Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.148
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(8): 4262-4275, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526548

RESUMO

Changes in the chemical composition of white tea during storage have been studied extensively; however, whether such chemical changes impact the efficacy of white tea in ameliorating colitis remains unclear. In this study, we compared the effects of new (2021 WP) and 10-year-old (2011 WP) white tea on 3% dextrose sodium sulfate (DSS)-induced ulcerative colitis in mice by gavaging mice with the extracts at 200 mg kg-1 day-1. Chemical composition analysis showed that the levels of 50 compounds, such as flavanols, dimeric catechins, and amino acids, were significantly lower in the 2011 WP extract than in the 2021 WP extract, whereas the contents of 21 compounds, such as N-ethyl-2-pyrrolidinone-substituted flavan-3-ols, theobromine, and (-)-epigallocatechin-3-(3''-O-methyl) gallate, were significantly higher. Results of the animal experiments showed that 2011 WP ameliorated the pathological symptoms of colitis, which was superior to the activity of 2021 WP, and this effect was likely enhanced based on the decreasing of the relative abundance of the g_bacteroides and g_Escherichia-Shigella flora in mice with colitis and promoting the conversion of primary bile acids to secondary bile acids in the colon. These results will facilitate the development of novel functional products from white tea.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Microbioma Gastrointestinal , Chá , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Chá/química , Sulfato de Dextrana/efeitos adversos , Masculino , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camellia sinensis/química , Catequina/farmacologia , Catequina/análogos & derivados , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia
2.
Phytomedicine ; 128: 155408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503153

RESUMO

BACKGROUND: Epigallocatechin-3-gallate (EGCG), the primary active compound in green tea, is recognized for its significant anti-inflammatory properties and potential pharmacological effects on inflammatory bowel disease (IBD). However, comprehensive preclinical evidence supporting the use of EGCG in treating IBD is currently insufficient. PURPOSE: To evaluate the efficacy of EGCG in animal models of IBD and explore potential underlying mechanisms, serving as a groundwork for future clinical investigations. METHODS: A systematic review of pertinent preclinical studies published until September 1, 2023, in databases such as PubMed, Embase, Web of Science, and Cochrane Library was conducted, adhering to stringent quality criteria. The potential mechanisms via which EGCG may address IBD were summarized. STATA v16.0 was used to perform a meta-analysis to assess IBD pathology, inflammation, and indicators of oxidative stress. Additionally, dose-response analysis and machine learning models were utilized to evaluate the dose-effect relationship and determine the optimal dosage of EGCG for IBD treatment. RESULTS: The analysis included 19 studies involving 309 animals. The findings suggest that EGCG can ameliorate IBD-related pathology in animals, with a reduction in inflammatory and oxidative stress indicators. These effects were observed through significant changes in histological scores, Disease Activity Index, Colitis Macroscopic Damage Index and colon length; a decrease in markers such as interleukin (IL)-1ß, IL-6 and interferon-γ; and alterations in malondialdehyde, superoxide dismutase, glutathione, and catalase levels. Subgroup analysis indicated that the oral administration route of EGCG exhibited superior efficacy over other administration routes. Dose-response analysis and machine learning outcomes highlighted an optimal EGCG dosage range of 32-62 mg/kg/day, with an intervention duration of 4.8-13.6 days. CONCLUSIONS: EGCG exhibits positive effects on IBD, particularly when administered at the dose range of 32 - 62 mg/kg/day, primarily attributed to its ability to regulate inflammation and oxidative stress levels.


Assuntos
Anti-Inflamatórios , Catequina , Catequina/análogos & derivados , Doenças Inflamatórias Intestinais , Estresse Oxidativo , Catequina/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Chá/química , Relação Dose-Resposta a Droga
3.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543009

RESUMO

Epigallocatechin gallate (EGCG) is a catechin, which is a type of flavonoid found in high concentrations in green tea. EGCG has been studied extensively for its potential health benefits, particularly in cancer. EGCG has been found to exhibit anti-proliferative, anti-angiogenic, and pro-apoptotic effects in numerous cancer cell lines and animal models. EGCG has demonstrated the ability to interrupt various signaling pathways associated with cellular proliferation and division in different cancer types. EGCG anticancer activity is mediated by interfering with various cancer hallmarks. This article summarize and highlight the effects of EGCG on cancer hallmarks and focused on the impacts of EGCG on these cancer-related hallmarks. The studies discussed in this review enrich the understanding of EGCG's potential as a therapeutic tool against cancer, offering a substantial foundation for scientists and medical experts to advance scientific and clinical investigations regarding EGCG's possibility as a potential anticancer treatment.


Assuntos
Catequina , Catequina/análogos & derivados , Neoplasias , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Neoplasias/tratamento farmacológico , Proliferação de Células , Transdução de Sinais , Chá
4.
J Hazard Mater ; 469: 134098, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522198

RESUMO

To investigate the efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders, in this study, a mice model of metabolic disorders induced by BPA was developed to investigate the efficacy and mechanism of EGCG using microbiomes and metabolomics. The results showed that EGCG reduced body weight, liver weight ratio, and triglyceride and total cholesterol levels in mice by decreasing the mRNA expression of genes related to fatty acid synthesis (Elov16) and cholesterol synthesis (CYP4A14) and increasing the mRNA expression of genes related to fatty acid oxidation (Lss) and cholesterol metabolism (Cyp7a1). In addition, EGCG normalized BPA-induced intestinal microbial dysbiosis. Metabolic pathway analysis showed that low-dose EGCG was more effective than high-dose EGCG at affecting the biosynthesis of L-cysteine, glycerophosphorylcholine, and palmitoleic acid. These results provide specific data and a theoretical basis for the risk assessment of BPA and the utilization of EGCG.


Assuntos
Compostos Benzidrílicos , Catequina/análogos & derivados , Doenças Metabólicas , Fenóis , Camundongos , Animais , Colesterol , RNA Mensageiro , Ácidos Graxos
5.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534100

RESUMO

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Assuntos
Aderência Bacteriana , Catequina/análogos & derivados , Infecções por Escherichia coli , Fenóis , Álcool Feniletílico/análogos & derivados , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Camundongos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Fenóis/farmacologia , Humanos , Aderência Bacteriana/efeitos dos fármacos , Resveratrol/farmacologia , Células Epiteliais/microbiologia , Células Epiteliais/efeitos dos fármacos , Bexiga Urinária/microbiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Extratos Vegetais/farmacologia , Feminino , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Linhagem Celular , Catequina/farmacologia , Ácidos Cafeicos/farmacologia
6.
Neuroreport ; 35(6): 421-430, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526966

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.


Assuntos
Catequina/análogos & derivados , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Feminino , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Doenças Neurodegenerativas/metabolismo , Camundongos Endogâmicos C57BL , alfa-Sinucleína/metabolismo , Substância Negra , Neurônios Dopaminérgicos , Chá , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças
7.
J Ethnopharmacol ; 328: 117855, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346524

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM: To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS: Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS: At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION: AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.


Assuntos
Catequina/análogos & derivados , Miócitos de Músculo Liso , Chá , Ratos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Vasodilatação , Vasos Coronários , Artérias Mesentéricas , Vasoconstritores/farmacologia , Água/farmacologia
8.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398883

RESUMO

The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.


Assuntos
Catequina , Catequina/análogos & derivados , Endometriose , Leiomioma , Síndrome do Ovário Policístico , Feminino , Humanos , Endometriose/tratamento farmacológico , Endometriose/genética , Endometriose/patologia , Epigênese Genética , Síndrome do Ovário Policístico/tratamento farmacológico , Qualidade de Vida , Catequina/farmacologia , Catequina/uso terapêutico , Chá
9.
BMJ Open ; 14(1): e078989, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216200

RESUMO

INTRODUCTION: Uterine fibroids affect 30%-77% of reproductive-age women and are a significant cause of infertility. Surgical myomectomies can restore fertility, but they often have limited and temporary benefits, with postoperative complications such as adhesions negatively impacting fertility. Existing medical therapies, such as oral contraceptives, gonadotropin hormone-releasing hormone (GnRH) analogues and GnRH antagonists, can manage fibroid symptoms but are not fertility friendly. This study addresses the pressing need for non-hormonal, non-surgical treatment options for women with fibroids desiring pregnancy. Previous preclinical and clinical studies have shown that epigallocatechin gallate (EGCG) effectively reduces uterine fibroid size. We hypothesise that EGCG from green tea extract will shrink fibroids, enhance endometrial quality and increase pregnancy likelihood. To investigate this hypothesis, we initiated a National Institute of Child Health and Human Development Confirm-funded trial to assess EGCG's efficacy in treating women with fibroids and unexplained infertility. METHODS AND ANALYSIS: This multicentre, prospective, interventional, randomised, double-blinded clinical trial aims to enrol 200 participants with fibroids and unexplained infertility undergoing intrauterine insemination (IUI). Participants will be randomly assigned in a 3:1 ratio to two groups: green tea extract (1650 mg daily) or a matched placebo, combined with clomiphene citrate-induced ovarian stimulation and timed IUI for up to four cycles. EGCG constitutes approximately 45% of the green tea extract. The primary outcome is the cumulative live birth rate, with secondary outcomes including conception rate, time to conception, miscarriage rate, change in fibroid volume and symptom severity scores and health-related quality of life questionnaire scores. ETHICS AND DISSEMINATION: The FRIEND trial received approval from the Food and Drug adminstration (FDA) (investigational new drug number 150951), the central Institutional Review Board (IRB) at Johns Hopkins University and FRIEND-collaborative site local IRBs. The data will be disseminated at major conferences, published in peer-reviewed journals and support a large-scale clinical trial. TRIAL REGISTRATION NUMBER: NCT05364008.


Assuntos
Catequina/análogos & derivados , Infertilidade , Leiomioma , Gravidez , Criança , Feminino , Humanos , Chá , Qualidade de Vida , Estudos Prospectivos , Leiomioma/complicações , Leiomioma/tratamento farmacológico , Leiomioma/cirurgia , Infertilidade/terapia , Fertilidade , Indução da Ovulação/métodos , Hormônio Liberador de Gonadotropina/uso terapêutico , Taxa de Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
10.
Sci Total Environ ; 914: 169923, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199344

RESUMO

Applying selenium (Se) fertilizer is the only way to alleviate soil Se deficiency. Although effects of nanoselenium foliar application on plant growth and stress resistance have been extensively investigated, soil application of nanoselenium on soil microorganisms and their relationship with crop quality and soil health remains unclear. In this study, a steady-state homogeneous nanoparticle of epigallocatechin gallate Se (ESe) was synthesized, and a pot experiment was conducted applying ESe at five concentrations (0, 1, 10, 50, and 100 mg kg-1) to the tea planattion soil. The study revealed a significant increase in Se concentration in soil and tea with ESe application and identified 2.43-7.8 mg kg-1 as the safe and optimal range for soil application. Specifically, the moderate dose of ESe improved the tea quality [reduced tea polyphenols (TP), increased free amino acids (AA), and reduced TP/AA] and soil quality index (SQI). Besides, in marure tea leaves, antioxidant enzyme activities [promote catalase (CAT) superoxide dismutase (SOD), and peroxidase (POD)] increased, while level of oxidative stress [malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2-)] decreased with ESe application. The 16S rRNA of the soil bacteria showed that ESe application significantly changed the community structure of soil bacteria but did not alter the diversity of the bacteria and the abundance of dominant taxa (phylum and genus levels). Statistical analysis of the taxonomic and functional profiles (STAMP) detected 21 differential taxa (genus level), mainly low-abundance ones, under the ESe application. Linear regression and random forest (RF) modeling revealed that the low-abundance bacterial taxa were significantly correlated with SQI (R2 = 0.28, p < 0.01) and tea quality (R2 = 0.23-0.37, p < 0.01). Thus, the study's findings suggest that ESe application affects soil and tea quality by modulating the low-abundance taxa in soil. The study also highlights the crucial role of low-abundance bacterial taxa of the rhizosphere in regulating soil functions under the ESe application.


Assuntos
Camellia sinensis , Catequina/análogos & derivados , Selênio , Solo/química , Peróxido de Hidrogênio/metabolismo , RNA Ribossômico 16S , Antioxidantes/metabolismo , Bactérias , Selênio/metabolismo , Polifenóis/metabolismo , Chá/química , Chá/metabolismo
11.
Phytother Res ; 38(2): 1013-1027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38140774

RESUMO

Type 2 diabetes (T2D) is a metabolic disorder that causes numerous complications including impaired wound healing and poses a significant challenge for the management of diabetic patients. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol that exhibits anti-inflammatory and anti-oxidative benefits in skin wounds, however, the direct effect of EGCG on epidermal keratinocytes, the primary cells required for re-epithelialization in wound healing remains unknown. Our study aims to examine the underlying mechanisms of EGCG's ability to promote re-epithelialization and wound healing in T2D-induced wounds. Murine models of wound healing in T2D were established via feeding high-fat high-fructose diet (HFFD) and the creation of full-thickness wounds. Mice were administered daily with EGCG or vehicle to examine the wound healing response and underlying molecular mechanisms of EGCG's protective effects. Systemic administration of EGCG in T2D mice robustly accelerated the wound healing response following injury. EGCG induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and promoted cytokeratin 16 (K16) expression to activate epidermal keratinocytes and robustly promoted re-epithelialization of wounds in diabetic mice. Further, EGCG demonstrated high binding affinity with Kelch-like ECH-associated protein 1 (KEAP1), thereby inhibiting KEAP1-mediated degradation of NRF2. Our findings provide important evidence that EGCG accelerates the wound healing response in diabetic mice by activating epidermal keratinocytes, thereby promoting re-epithelialization of wounds via K16/NRF2/KEAP1 signaling axis. These mechanistic insights into the protective effects of EGCG further suggest its therapeutic potential as a promising drug for treating chronic wounds in T2D.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Reepitelização , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Queratinócitos , Cicatrização
12.
Front Cell Infect Microbiol ; 12: 973282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204637

RESUMO

Streptococcus suis (S. suis) is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in S. suis. Therefore, there is an urgent need to develop new and safe antibacterial alternatives against S. suis. The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. EGCG also reduced S. suis pathogenicity in Galleria mellonella larvae in vivo. Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of S. suis with EGCG. EGCG not only significantly reduced the hemolytic activity of S. suis but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating S. suis infection.


Assuntos
Streptococcus suis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Catequina/análogos & derivados , Hemólise , Polifenóis/farmacologia , Proteômica , RNA de Transferência/metabolismo , Streptococcus suis/genética , Suínos , Chá/metabolismo
13.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078067

RESUMO

In the current study, for the first time, we study mitophagy enhancer urolithin A and a combination of urolithin A+green tea extract EGCG against human Aß peptide-induced mitochondrial and synaptic, dendritic, inflammatory toxicities and behavioral changes in humanized homozygous amyloid beta knockin (hAbKI) mice of late-onset Alzheimer's disease (AD). Our findings reveal significantly increased positive effects of urolithin A and a combination treatment of urolithin A+EGCG in hAbKI mice for phenotypic behavioral changes including motor coordination, locomotion/exploratory activity, spatial learning and working memory. mRNA and protein levels of mitochondrial fusion, synaptic, mitophagy and autophagy genes were upregulated, and mitochondrial fission genes are downregulated in urolithin A and combine treatment in hAbKI mice; however, the effect is stronger in combined treatment. Immunofluorescence analysis of hippocampal brain sections shows similar findings of mRNA and protein levels. Mitochondrial dysfunction is significantly reduced in both treatment groups, but a stronger reduction is observed in combined treatment. Dendritic spines and lengths are significantly increased in both treatment groups, but the effect is stronger in combined treatment. The fragmented number of mitochondria is reduced, and mitochondrial length is increased, and mitophagosomal formations are increased in both the groups, but the effect is stronger in the combined treatment. The levels of amyloid beta (Aß) 40 and Aß42 are reduced in both treatments, however, the reduction is higher for combined treatment. These observations suggest that urolithin A is protective against human Aß peptide-induced toxicities; however, combined treatment of urolithin A+EGCG is effective and stronger, indicating that combined therapy is promising to treat late-onset AD patients.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Catequina/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Catequina/farmacologia , Cumarínicos , Humanos , Camundongos , Dinâmica Mitocondrial , RNA Mensageiro/metabolismo
14.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080195

RESUMO

Tea contains high levels of the compound epigallocatechin gallate (EGCG). It is considered an important functional component in tea and has anti-cancer, antioxidant, and anti-inflammatory effects. The eight phenolic hydroxyl groups in EGCG's chemical structure are the basis for EGCG's multiple biological effects. At the same time, it also leads to poor chemical stability, rendering EGCG prone to oxidation and isomerization reactions that change its original structure and biological activity. Learning how to maintain the activity of EGCG has become an important goal in understanding the biological activity of EGCG and the research and development of tea-related products. Metal-organic frameworks (MOFs) are porous materials with a three-dimensional network structure that are composed of inorganic metals or metal clusters together with organic complexes. MOFs exploit the porous nature of the material itself. When a drug is an appropriate size, it can be wrapped into the pores by physical or chemical methods; this allows the drug to be released slowly, and MOFs can also reduce drug toxicity. In this study, we used MOF Zn(BTC)4 materials to load EGCG and investigated the sustained release effect of EGCG@MOF Zn(BTC)4 and the biological effects on wound healing in a diabetic mouse model.


Assuntos
Catequina , Diabetes Mellitus , Animais , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Camundongos , Chá/química , Cicatrização , Zinco
15.
Nat Commun ; 13(1): 5451, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114178

RESUMO

Alzheimer's disease (AD) is the consequence of neuronal death and brain atrophy associated with the aggregation of protein tau into fibrils. Thus disaggregation of tau fibrils could be a therapeutic approach to AD. The small molecule EGCG, abundant in green tea, has long been known to disaggregate tau and other amyloid fibrils, but EGCG has poor drug-like properties, failing to fully penetrate the brain. Here we have cryogenically trapped an intermediate of brain-extracted tau fibrils on the kinetic pathway to EGCG-induced disaggregation and have determined its cryoEM structure. The structure reveals that EGCG molecules stack in polar clefts between the paired helical protofilaments that pathologically define AD. Treating the EGCG binding position as a pharmacophore, we computationally screened thousands of drug-like compounds for compatibility for the pharmacophore, discovering several that experimentally disaggregate brain-derived tau fibrils in vitro. This work suggests the potential of structure-based, small-molecule drug discovery for amyloid diseases.


Assuntos
Doença de Alzheimer , Amiloidose , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Microscopia Crioeletrônica , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Chá/química , Proteínas tau/química , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismo
16.
Biomolecules ; 12(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139034

RESUMO

Reducing the health hazards caused by air pollution is a global challenge and is included in the Sustainable Development Goals. Air pollutants, such as PM2.5, induce respiratory and cardiovascular disorders by causing various inflammatory responses via oxidative stress. Catechins and polyphenols, which are components of green tea, have various protective effects, owing to their antioxidant ability. The main catechin in green tea, epigallocatechin gallate (EGCG), is potentially effective against respiratory diseases, such as idiopathic pulmonary fibrosis and asthma, but its effectiveness against air-pollution-dependent lung injury has not yet been investigated. In this study, we examined the effect of EGCG on urban aerosol-induced acute lung injury in mice. Urban aerosol treatment caused increases in inflammatory cell counts, protein levels, and inflammatory cytokine expression in the lungs of ICR mice, but pretreatment with EGCG markedly suppressed these responses. Analyses of oxidative stress revealed that urban aerosol exposure enhanced reactive oxygen species (ROS) production and the formation of ROS-activated neutrophil extracellular traps (NETs) in the lungs of mice. However, ROS production and NETs formation were markedly suppressed by pretreating the mice with EGCG. Gallocatechin gallate (GCG), a heat-epimerized form of EGCG, also markedly suppressed urban aerosol-dependent inflammatory responses and ROS production in vivo and in vitro. These findings suggest that EGCG and GCG prevent acute lung injury caused by urban aerosols through their inhibitory effects on ROS production. Thus, we believe that foods and medications containing EGCG or GCG may be candidates to prevent the onset and progression of acute lung injury caused by air pollutants.


Assuntos
Lesão Pulmonar Aguda , Poluentes Atmosféricos , Catequina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Poluentes Atmosféricos/toxicidade , Animais , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Citocinas , Camundongos , Camundongos Endogâmicos ICR , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Aerossóis e Gotículas Respiratórios , Chá
17.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080445

RESUMO

Artificial oil bodies covered by a recombinant surface protein, caleosin fused with histatin 3 (a major human salivary peptide), were employed to explore the relative astringency of eight tea catechins. The results showed that gallate-type catechins were more astringent than non-gallate-type catechins, with an astringency order of epicatechin gallate > epigallocatechin gallate > gallocatechin gallate > catechin gallate > epigallocatechin > epicatechin > gallocatechin > catechin. As expected, the extension of brewing time led to an increase in catechin content in the tea infusion, thus elevating tea astringency. Detailed analysis showed that the enhanced proportion of gallate-type catechins was significantly higher than that of non-gallate-type catechins, indicating that tea astringency was elevated exponentially, rather than proportionally, when brewing time was extended. Rough surfaces were observed on artificial oil bodies when they were complexed with epigallocatechin gallate (a catechin), while a smooth surface was observed on those complexed with rutin (a flavonol glycoside) under an atomic force microscope and a scanning electron microscope. The results indicate that catechins and flavonol glycosides induce the sensation of rough (puckering) and smooth (velvety) astringency in tea, respectively.


Assuntos
Catequina , Adstringentes/análise , Catequina/análogos & derivados , Catequina/química , Flavonóis/análise , Glicosídeos/análise , Humanos , Gotículas Lipídicas/química , Sensação , Chá/química
18.
Nutrients ; 14(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36145133

RESUMO

Clostridioides difficile infection is closely related to the intestinal flora disorders induced by antibiotics, and changes in the intestinal flora may cause the occurrence and development of Clostridioides difficile infection. Epigallocatechin-3-gallate (EGCG) is one of the major bioactive ingredients of green tea and has been suggested to alleviate the growth of C. difficile in vitro. EGCG can ameliorate several diseases, such as obesity, by regulating the gut microbiota. However, whether EGCG can attenuate C. difficile infection by improving the gut microbiota is unknown. After establishing a mouse model of C. difficile infection, mice were administered EGCG (25 or 50 mg/kg/day) or PBS intragastrically for 2 weeks to assess the benefits of EGCG. Colonic pathology, inflammation, the intestinal barrier, gut microbiota composition, metabolomics, and the transcriptome were evaluated in the different groups. Compared with those of the mice in the CDI group, EGCG improved survival rates after infection, improved inflammatory markers, and restored the damage to the intestinal barrier. Furthermore, EGCG could improve the intestinal microbial community caused by C. difficile infection, such as by reducing the relative abundance of Enterococcaceae and Enterobacteriaceae. Moreover, EGCG can increase short-chain fatty acids, improve amino acid metabolism, and downregulate pathways related to intestinal inflammation. EGCG alters the microbiota and alleviates C. difficile infection, which provides new insights into potential therapies.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Aminoácidos , Animais , Antibacterianos/uso terapêutico , Catequina/análogos & derivados , Infecções por Clostridium/tratamento farmacológico , Ácidos Graxos Voláteis , Homeostase , Inflamação/tratamento farmacológico , Camundongos , Chá
19.
J Vet Sci ; 23(5): e74, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36174978

RESUMO

BACKGROUND: Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. OBJECTIVES: We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. METHODS: Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. RESULTS: In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. CONCLUSIONS: We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.


Assuntos
Fator 2 Relacionado a NF-E2 , Doenças dos Roedores , Animais , Antioxidantes , Azoximetano , Células CACO-2 , Carcinogênese , Catequina/análogos & derivados , Proteínas de Ciclo Celular , Colo , Dextranos , Hemina/farmacologia , Humanos , Ferro , Proteína 1 Associada a ECH Semelhante a Kelch , Lactato Desidrogenases , Malondialdeído , Camundongos , Espécies Reativas de Oxigênio , Chá , Sais de Tetrazólio
20.
Chin J Nat Med ; 20(9): 679-690, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36162953

RESUMO

Deep venous thrombosis (DVT) poses a major challenge to public health worldwide. Endothelial cell injury evokes inflammatory and oxidative responses that contribute to thrombus formation. Tea polyphenol (TP) in the form of epigallocatechin-3-gallate (EGCG) has anti-inflammatory and oxidative effect that may ameliorate DVT. However, the precise mechanism remains incompletely understood. The current study was designed to investigate the anti-DVT mechanism of EGCG in combination with warfarin (an oral anticoagulant). Rabbits were randomly divided into five groups. A DVT model of rats was established through ligation of the inferior vena cava (IVC) and left common iliac vein, and the animals were orally administered with EGCG, warfarin, or vehicle for seven days. In vitro studies included pretreatment of human umbilical vein endothelial cells (HUVECs) with different concentrations of EGCG for 2 h before exposure to hydrogen peroxide. Thrombus weight and length were examined. Histopathological changes were observed by hematoxylin-eosin staining. Blood samples were collected for detecting coagulation function, including thrombin and prothrombin times, activated partial thromboplastin time, and fibrinogen levels. Protein expression in thrombosed IVCs and HUVECs was evaluated by Western blot, immunohistochemical analysis, and/or immunofluorescence staining. RT-qPCR was used to determine the levels of AGTR-1 and VEGF mRNA in IVCs and HUVECs. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis and ROS generation was assessed by 2',7'-dichlorofluorescein diacetate reagent. In vitro and invivo studies showed that EGCG combined with warfarin significantly reduced thrombus weight and length, and apoptosis in HUVECs. Our findings indicated that the combination of EGCG and warfarin protects HUVECs from oxidative stress and prevents apoptosis. However, HIF-1α silencing weakened these effects, which indicated that HIF-1α may participate in DVT. Furthermore, HIF-1α silencing significantly up-regulated cell apoptosis and ROS generation, and enhanced VEGF expression and the activation of the PI3K/AKT and ERK1/2 signaling pathways. In conclusion, our results indicate that EGCG combined with warfarin modifies HIF-1α and VEGF to prevent DVT in rabbits through anti-inflammation via the PI3K/AKT and ERK1/2 signaling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Trombose Venosa , Animais , Humanos , Coelhos , Ratos , Anticoagulantes/farmacologia , Catequina/análogos & derivados , Amarelo de Eosina-(YS)/farmacologia , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Hematoxilina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro , Transdução de Sinais , Chá , Trombina/metabolismo , Trombina/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Trombose Venosa/tratamento farmacológico , Trombose Venosa/genética , Trombose Venosa/patologia , Varfarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA