Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833924

RESUMO

Dental caries results from the bacterial pathogen Streptococcus mutans (S. mutans) and is the maximum critical reason for caries formation. Consequently, the present study aims to evaluate the antibacterial activity of a newly synthesized nanoantibiotic-Biodentine formulation. The silver nanoparticles (ROE-AgNPs) were biosynthesized from the usage of Rosmarinus officinalis L. extract (ROE) and conjugated with cefuroxime to form Cefuroxime-ROE-AgNPs. Using Biodentine™ (BIOD), five groups of dental materials were prepared, in which Group A included conventional BIOD, Group B included BIOD with ROE-AgNPs, Groups C and D included BIOD with Cefuroxime-ROE-AgNPs at concentrations of 0.5% and 1.5% cefuroxime, respectively, and Group E included BIOD with 1.5% cefuroxime. The synthesized ROE-AgNPs or Cefuroxime-ROE-AgNPs were characterized for conjugating efficiency, morphology, particle size, and in vitro release. Minimum inhibitory concentration (MIC) of the cefuroxime, ROE-AgNPs, and Cefuroxime-ROE-AgNPs were additionally evaluated against cefuroxime resistant S. mutans, which furthered antibacterial efficacy of the five groups of dental materials. The UV-Visible spectrum showed the ROE-AgNPs or Cefuroxime-ROE-AgNPs peaks and their formation displayed through transmission electron microscopy (TEM), X-ray diffraction (XRD) pattern, and Fourier transforms infrared (FTIR) analysis. The end result of Cefuroxime-ROE-AgNPs showed conjugating efficiency up to 79%. Cefuroxime-ROE-AgNPs displayed the highest antibacterial efficacy against S. mutans as compared to cefuroxime or ROE-AgNPs alone. Moreover, the MIC of ROE-AgNPs and Cefuroxime-ROE-AgNPs was detected against S. mutans to be 25 and 8.5 µg/mL, respectively. Consequently, Cefuroxime-ROE-AgNPs displayed that a decrease in the MIC reached to more than three-fold less than MIC of ROE-AgNPs on the tested strain. Moreover, Cefuroxime-ROE-AgNPs/BIOD was employed as a novel dental material that showed maximum antimicrobial activity. Groups C and D of novel materials showed inhibitory zones of 19 and 26 mm, respectively, against S. mutans and showed high antimicrobial rates of 85.78% and 91.17%, respectively. These data reinforce the utility of conjugating cefuroxime with ROE-AgNPs to retrieve its efficiency against resistant S. mutant. Moreover, the nanoantibiotic delivered an advantageous antibacterial effect to BIOD, and this may open the door for future conjugation therapy of dental materials against bacteria that cause dental caries.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Cefuroxima/química , Cefuroxima/farmacologia , Nanopartículas Metálicas/química , Silicatos/química , Silicatos/farmacologia , Prata/química , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Cárie Dentária/tratamento farmacológico , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Biotechnol Appl Biochem ; 60(6): 603-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23586705

RESUMO

This study aimed to investigate the release of cefuroxime axetil (CF) and calcium from poly(ε-caprolactone) (PCL)-calcium sulfate (CaS) implants (PCL:CaS 2:1-10% CF; PCL:CaS 2:1-20% CF; PCL:CaS 1:1-10% CF) for treating infectious bone diseases. Bioactivity, crystallinity and strength, and release profiles under standard and pressurized release conditions were studied. PCL:CaS 2:1-20% CF had slower release than 10% loading. These groups had no significant change in CF and Ca release in response to pressure. The PCL:CaS 1:1 group had the slowest release despite having higher CaS, probably due to more compaction of discs. In contrast, pressure caused significant differentiation of CF and Ca(2+) release. The presence of CaS enhanced mechanical properties and bioactivity of discs. SEM and XPS results showed calcium-phosphate containing accumulations on surfaces upon SBF incubation. CF-loaded implants were applied in a rabbit osteomyelitis model. In vivo CF release was enhanced with increased CaS proportions, suggesting that in vivo release conditions are closer to pressurized in vitro conditions. In the control group, there was still some inflammation in the bone and no complete coverage with bone was achieved in the defect site. Discs provided a suitable surface for regeneration of bone. However, bone formation in the PCL:CaS 1:1 disc implanted group was more complete and regular than in the 2:1 group.


Assuntos
Sulfato de Cálcio/química , Cefuroxima/análogos & derivados , Portadores de Fármacos/química , Osteomielite/tratamento farmacológico , Poliésteres/química , Células 3T3 , Animais , Cefuroxima/química , Cefuroxima/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/toxicidade , Humanos , Camundongos , Osteomielite/patologia , Coelhos , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-22780098

RESUMO

To have advantages of reduced dosing frequency, improved bioavailability and effective delivery system of Cefuroxime Axetil, a Chitosan based intragastric sustained release microbead formulation of Cefuroxime Axetil was developed. The drug delivery system was prepared by ionotropic gelation of Chitosan in presence of sodium tripolyphosphate as polyanion and optimized by box-behnken experimental design. Response surface methodology was applied to evaluate various vitro characteristics of prepared mucoadhesive microbeads. Multiple independent variables were optimized to achieve responses of interest, thereby to get the desired sustained release profile of Cefuroxime Axetil in gastric environment.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Cefuroxima/análogos & derivados , Quitosana/química , Sistemas de Liberação de Medicamentos , Intestino Delgado/efeitos dos fármacos , Adsorção , Animais , Antibacterianos/química , Disponibilidade Biológica , Cefuroxima/administração & dosagem , Cefuroxima/química , Células Cultivadas , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Cabras , Humanos , Intestino Delgado/química , Microesferas , Técnicas de Cultura de Órgãos , Polifosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA