Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542970

RESUMO

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Assuntos
Catecol Oxidase , Fibras na Dieta , Catecol Oxidase/química , Fibras na Dieta/análise , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Plantas/metabolismo , Catecóis/análise , Especificidade por Substrato , Chá
2.
Phytomedicine ; 128: 155347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493717

RESUMO

BACKGROUND: Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE: To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS: Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS: JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION: The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.


Assuntos
1-Naftilisotiocianato , Ácidos e Sais Biliares , Catecóis , Colestase , Álcoois Graxos , Fígado , Receptores Citoplasmáticos e Nucleares , Animais , Ácidos e Sais Biliares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Colestase/tratamento farmacológico , Colestase/metabolismo , Masculino , Camundongos , Catecóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Álcoois Graxos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Humanos , Doença Crônica , Modelos Animais de Doenças
3.
Phytomedicine ; 128: 155500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484627

RESUMO

Ginger, a well-known spice plant, has been used widely in medicinal preparations for pain relief. However, little is known about its analgesic components and the underlying mechanism. Here, we ascertained, the efficacy of ginger ingredient 8-Shogaol (8S), on inflammatory pain and tolerance induced by morphine, and probed the role of TRPV1 in its analgesic action using genetic and electrophysiology approaches. Results showed that 8S effectively reduced nociceptive behaviors of mice elicited by chemical stimuli, noxious heat as well as inflammation, and antagonized morphine analgesic tolerance independent on opioid receptor function. Genetic deletion of TRPV1 significantly abolished 8S' analgesia action. Further calcium imaging and patch-clamp recording showed that 8S could specifically activate TRPV1 in TRPV1-expressing HEK293T cells and dorsal root ganglion (DRG) neurons. The increase of [Ca2+]i in DRG was primarily mediated through TRPV1. Mutational and computation studies revealed the key binding sites for the interactions between 8S and TRPV1 included Leu515, Leu670, Ile573, Phe587, Tyr511, and Phe591. Further studies showed that TRPV1 activation evoked by 8S resulted in channel desensitization both in vitro and in vivo, as may be attributed to TRPV1 degradation or TRPV1 withdrawal from the cell surface. Collectively, this work provides the first evidence for the attractive analgesia of 8S in inflammatory pain and morphine analgesic tolerance mediated by targeting pain-sensing TRPV1 channel. 8S from dietary ginger has potential as a candidate drug for the treatment of inflammatory pain.


Assuntos
Catecóis , Gânglios Espinais , Canais de Cátion TRPV , Zingiber officinale , Canais de Cátion TRPV/metabolismo , Zingiber officinale/química , Animais , Humanos , Células HEK293 , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Catecóis/farmacologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Analgésicos/farmacologia , Morfina/farmacologia , Cálcio/metabolismo
4.
Cell Physiol Biochem ; 58(1): 49-62, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38329001

RESUMO

BACKGROUND/AIMS: Bladder cancer is considered one of the most aggressive neoplasms due to its recurrence and progression profile, and even with the improvement in diagnosis and treatment methods, the mortality rate has not shown a declining trend in recent decades. From this perspective, the search and development of more effective and safer therapeutic alternatives are necessary. Phytochemicals are excellent sources of active principles with therapeutic potential. [6]-Shogaol is a phenolic compound extracted from the ginger rhizomes that has shown antitumor effects in a wide variety of cancer models. However, there is no record in the literature of studies reporting these effects in models of bladder cancer. Thus, this study aimed to investigate the in vitro cytotoxic and pro-apoptotic potential of [6]-Shogaol against murine bladder cancer urothelial cells (MB49). METHODS: The cytotoxic effects of [6]-Shogaol on cell viability (MTT method), cell morphology (light microscopy), alteration of proliferative processes (clonogenic assay), oxidative stress pathway (levels of reactive oxygen species) and the induction of apoptotic events (flow cytometry and high-resolution epifluorescence imaging) were evaluated in murine urothelial bladder cancer cell lines (MB49), relative to non-tumor murine fibroblasts (L929). RESULTS: The results showed that [6]-Shogaol was able to induce concentration-dependent cytotoxic effects, which compromised cell viability, exhibiting an inhibitory concentration of 50% of cells (IC50) of 146.8 µM for MB49 tumor cells and 236.0 µM for L929 non-tumor fibroblasts. In addition to inhibiting and altering the proliferative processes if colony formation, it presented pro-apoptotic activity identified through a quantitative analysis and the observation of apoptotic phenotypes, events apparently mediated by the induction of nuclear fragmentation. CONCLUSION: The data presented suggest that [6]-Shogaol has a higher concentration-dependent cytotoxic and apoptosis-inducing potential in MB49 cells than in L929 fibroblasts. These results may contribute to the development of therapeutic alternatives for bladder cancer.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Apoptose , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Catecóis/farmacologia , Catecóis/uso terapêutico , Catecóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
5.
Drug Des Devel Ther ; 18: 161-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298811

RESUMO

The dynamically evolving science of pharmacology requires AI technology to advance a new path for drug development. The author proposes generative AI for future drugs, identifying suitable drug molecules, uncharacteristically to previous generations of medicines, incorporating the wisdom, experience, and intuit of traditional materia medica and the respective traditional medicine practitioners. This paper describes the guiding principles of the new drug development, springing from the tradition and practice of Tibetan medicine, defined as the Interactive Nutrient Process (INP). The INP provides traditional knowledge and practitioner's experience, contextualizing and teaching the new drug therapy. An illustrative example of the outcome of the INP is a potential small molecule drug, 6-Shogaol and related shogaol derivatives, from ginger roots (Zingiber officinalis fam. Zingiberaceae) evaluated clinically for 12 months for biological markers of iron homeostasis in patients with the myelodysplastic syndromes (MDS). The study's preliminary results indicate that 6-Shogaol and related shogaols may improve iron homeostasis in low-risk/intermediate-1 MDS patients without objective or subjective side effects.


Assuntos
Catecóis , Nutrientes , Humanos , Catecóis/farmacologia , Ferro
6.
Eur J Pharmacol ; 967: 176399, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331338

RESUMO

Ginger has been used for thousands of years for the treatment of many illnesses, from nausea to migraines. Recently, an interest has grown in ginger compounds in the context of autoimmune and inflammatory diseases due to their significant anti-inflammatory effects. Nevertheless, the effects and mechanism of action of these phytochemicals in human immune cells, particularly in dendritic cells (DCs) are unclear. In the present study, we investigated the effects of 6-gingerol and 6-shogaol, the major compounds found in ginger rhizome, on the functionality of primary human monocyte-derived DCs (moDCs). Here we report for the first time that 6-gingerol and 6-shogaol dampen the immunogenicity of human DCs by inhibiting their activation, cytokine production and T cell stimulatory ability. In particular, the bioactive compounds of ginger dose-dependently inhibited the upregulation of activation markers, and the production of different cytokines in response to synthetic Toll-like receptor (TLR) ligands. Moreover, both compounds could significantly reduce the Escherichia coli-triggered cytokine production and T cell stimulatory capacity of moDCs. We also provide evidence that the ginger-derived compounds attenuate DC functionality via inhibiting the nuclear factor-κB (NF-kB), mitogen activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) signaling cascades. Further, 6-shogaol but not 6-gingerol activates the AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways that might contribute to its anti-inflammatory action. Altogether, our results indicate that ginger-derived phytochemicals exert their anti-inflammatory activities via multiple mechanisms and suggest that 6-shogaol is more potent in its ability to suppress DC functionality than 6-gingerol.


Assuntos
Álcoois Graxos , Zingiber officinale , Humanos , Catecóis/farmacologia , Extratos Vegetais/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Receptores Toll-Like , Células Dendríticas/metabolismo
7.
J Colloid Interface Sci ; 661: 374-388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38306747

RESUMO

Conventional antibiotic treatment struggles to eliminate biofilms in wounds due to the formation compact barrier. Herein, we fabricate magnetic pandanus fruit-like nanorobots (NRs) that function as drug carriers while exhibit excellent maneuverability for enhanced antibacterial tasks. Specifically, zeolitic imidazolate framework-8 (ZIF-8) is self-assembled on the surface of Fe3O4 nanoparticles, loaded with a small quantity of ciprofloxacin, and covered with a layer of polydopamine (PDA). Energized by external magnetic fields, the NRs (F@Z/C/P) are steered in defined direction to penetrate the infection tissues, and effectively arrive targeted areas for pH stimulated drug release and near-infrared triggered phototherapy, contributing to an antibacterial rate of >99.9 %. The Zn2+ in ZIF-8 and the catechol group in PDA form catechol-ZIF-8-drug structures, which effectively reduce drug release by 11 % in high pH environments and promote rapid drug release by 14 % in low pH environments compared to NRs without PDA. Additionally, F@Z/C/P can remove the biofilms and bacteria in Staphylococcus aureus infected wounds, and eventually be discharged from the infected site after treatment, leading to faster healing with an intact epidermis and minimal harm to surrounding tissues and organs. The study provides a promising strategy for tackling biofilm-associated infections in vivo through the use of multi-functional NRs.


Assuntos
Pandanaceae , Liberação Controlada de Fármacos , Frutas , Antibacterianos/química , Biofilmes , Cicatrização , Concentração de Íons de Hidrogênio , Catecóis/farmacologia
8.
Ultrason Sonochem ; 103: 106781, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281445

RESUMO

Ultrasonic-assisted activated carbon separation (UACS) was first employed to improve product quality by regulating adsorption rate and removing bacterial endotoxin from salvia miltiorrhizae injection. The adsorption rate was related to three variables: activated carbon dosage, ultrasonic power, and pH. With the increase of activated carbon dosage from 0.05 % to 1.0 %, the adsorption rates of salvianolic acids and bacterial endotoxin increased simultaneously. The adsorption rates at which bacteria endotoxins increased from 52.52 % to 97.16 % were much higher than salvianolic acids. As the ultrasonic power increased from 0 to 700 W, the adsorption rates of salvianolic acids on activated carbon declined to less than 10 %, but bacterial endotoxin increased to more than 87 %. As the pH increased from 2.00 to 8.00, the adsorption rate of salvianolic acid dropped whereas bacterial endotoxin remained relatively stable. On the basis of response surface methodology (RSM), the optimal separation conditions were established to be activated carbon dose of 0.70 %, ultrasonic power of 600 W, and pH of 7.90. The experimental adsorption rates of bacterial endotoxin were 94.15 %, which satisfied the salvia miltiorrhizae injection quality criterion. Meanwhile, salvianolic acids' adsorption rates were 1.92 % for tanshinol, 4.05 % for protocatechualdehyde, 2.21 % for rosmarinic acid, and 3.77 % for salvianolic acid B, all of which were much lower than conventional activated carbon adsorption (CACA). Salvianolic acids' adsorption mechanism on activated carbon is dependent on the component's molecular state. Under ideal separation conditions, the molecular states of the four salvianolic acids fall between 1.13 % and 6.60 %. The quality of salvia miltiorrhizae injection can be improved while maintaining injection safety by reducing the adsorption rates of salvianolic acids to less than 5 % by the use of ultrasound to accelerate the desorption mass transfer rate on the activated carbon surface. When activated carbon adsorption was used in the process of producing salvia miltiorrhizae injection, the pH of the solution was around 5.00, and the proportion of each component's molecular state was tanshinol 7.05 %, protocatechualdehyde 48.93 %, rosmarinic acid 13.79 %, and salvianolic acid B 10.28 %, respectively. The loss of useful components was evident, and the corresponding activated carbon adsorption rate ranged from 20.74 % to 41.05 %. The average variation rate in plasma His and IgE was significant (P < 0.05) following injection of 0.01 % activated carbon, however the average variation rate of salvia miltiorrhizae injection was dramatically decreased with the use of UACS and CACA (P > 0.05). The ultrasonic at a power intensity of 60 W/L and the power density of 1.20 W/cm2 may resolve the separation contradiction between salvianolic acids and bacterial endotoxin, according to experiments conducted with UACS at different power intensities. According to this study, UACS has a lot of potential applications in the pharmaceutical manufacturing industry and may represent a breakthrough in the field of ultrasonic separation.


Assuntos
Alcenos , Benzaldeídos , Benzofuranos , Ácidos Cafeicos , Catecóis , Depsídeos , Medicamentos de Ervas Chinesas , Polifenóis , Salvia miltiorrhiza , Medicamentos de Ervas Chinesas/química , Salvia miltiorrhiza/química , Carvão Vegetal , Ultrassom , Ácido Rosmarínico , Endotoxinas
9.
Adv Sci (Weinh) ; 11(7): e2307051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063804

RESUMO

The plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA-related metabolites remain elusive. Here, the study discovered 2,4-dihydroxybenzoic acid (2,4-DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae-sinensis (Pcs) infection. CsSH1, a 4/5-hydroxylase, catalyzes the hydroxylation of SA to 2,4-DHBA, and UDP-glucosyltransferase UGT95B17 catalyzes the formation of 2,4-DHBA glucoside. Down-regulation reduced the accumulation of 2,4-DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4-DHBA and 2,5-DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4-DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4-DHBA is applied exogenously, UGT95B17-silenced tea plants accumulated more 2,4-DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4-DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4-DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants.


Assuntos
Arabidopsis , Camellia sinensis , Catecóis , Hidroxibenzoatos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Camellia sinensis/metabolismo , Resistência à Doença , Arabidopsis/metabolismo , Chá/metabolismo
10.
Brain Res ; 1826: 148741, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157955

RESUMO

This study investigated the effects of 6-gingerol-rich fraction of Zingiber officinale (6-GIRIFZO) on mercury chloride (HgCl2)-induced neurotoxicity in Wistar rats. Thirty -five male Wistar rats weighing between (150-200 g) were divided randomly into five groups (n = 7): group 1: control, received 0.5 mL of normal saline, group 2: received HgCl2 (5 mg/kg), group 3: received N-acetylcysteine (NAC) (50 mg/kg) as well as HgCl2 (5 mg/kg), group 4: received 6-GIRIFZO (100 mg/kg) and HgCl2 (5 mg/kg), group 5: had 6-GIRIFZO (200 mg/kg) and HgCl2 (5 mg/kg), consecutively for 14 days. On the day14, the rats were subjected to behavioural tests using a Morris water maze and novel object recognition tests. The rats were then euthanized to obtain brain samples for the determination of biochemical parameters (acetylcholinesterase (AchE), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), tumor necrosis factor- alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6)) using standard methods. The result revealed a significant increase in escape latency and a significant decrease in recognition ratio in the rats that were exposed to HgCl2 only. However, 6-GIRIFZO produced a significant reduction in the escape latency and (p < 0.05) increase in the recognition ratio. Similarly, HgCl2 exposure caused a significant (p < 0.05) decrease in the brain SOD, GPx, CAT, GSH with increased brain levels of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Similarly to the standard drug, NAC, 6-GIRIFZO (100 and 200 mg/kg) significantly (p < 0.05) increased brain SOD, GPx, CAT, and GSH levels with decreased concentrations of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Also, pre-treatment with 6-GIRIFZO prevented the HgCl2-induced morphological aberrations in the rats. This study concludes that 6-GIRIFZO prevents HgCl2-induced cognitive deficit via reduction of brain inflammation as well as oxidative stress in rats.


Assuntos
Catecóis , Disfunção Cognitiva , Álcoois Graxos , Mercúrio , Zingiber officinale , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Cloretos , Doenças Neuroinflamatórias , Cloreto de Mercúrio/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6 , Acetilcolinesterase , Estresse Oxidativo , Glutationa/metabolismo , Acetilcisteína/farmacologia , Superóxido Dismutase/metabolismo , Mercúrio/farmacologia
11.
J Ethnopharmacol ; 323: 117611, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158095

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacterial resistance to antibiotics is a growing global concern, highlighting the urgent need for new antimicrobial candidates. Aframomum melegueta was traditionally used for combating urinary tract and soft tissue infections, which implies its potential as an antimicrobial agent. AIM OF STUDY: This study was designed to explore the antibacterial and anti-virulence capabilities of 4-shogaol isolated from A. melegueta seeds versus gram-negative bacteria: Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii, and the clinically important pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS: 4-Shogeol was isolated from A. melegueta seeds and its MICs were determined for Acinetobacter baumannii (ATCC-17978), Pseudomonas aeruginosa (ATCC-27853), Klebsiella pneumoniae (ATCC-700603), and Serratia marcescens clinical isolate. The anti-efflux activity and effect on the bacterial cell membrane for the compound were evaluated. Furthermore, the anti-virulence activities of the compound were evaluated. The effects of 4-shogeol at sub-MIC on bacterial motility, biofilm formation, and production of virulent enzymes and pigments were assessed. The anti-quorum sensing activities of 4-shogeol were evaluated virtually and by quantification its effect on the expression of quorum sensing encoding genes. The in vivo protection assay was conducted to evaluate the effect of 4-shogaol on the P. aeruginosa capacity to induce pathogenesis in mice. Finally, the effect of shogaol-antibiotics combination was assessed. RESULTS: The research revealed that 4-shogaol's antibacterial action primarily involves disrupting the bacterial cell membrane and efflux pumps. It also exhibited significant anti-virulence effects by reducing biofilm development and repressing virulence factors production, effectively protecting mice against P. aeruginosa infection. Furthermore, when combined with antibiotics, 4-shogaol demonstrated synergistic effects, leading to reduced minimum inhibitory concentrations (MICs) against P. aeruginosa. Its anti-virulence properties were linked to its ability to disrupt bacterial quorum sensing (QS) mechanisms, as evidenced by its interaction with QS receptors and downregulation of QS-related genes. Notably, in silico analysis indicated that 4-shogaol exhibited strong binding affinity to different P. aeruginosa QS targets. CONCLUSION: These findings suggest that 4-shogaol holds promise as an effective anti-virulence agent that can be utilized in combination with antibiotics for treating severe infections caused by gram-positive bacteria.


Assuntos
Anti-Infecciosos , Biofilmes , Catecóis , Camundongos , Animais , Anti-Infecciosos/farmacologia , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/química , Fatores de Virulência/metabolismo , Bactérias Gram-Negativas , Bactérias , Pseudomonas aeruginosa
12.
J Agric Food Chem ; 71(41): 15170-15185, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811859

RESUMO

As a widely consumed spice and traditional Chinese medicine, Zingiber officinale Roscoe (ginger) has been used in the treatment of nausea, coughs, and colds. In this article, 18 new glycosides (1-18) and six known analogues (19-24) were isolated from the peel of ginger. The planar structures of these compounds were determined by using HR-ESI-MS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). Their relative and absolute configurations of the stereogenic centers in the new natural products were determined by analysis of NMR data, using a quantum mechanical NMR approach and time-dependent density functional theory based electronic circular dichroism calculations. The renal fibrosis activities of the isolated natural products together with those of 6-gingerol (6-Gi), 8-gingerol (8-Gi), and 10-gingerol (10-Gi) were evaluated in TGF-ß1 induced NRK-52E cells. Compounds 9, 10, 15, 22-24, 6-Gi, 8-Gi, and 10-Gi were found to be active toward extracellular matrix, indicating that they have potential renal fibrosis activities.


Assuntos
Zingiber officinale , Humanos , Zingiber officinale/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glicosídeos , Álcoois Graxos/análise , Catecóis/química , Fibrose
13.
Plant Foods Hum Nutr ; 78(4): 755-761, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796416

RESUMO

Ginger extracts (GEs) are antioxidant, antimicrobial, and anti-inflammatory. Their bioactivity can benefit foods and active packaging by extending shelf life, enhancing safety, and providing health benefits. Highly bioactive GEs are crucial to formulating potent active products and avoiding negative effects on their properties. Sesquiterpenes and phenolics are the main bioactives in ginger, but drying and extraction affect their composition. GEs are usually obtained from dry rhizomes; however, these operations have been studied independently. Therefore, a combined study of innovative drying and extraction technologies to evaluate their influence on extracts' composition will bring knowledge on how to increase the bioactivity of GEs. The effects of an emergent drying (vacuum microwave, VMD) followed by an emergent extraction (ultrasound, UAE, 20 or 80 °C) were investigated in this work. Microwave extraction (MAE) of fresh ginger was also studied. Convective oven drying and Soxhlet extraction were the references. Drying kinetics, powder color, extract composition, and antioxidant activity were studied. While MAE preserved the original composition profile, VMD combined with UAE (20 °C) produced extracts richer in phenolics (387.6 mg.GAE/g) and antioxidant activity (2100.7 mmol.Trolox/mL), with low impact in the sesquiterpenes. VMD generated shogaols by its high temperatures and facilitated extracting bioactives by destroying cellular structures and forming pores. UAE extracted these compounds selectively, released them from cell structures, and avoided losses caused by volatilization and thermal degradation. These findings have significant implications, as they provide an opportunity to obtain GE with tailored compositions that can enhance the formulation of food, active packaging, and pharmacological products.


Assuntos
Sesquiterpenos , Zingiber officinale , Antioxidantes/farmacologia , Antioxidantes/química , Zingiber officinale/química , Catecóis , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis
14.
Int J Biol Macromol ; 246: 125644, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394213

RESUMO

Diabetic wound is considered as a kind of chronic wound prone to infection and difficult to repair due to high glucose level in the blood of patients. In this research, a biodegradable self-healing hydrogel with mussel inspired bioadhesion and anti-oxidation properties is fabricated based on Schiff-base cross-linking. The hydrogel was designed from dopamine coupled pectin hydrazide (Pec-DH) and oxidized carboxymethyl cellulose (DCMC) for mEGF loading as a diabetic wound repair dressing. The Pectin and CMC as natural feedstock endowed the hydrogel with biodegradability to avoid possible side effects, while the coupled catechol structure could enhance the tissue adhesion of the hydrogel for hemostasis. The results showed the Pec-DH/DCMC hydrogel formed fast and can cover irregular wounds with good sealing effect. The catechol structure also improved the reactive oxygen species (ROS) scavenging ability of the hydrogel, which can eliminate the negative effect of ROS during wound healing. The in vivo diabetic wound healing experiment revealed the hydrogel as mEGF loading vehicle greatly enhanced the diabetic wound repairing rate in mice model. As a result, the Pec-DH/DCMC hydrogel could show advantages as EGF carrier in wound healing applications.


Assuntos
Celulose Oxidada , Diabetes Mellitus , Prunella , Animais , Camundongos , Celulose/farmacologia , Hidrogéis/farmacologia , Pectinas/farmacologia , Espécies Reativas de Oxigênio , Catecóis , Excipientes , Hidrazinas , Hemostasia , Antibacterianos
15.
Food Chem ; 413: 135629, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753787

RESUMO

Currently, ginger is one the most consumed plants when dealing with the treatments of various illnesses. So far, it is known that various biologically active molecules, such as gingerols, shogaols and zingerone, among others, are the main responsible for specific biological activities, opening a new window for its utilization as a nutraceutical in foods. In pioneering extraction processes, solvent extraction has been initially used for these applications; however, the drawbacks of this typical extraction method compared with other emergent separation techniques make it possible for the exploration of new extraction pathways, including microwave, ultrasound, supercritical, subcritical and pressurized-assisted extraction, along with three phase partitioning, high-speed counter current chromatography and magnetic solid phase extraction. To the best of our knowledge, there is no report documenting the recent studies and cases of study in this field. Therefore, we comprehensively review the progress and the latest findings (over the last five years) on research developments, including patents and emerging extraction methods, aiming at the purification of biologically active molecules (gingerols, shogaols and zingerone) contained in ginger. Over the course of this review, particular emphasis is devoted to breakthrough strategies and meaningful outcomes in ginger components extraction. Finally, dosage and safety concerns related to ginger extracts are also documented.


Assuntos
Zingiber officinale , Zingiber officinale/química , Extratos Vegetais/química , Catecóis/química , Suplementos Nutricionais/análise , Álcoois Graxos/análise
16.
Int J Med Sci ; 20(2): 238-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794162

RESUMO

Objective: Natural products in diet have shown a potential role in the prevention and treatment of cancer. Ginger (Zingiber officinale Roscoe) is a great candidate because of its properties of anti-inflammatory, antioxidant, and anti-cancer, but little is known about its effect on head and neck cancer. 6-Shogaol is an active compound derived from Ginger. Thus, this study aimed to investigate the possible anticancer effects of 6-shogaol, a major ginger derivate, on head and neck squamous cell carcinomas (HNSCCs) and the underlying mechanisms. Material and Methods: Two HNSCC cell lines, SCC4 and SCC25, were used in this study. Both SCC4 and SCC25 cells were kept as control or treated with 6-shogaol for 8 and 24 hours and then the cell apoptosis and cell cycle progression of treated cells were examined by PI and Annexin V-FITC double stain and flow cytometry analysis. The Cleaved caspase 3, phosphorylations of ERK1/2 and p38 kinases were examined by Western blot analysis. Results: The results showed that 6-shogaol significantly initiated the G2/M phase arrest of the cell cycle and apoptosis to inhibit the survival of both cell lines. Moreover, these responses could be regulated by ERK1/2 and p38 signaling. And, finally, we also demonstrated that 6-shogaol could enhance the cytotoxicity of cisplatin in HNSCC cells. Conclusion: Our data provided new insights to understand the potential pharmaceutical efficacy of a ginger derivate, 6-shogaol, in antagonizing HNSCC survival. The present study suggests that 6-shogaol is a potential novel candidate for anti-HNSCCs therapy.


Assuntos
Catecóis , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Catecóis/farmacologia , Catecóis/uso terapêutico , Apoptose , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
17.
Phytochem Anal ; 34(3): 259-268, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36594354

RESUMO

INTRODUCTION: Ginger constitutes the rhizome part of the plant Zingiber officinale from the Zingiberaceae family. A large number of ginger varieties with high sensorial and functional quality are found in Northeast India. Hence, phytopharmacological screening of different ginger varieties is essential that will serve as a guideline in applied research to develop high-end products and improve economical margins. OBJECTIVE: To determine the variation in total phenolics content (TPC), total flavonoids content (TFC), and antioxidant activities and correlate that with 6-gingerol contents of different ginger varieties collected from Northeast India using Pearson's correlation analysis. MATERIALS AND METHODS: The TPC and TFC values were determined using standard methods. Antioxidant activities were measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assays, while reversed-phase high-performance liquid chromatography (RP-HPLC) analysis was utilised for quantitative determination of 6-gingerol content. RESULTS: The result revealed that ginger variety 6 (GV6) contains the highest 6-gingerol content and TPC value showing maximum antioxidant activity, followed by GV5, GV4, GV9, GV3, GV2, GV8, GV1, and GV7. The findings also suggested that the antioxidant activity has much better correlations with TPC as compared with TFC values. Pearson's correlation analysis showed a significant correlation between 6-gingerol contents and TPC values. CONCLUSION: This work underlines the importance of ginger varieties from Northeast India as a source of natural antioxidants with health benefits.


Assuntos
Antioxidantes , Zingiber officinale , Antioxidantes/química , Flavonoides/análise , Zingiber officinale/química , Catecóis/análise , Catecóis/química , Catecóis/farmacologia , Fenóis/química , Extratos Vegetais/química
18.
Environ Sci Pollut Res Int ; 30(14): 40576-40587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622616

RESUMO

In this study, copper-loaded activated alumina (Cu/AA) was synthesized and used for the CWPO of catechol (a representative refractory organic pollutant). Various characterization techniques were deployed to characterize the catalysts, e.g., activated alumina (AA), as well as pristine and spent 1% Cu/AA. The innovative 1% Cu/AA catalyst exhibited good thermal stability up to 1173 K with a marginal weight loss of 13%. The Cu species were well dispersed on the activated alumina framework with no significant cluster formation. Typically, the average copper particle size of 5 nm was dispersed on the AA framework. Catechol removal was observed to be 92% with 87% mineralization at optimized conditions (initial catechol concentration = 200 mg/L, catalyst dose of 1% Cu/AA = 2 g/L; temperature = 323 K; pH = 6; and H2O2/catechol stoichiometric ratio = 0.5). The mineralization of catechol was analyzed using mass spectroscopy, with the associated mechanism has been elucidated. Results of this study indicated that synthesized catalyst has phenomenal advantages in terms of simple separation and high removal efficiency of catechol, suggesting the feasibility of employing Cu/AA as the effective catalyst for the CWPO of catechol.


Assuntos
Cobre , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Cobre/química , Oxirredução , Óxido de Alumínio , Catecóis , Catálise
19.
J Sci Food Agric ; 103(6): 2838-2847, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36700254

RESUMO

BACKGROUND: Ginger and its extracts have been frequently used in food processing and pharmaceuticals. However, the influence of ginger and its key compounds on benzo[a]pyrene (BaP) production in meat processing has not been investigated. The purpose of this study was to explore the effect of application of ginger and its important active ingredients on BaP formation and the mechanism of inhibiting BaP formation in charcoal-grilled pork sausages. RESULTS: The DPPH scavenging (23.59-59.67%) activity and the inhibition rate of BaP (42.1-68.9%) were significantly increased (P < 0.05) with increasing ginger addition. The active components extracted by supercritical carbon dioxide from ginger were identified by gas chromatography-mass spectrometry and 14 representative compounds (four terpenes, two alcohols, two aldehydes, four phenols and two other compounds, totaling 77.57% of the detected compounds) were selected. The phenolic compounds (eugenol, 6-gingerol, 6-paradol and 6-shogaol, accounting for 29.73% of the total composition) in ginger played a key role and had the strongest inhibitory effect on BaP (61.2-68.2%), whereas four other kinds of compound showed obviously feeble inhibitory activity (6.47-17.9%). Charcoal-grilled sausages with phenolic substances had lower values of thiobarbituric acid-reactive substances, carbonyl and diene (three classic indicators of lipid oxidation) (P < 0.05). CONCLUSION: Ginger and its key compounds could effectively inhibit the formation of BaP in charcoal-grilled pork sausages. Phenolic compounds make the strongest contribution to the inhibition of Bap formation, and the inhibitory mechanism was related to the inhibition of lipid oxidation. © 2023 Society of Chemical Industry.


Assuntos
Carne de Porco , Carne Vermelha , Zingiber officinale , Animais , Suínos , Benzo(a)pireno/análise , Zingiber officinale/química , Carvão Vegetal , Carne Vermelha/análise , Carne de Porco/análise , Catecóis/análise , Fenóis/química , Álcoois Graxos/química , Extratos Vegetais/química
20.
Protein Expr Purif ; 202: 106195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270466

RESUMO

Enzymatic browning greatly affects the quality of potato products. Polyphenol oxidase (PPO) is the enzyme mainly responsible for potato enzymatic browning. PPO has soluble polyphenol oxidase (sPPO) and membrane-bound polyphenol oxidase (mPPO) forms. In this study, the properties of sPPO and mPPO were investigated in potato tubers. The molecular weight of potato sPPO and mPPO were estimated to be 69 kDa in the form of homodimers in vivo. The mass spectrometry results showed that the purified sPPO and mPPO protein in potato tubers was mainly tr|M1BMR6 (Uniprot). The optimum pH for sPPO and mPPO was 6.5, and the optimum temperatures were 20 and 30 °C, respectively. The Michaelis constant (Km) and maximum unit enzyme activity (Vmax) of sPPO were 6.08 mM and 2161 U/S when catechol was used as the substrate, whereas those of mPPO were 2.95 mM and 2129.53 U/S, respectively. The mPPO had stronger affinity to the substrate catechol than sPPO, whereas pyrogallic acid was stronger affinity for sPPO. Ascorbic acid and sodium sulfite were inhibitors of sPPO and mPPO, respectively. After understanding the different binding states of polyphenol oxidase, different inhibitors and treatment methods can be used to treat the enzyme according to different enzymatic properties, so as to achieve a greater degree of Browning control. These results will provide a theoretical basis for regulating PPO activity to reduce enzymatic browning during potato processing.


Assuntos
Catecol Oxidase , Solanum tuberosum , Catecol Oxidase/química , Tubérculos , Catecóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA