomarkers (SOD, GHS, GSH-Px, and CAT). However, the elevated serum levels of biochemical parameters and PCNA expression were reduced by SP. Moreover, SP lowered oxidative stress and lipid peroxidation markers in a dose-dependent manner. To sum up, SP supplementation is capable of decreasing AFB1 toxicity through its powerful antioxidant activity.


Assuntos
Aflatoxina B1 , Antioxidantes , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Wistar , Catalase/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Dano ao DNA
14.
Biol Trace Elem Res ; 202(2): 643-658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231320

RESUMO

Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.


Assuntos
Metais Pesados , Selênio , Ratos , Masculino , Animais , Catalase/metabolismo , Caspase 3/metabolismo , Selênio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Ratos Wistar , Ratos Sprague-Dawley , Metais Pesados/metabolismo , Rim/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Superóxido Dismutase/metabolismo , Suplementos Nutricionais , Estresse Oxidativo , Cádmio/farmacologia
15.
Biol Trace Elem Res ; 202(4): 1644-1655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37495827

RESUMO

This study evaluated the effect of prepubertal arsenic exposure in the liver and kidney of pubescent rats and their reversibility 30 days after arsenic withdrawal. Male pups of Wistar rats (21 days old) were divided into two groups (n = 20/group): control animals received filtered water, and exposed rats received 10 mg L-1 arsenic from postnatal day (PND) 21 to PND 51. The liver and kidney of 52 days old rats (n = 10/group) were examined to investigate the effects of arsenic on micromineral content, antioxidant enzyme activity, histology, and biochemistry parameters. The other animals were kept alive under free arsenic conditions until 82 days old and further analyzed by the same parameters. Our results revealed that 52-day-old rats increased arsenic content in their liver and arsenic and manganese in their kidney. In those animals, glycogen and zinc content and catalase activity were reduced in the liver, and the selenium content decreased in the kidney. Thirty days later, arsenic reduced the manganese and iron content and SOD and CAT activity in the liver of 82-day-old rats previously exposed to arsenic, while glycogen and selenium content decreased in their kidney. In contrast, PND 82 rats exhibited higher retention of copper in the liver, an increase in iron and copper content, and CAT and GST activity in the kidney. Significant histological alterations of liver and kidney tissues were not observed in rats of both ages. We conclude that arsenic-induced toxicity could alter differently the oxidative status and balance of trace elements in pubertal and adult rats, demonstrating that the metalloid can cause effects in adulthood.


Assuntos
Arsênio , Selênio , Ratos , Masculino , Animais , Arsênio/metabolismo , Cobre/farmacologia , Ratos Wistar , Selênio/farmacologia , Selênio/metabolismo , Manganês/farmacologia , Catalase/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Rim/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Glicogênio/metabolismo
16.
Psychopharmacology (Berl) ; 241(2): 315-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882813

RESUMO

RATIONALE: Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES: In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS: Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS: Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.


Assuntos
Metanfetamina , Ácido Tióctico , Ratos , Masculino , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Catalase/farmacologia , Ratos Wistar , Metanfetamina/farmacologia , Óleo de Girassol/metabolismo , Óleo de Girassol/farmacologia , Estresse Oxidativo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/prevenção & controle , Hipocampo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
17.
J Ethnopharmacol ; 319(Pt 3): 117302, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858751

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Breast cancer is a major cause of death among human females across the globe. The anti-neoplastic agents or therapies used for the treatment of cancers can enhance longevity but are subsequently observed to deteriorate the quality of life due to the extensive side effects produced. Saussurea costus is a potential medicinal plant of the Himalayas with noticeable ethnopharmacological properties. The phytochemicals present in Saussurea costus are responsible for anti-carcinogenic potential and warranted nil or minimal side effects of Saussurea costus and directed to use this plant as a preventive or therapeutic drug candidate against cancers. AIM OF THE STUDY: The present study was planned to evaluate the anti-neoplastic activity of Saussurea costus root extract (SL) in rat mammary tumour model. MATERIALS AND METHODS: The anti-neoplastic activity of SL root extract at 3 different doses (100, 250 and 500 mg/kg BW) for 18 weeks against 12-dimethylbenz (a) anthracene (DMBA)-induced mammary tumours in Sprague Dawley (SD) female rats was analyzed through serum biochemistry (ALT, AST, ALP, Total protein, Creatinine and BUN), oxidative stress parameters (Lipid peroxidation, Catalase and Reduced glutathione), pro-inflammatory cytokines (TNF-α and NF-κB), immunohistochemical markers (Ki-67, MMP-9 and VEGF), real-time PCR (PCNA, p53, bax, bcl-2 and caspase-3, genes) and molecular docking. RESULTS: Inhibition of tumour parameters, minimal alteration in the liver (ALT, AST and ALP) and kidney enzymes (Creatinine and BUN), decreased activity of MDA, elevated levels of GSH and catalase, reduction in the levels of pro-inflammatory cytokines i.e. TNF-α and NF-κB, reduced gross and histomorphological changes, declined expression of Ki-67, MMP-9 and VEGF in vivo rat model, mRNA expression of cancer-related genes and docking of dehydrocostus lactone and costunolide with NF-κB and TNF-α demonstrated the chemopreventive action of SL root extract. CONCLUSIONS: The in-vivo trial elucidates anti-neoplastic activity of Saussurea costus root extract as demonstrated through the reduction of biochemical indices, oxidative stress parameters, histological changes, pro-inflammatory cytokines (NF-κB and TNF-α), cellular proliferation (Ki-67), metastases (MMP-9) and neovascularization (VEGF) markers with highest anti-neoplastic effect of SL extract at the dose of 500 mg/kg body weight. Therefore, the present study signifies the need to use the active principles present in the root extract of Saussurea costus against breast cancer as a therapeutic regimen.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Saussurea , Feminino , Humanos , Camundongos , Ratos , Animais , Ratos Sprague-Dawley , Catalase , Metaloproteinase 9 da Matriz/genética , Fator de Necrose Tumoral alfa , NF-kappa B , Creatinina , Modelos Animais de Doenças , Antígeno Ki-67 , Simulação de Acoplamento Molecular , Qualidade de Vida , Fator A de Crescimento do Endotélio Vascular , Citocinas , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
18.
Mol Biol Rep ; 51(1): 37, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157089

RESUMO

BACKGROUND: Salt and drought stress are the main environmental constraints that limit onion growth and productivity. Türkiye is the fifth largest onion producer, whereas the stress conditions are increasing in the region, resulting in poor crop growth. METHODS AND RESULTS: A current study was conducted under greenhouse conditions according to a completely randomized design with factorial arrangements to evaluate the performance of onion cultivars. Plants were subjected to salt stress with an application of 750 mM NaCl and drought stress was applied by depriving plants of irrigation water for 20 days to measure biochemical and transcript changes. The antioxidant activities of the cultivars were quantified by using four different methods, i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, cupric reducing antioxidant capacity, 2,2-Diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power (FRAP). The damage to pigments, phenolic, osmolytes, and hydrogen peroxide (H2O2) accumulation was also evaluated. Results revealed that the cultivars "Elit and Hazar" had higher H2O2, maximum damage to pigments, and least accumulation of phenolics and osmolytes under both stress conditions. The cultivar "Sampiyon" performance was better under salt stress but exhibited a poor antioxidant defensive mechanism under drought stress conditions. The remaining cultivars suggested a resilient nature with a higher accumulation of osmolytes, antioxidants and phenolics. The change in transcript levels further strengthened the response of resilient cultivars; for instance, they showed higher transcript levels of superoxide dismutase, ascorbate oxidase and transcription factors (WRKY70, NAC29). It helped alleviate the oxidative stress in tolerant cultivars and maintained the physio-biochemical functioning of the cultivars.. CONCLUSION: The results of the current study will fill the gap of missing literature in onion at biochemical and molecular levels. Additionally, resilient cultivars can effectively cope with abiotic stresses to ensure future food security.


Assuntos
Antioxidantes , Cebolas , Catalase , Cebolas/genética , Secas , Peróxido de Hidrogênio
19.
PLoS One ; 18(11): e0290730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011195

RESUMO

The abuse of Cannabis is a widespread issue in the Asir region. It has a lot of legal and occupational repercussions. The purpose of this study was to evaluate the health status of cannabis addicts at admission and after treatment using body mass index, glycemic status, liver function, renal function, and oxidative stress. A cross-sectional study was conducted with 120 participants. The study was conducted at Al Amal Hospital for Mental Health in Asir region of Saudi Arabia, with 100 hospitalized patients receiving addiction treatment and 20 healthy volunteers. The participants were divided into two groups: group I, the control group, and group II, the cannabis addicts. The socio-demographic data were gathered. The level of cannabis in the urine and the CWAS [Cannabis Withdrawal Assessment Scale] were determined. In addition, the Body Mass Index [BMI], vital signs [temperature, heart rate, systolic blood pressure, diastolic blood pressure, and respiratory rate], serum levels of albumin, total bilirubin, direct bilirubin, AST, ALT, and ALP, urea, creatinine, Thiobarbituric acid-reactive substances [TBARS], superoxide dismutase [SOD], reduced glutathione [GSH], and catalase [CAT] were analyzed on the first day of admission and after treatment. According to the results, there was no significant change in the body mass index. The vital signs in the cannabis user group were significantly lower than the corresponding admission values. Regarding renal function tests such as urea and creatinine, we found that after treatment, the mean urea and creatinine values in the cannabis user group did not differ significantly from the corresponding admission values. However, after treatment, the mean values of fasting blood glucose levels in the cannabis user group were significantly lower than at admission. Also, the mean values of liver function tests such as albumin, total bilirubin, direct bilirubin, AST, ALT, and ALP in the cannabis user group were significantly lower than the corresponding admission values after treatment. In assessing the antioxidant system, we found that the mean values of TBARS, SOD, GSH, and CAT in the cannabis user group did not differ significantly from the corresponding admission values after treatment. The current findings have revealed that cannabis addiction harms the various body systems and has significant implications for the addict's state of health. The values of oxidative stress biomarkers did not change in this study, but other measured parameters improved after treatment.


Assuntos
Cannabis , Humanos , Cannabis/efeitos adversos , Cannabis/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico , Creatinina , Estudos Transversais , Antioxidantes , Catalase , Estresse Oxidativo , Bilirrubina , Glutationa , Albuminas , Ureia , Nível de Saúde , Superóxido Dismutase/metabolismo , Fígado/metabolismo
20.
J Plant Physiol ; 291: 154135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939449

RESUMO

Owing to its easy decomposition and residue-free properties, ozone has been used as an effective and environmentally friendly physical preservation method for maintaining the post-harvest quality of fruits. This study aimed to investigate the effects of ozone treatment on the levels of oxidative stress markers and the status of the antioxidant defense system in refrigerated kiwifruit. Additionally, the study aimed to identify the differences in gene expression levels and potential regulatory effects from the transcriptional level. The results showed that ozone treatment reduced the respiration rate, maintained the fruit hardness and storage quality, and inhibited the ripening and senescence of kiwifruit. Ozone treatment activated antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and ascorbate-glutathione cycle to prevent the increase of reactive oxygen species levels (H2O2, O2-•) and malonaldehyde content, maintaining lower membrane lipid peroxidation and reactive oxygen species (ROS) accumulation than the control treatment. Further analysis showed that the regulatory ability of ROS in kiwifruit treated with ozone was not only related to the synergistic effect of enzyme activity and gene expression related to the antioxidant oxidase system and the ascorbate-glutathione (ASA-GSH) cycle but also related to downstream hormone signaling. This study provides a foundation for understanding the potential effects of ozone treatment on the antioxidant cycle of kiwifruit and provides valuable insights into the molecular basis and related key genes involved in regulating ROS to delay aging in kiwifruit.


Assuntos
Antioxidantes , Ozônio , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ozônio/farmacologia , Ozônio/metabolismo , Frutas/metabolismo , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA