Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
N Biotechnol ; 81: 57-68, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531507

RESUMO

Novacetimonas hansenii SI1, previously known as Komagataeibacter hansenii, produces bacterial nanocellulose (BNC) with unique ability to stretch. The addition of vitamin C in the culture medium increases the porosity of the membranes and their stretchability making them highly moldable. To better understand the genetic background of this strain, we obtained its complete genome sequence using a hybrid sequencing and assembly strategy. We described the functional regions in the genome which are important for the synthesis of BNC and acetan-like II polymer. We next investigated the effect of 1% vitamin C supplementation on the global gene expression profile using RNA sequencing. Our transcriptomic readouts imply that vitamin C functions mainly as a reducing agent. We found that the changes in cellular redox status are balanced by strong repression of the sulfur assimilation pathway. Moreover, in the reduced conditions, glucose oxidation is decreased and alternative pathways for energy generation, such as acetate accumulation, are activated. The presence of vitamin C negatively influences acetan-like II polymer biosynthesis, which may explain the lowered yield and changed mechanical properties of BNC. The results of this study enrich the functional characteristics of the genomes of the efficient producers of the N. hansenii species. Improved understanding of the adaptation to the presence of vitamin C at the molecular level has important guiding significance for influencing the biosynthesis of BNC and its morphology.


Assuntos
Acetobacteraceae , Celulose , Transcriptoma , Celulose/metabolismo , Ácido Ascórbico , Suplementos Nutricionais
2.
Int J Biol Macromol ; 262(Pt 2): 130137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354940

RESUMO

Crop straws provide enormous biomass residues applicable for biofuel production and trace metal phytoremediation. However, as lignocellulose recalcitrance determines a costly process with potential secondary waste liberation, genetic modification of plant cell walls is deemed as a promising solution. Although pectin methylation plays an important role for plant cell wall construction and integrity, little is known about its regulation roles on lignocellulose hydrolysis and trace metal elimination. In this study, we initially performed a typical CRISPR/Cas9 gene-editing for site mutations of OsPME31, OsPME34 and OsPME79 in rice, and then determined significantly upgraded pectin methylation degrees in the young seedlings of three distinct site-mutants compared to their wild type. We then examined distinctively improved lignocellulose recalcitrance in three mutants including reduced cellulose levels, crystallinity and polymerization or raised hemicellulose deposition and cellulose accessibility, which led to specifically enlarged biomass porosity either for consistently enhanced biomass enzymatic saccharification under mild alkali pretreatments or for cadmium (Cd) accumulation up to 2.4-fold. Therefore, this study proposed a novel model to elucidate how pectin methylation could play a unique enhancement role for both lignocellulose enzymatic hydrolysis and Cd phytoremediation, providing insights into precise pectin modification for effective biomass utilization and efficient trace metal exclusion.


Assuntos
Oryza , Oryza/metabolismo , Pectinas/metabolismo , Cádmio/metabolismo , Biomassa , Biodegradação Ambiental , Lignina/metabolismo , Celulose/metabolismo , Metilação
3.
J Agric Food Chem ; 72(8): 4195-4206, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354398

RESUMO

The increase of polysaccharides in the dark tea pile process is thought to be connected to the cell wall polysaccharides' breakdown. However, the relationship between tea polysaccharides (TPSs) and tea cell wall polysaccharides has not been further explored. In this study, the structural changes in the cell wall polysaccharides [e.g., cellulose, hemicellulose (HC), and pectin] in Liupao tea were characterized before and after traditional fermentation and tank fermentation. Additionally, the degradation mechanism of tea cell wall polysaccharides during fermentation was assessed. The results showed that cellulose crystallinity decreased by 11.9-49.6% after fermentation. The molar ratio of monosaccharides, such as arabinose, rhamnose, and glucose in HC, was significantly reduced, and the molecular weight decreased. The esterification degree and linearity of water-soluble pectin (WSP) were reduced. TPS content increases during pile fermentation, which may be due to HC degradation and the increase in WSP caused by cell wall structure damage. Microorganisms were shown to be closely associated with the degradation of cell wall polysaccharides during fermentation according to correlation analyses. Traditional fermentation had a greater effect on the cellulose structure, while tank fermentation had a more noticeable impact on HC and WSP.


Assuntos
Camellia sinensis , Polissacarídeos , Fermentação , Polissacarídeos/química , Camellia sinensis/química , Pectinas/química , Celulose/metabolismo , Água/metabolismo , Parede Celular/química , Chá/química , China
4.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059862

RESUMO

AIMS: Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments. METHODS AND RESULTS: Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces. CONCLUSIONS: This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.


Assuntos
Petróleo , Petróleo/metabolismo , Bactérias/metabolismo , Campos de Petróleo e Gás , Celulose/metabolismo , Tomografia Computadorizada por Raios X
5.
Environ Sci Technol ; 57(48): 19663-19677, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948609

RESUMO

A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae (Choleochaete). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (-46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (-8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10-9) and acoustic mass density (313.3 ± 63.3 ng cm-2) for the positively charged CDs than negative and neutral counterparts (p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+-induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact.


Assuntos
Arabidopsis , Nanopartículas , Eletricidade Estática , Celulose/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Parede Celular/metabolismo
6.
ACS Nano ; 17(23): 23442-23454, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991776

RESUMO

In this work, we systematically investigated how cell wall and cell wall components affect the delivery of charged carbon quantum dots (CDs, from -34 to +41 mV) to leaf cells of cucumber and Arabidopsis plants. Four different types of leaf cells in cucumber and Arabidopsis were used, i.e., protoplasts (without cell wall), isolated individual cells (cell wall hydrolyzed with pectinase), regenerated individual cells (cell wall regenerated from protoplast), and intact leaf cells (intact cell wall, in planta). Leaf cells were incubated with charged CDs (0.5 mg/mL) for 2 h. Confocal imaging results showed that protoplasts, regenerated individual cells, and leaf cells showed favored uptake of the negatively charged CDs (-34 mV) compared to the PEI (polyethylenimine) coated and positively charged carbon dots [PEI600-CDs (17 mV) and PEI10K-CDs (41 mV)], while in isolated individual cells, the trend is opposite. The results of the content of the cell wall components showed that no significant changes in the total cell wall content were found between isolated individual cells and regenerated individual cells (1.28 vs 1.11 mg/106 cells), while regenerated individual cells showed significant higher pectin content [water-soluble pectin (0.13 vs 0.06 mg/106 cells, P < 0.01), chelator-soluble pectin (0.04 vs 0.01 mg/106 cells, P < 0.01), and alkaline pectin (0.02 vs 0.01 mg/106 cells, P < 0.01)] and significant lower cellulose content (0.13 vs 0.32 mg/106 cells, P < 0.01) than the isolated individual cells. No difference of the hemicellulose content was found between isolated individual cells and regenerated individual cells (0.20 vs 0.21 mg/106 cells). Our results suggest that compared with cellulose and hemicellulose in the cell wall, the pectin is a more important factor referring to the favored uptake of negatively charged carbon dots in leaf cells. Overall, this work provides a method to study the role of cell wall components in the uptake of nanoparticles in plant cells and also points out the importance of understanding the interactions between cell barriers and nanoparticles to design nanoparticles for agricultural use.


Assuntos
Arabidopsis , Parede Celular , Cucumis sativus , Pectinas , Pontos Quânticos , Arabidopsis/metabolismo , Carbono , Celulose/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo , Cucumis sativus/metabolismo
7.
Food Res Int ; 173(Pt 2): 113458, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803783

RESUMO

This study aimed to investigate the effects of inoculation with a starter culture consisting of Lactobacillus plantarum LNJ002 and Leuconostoc citreum BNCC 194779 on microbial community, cell wall polysaccharide characteristics, cell wall degrading enzymes, and microstructure during Chinese Dongbei suancai fermentation. The results showed that Lactobacillus (98.75%) was the dominant genus during fermentation of Dongbei suancai. The principal coordinates analysis (PCoA) suggested that inoculation with Lactobacillus promoted the stability of microbial community structure during Chinese Dongbei suancai fermentation. Besides, the lower content in cellulose (80.28 ± 2.61 ug/mg) and pectin (53.56 ± 2.67 ug/mg) observed in the inoculated fermented suancai. Simultaneously, the inoculated fermented suancai had the most decreases in SR 1 (70.35%) and SR 3 (72.06%) and the most increase in SR 2 (950%), which suggested that inoculation intensified the decrease of the linearity and the RG-1 branching degree of pectin. The contents of polygalacturonase (PG) and pectin methylesterase (PME) in inoculated fermented suancai were 21.06% and 21.86% higher than those in naturally fermented suancai. In addition, the surface of suancai leaves gradually changed from smooth to rough during fermentation, which was accelerated by inoculation. Moreover, Lactobacillus, Aspergillus, Wallemia and Mucor were all negatively correlated with cellulose and GalA. These results revealed that inoculation promoted the formation of dominant genus structure during suancai fermentation, changed the effects of enzymes on the degradation of cell wall components, thereby accelerated the formation of Chinese Dongbei suancai texture.


Assuntos
Microbiologia de Alimentos , Lactobacillus plantarum , Parede Celular , Celulose/metabolismo , Lactobacillus/metabolismo , Lactobacillus plantarum/metabolismo , Pectinas/metabolismo
8.
Plant J ; 116(3): 855-870, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548081

RESUMO

Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.


Assuntos
Arabidopsis , Celulose , Celulose/metabolismo , Lateralidade Funcional , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo
9.
Parasit Vectors ; 16(1): 226, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415204

RESUMO

BACKGROUND: Iron is an essential element for cellular functions, such as energy metabolism. Trichomonas vaginalis, a human urogenital tract pathogen, is capable of surviving in the environment without sufficient iron supplementation. Pseudocysts (cyst-like structures) are an environmentally tolerated stage of this parasite while encountering undesired conditions, including iron deficiency. We previously demonstrated that iron deficiency induces more active glycolysis but a drastic downregulation of hydrogenosomal energy metabolic enzymes. Therefore, the metabolic direction of the end product of glycolysis is still controversial. METHODS: In the present work, we conducted an LC‒MS-based metabolomics analysis to obtain accurate insights into the enzymatic events of T. vaginalis under iron-depleted (ID) conditions. RESULTS: First, we showed the possible digestion of glycogen, cellulose polymerization, and accumulation of raffinose family oligosaccharides (RFOs). Second, a medium-chain fatty acid (MCFA), capric acid, was elevated, whereas most detected C18 fatty acids were reduced significantly. Third, amino acids were mostly reduced, especially alanine, glutamate, and serine. Thirty-three dipeptides showed significant accumulation in ID cells, which was probably associated with the decrease in amino acids. Our results indicated that glycogen was metabolized as the carbon source, and the structural component cellulose was synthesized at same time. The decrease in C18 fatty acids implied possible incorporation in the membranous compartment for pseudocyst formation. The decrease in amino acids accompanied by an increase in dipeptides implied incomplete proteolysis. These enzymatic reactions (alanine dehydrogenase, glutamate dehydrogenase, and threonine dehydratase) were likely involved in ammonia release. CONCLUSION: These findings highlighted the possible glycogen utilization, cellulose biosynthesis, and fatty acid incorporation in pseudocyst formation as well as NO precursor ammonia production induced by iron-depleted stress.


Assuntos
Cistos , Deficiências de Ferro , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/metabolismo , Ferro/metabolismo , Amônia/metabolismo , Aminoácidos/metabolismo , Metabolômica , Glicogênio/metabolismo , Alanina/metabolismo , Celulose/metabolismo
10.
Plant Physiol Biochem ; 201: 107858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390694

RESUMO

Salt stress is considered one of the major abiotic stresses that impair agricultural production, while boron (B) is indispensable for plant cell composition and has also been found to alleviate salt stress. However, the regulatory mechanism of how B improves salt resistance via cell wall modification remains unknown. The present study primarily focused on investigating the mechanisms of B-mediated alleviation of salt stress in terms of osmotic substances, cell wall structure and components and ion homeostasis. The results showed that salt stress hindered plant biomass and root growth in cotton. Moreover, salt stress disrupted the morphology of the root cell wall as evidenced by Transmission Electron Microscope (TEM) analysis. The presence of B effectively alleviated these adverse effects, promoting the accumulation of proline, soluble protein, and soluble sugar, while reducing the content of Na+ and Cl- and augmenting the content of K+ and Ca2+ in the roots. Furthermore, X-ray diffraction (XRD) analysis demonstrated a decline in the crystallinity of roots cellulose. Boron supply also reduced the contents of chelated pectin and alkali-soluble pectin. Fourier-transform infrared spectroscopy (FTIR) analysis further affirmed that exogenous B led to a decline in cellulose accumulation. In conclusion, B offered a promising strategy for mitigating the adverse impact of salt stress and enhancing plant growth by countering osmotic and ionic stresses and modifying root cell wall components. This study may provide invaluable insights into the role of B in ameliorating the effects of salt stress on plants, which could have implications for sustainable agriculture.


Assuntos
Boro , Estresse Salino , Boro/farmacologia , Boro/metabolismo , Parede Celular/metabolismo , Íons/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Homeostase , Raízes de Plantas/metabolismo
11.
J Integr Plant Biol ; 65(8): 2001-2017, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37014030

RESUMO

In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infertilidade , Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Celulose/metabolismo , Infertilidade/metabolismo
12.
Plant J ; 115(2): 529-545, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029760

RESUMO

The plant secondary cell wall is a thickened matrix of polysaccharides and lignin deposited at the cessation of growth in some cells. It forms the majority of carbon in lignocellulosic biomass, and it is an abundant and renewable source for forage, fiber, materials, fuels, and bioproducts. The complex structure and arrangement of the cell wall polymers mean that the carbon is difficult to access in an economical and sustainable way. One solution is to alter the cell wall polymer structure so that it is more suited to downstream processing. However, it remains difficult to predict what the effects of this engineering will be on the assembly, architecture, and properties of the cell wall. Here, we make use of Arabidopsis plants expressing a suite of genes to increase pectic galactan chain length in the secondary cell wall. Using multi-dimensional solid-state nuclear magnetic resonance, we show that increasing galactan chain length enhances pectin-cellulose spatial contacts and increases cellulose crystallinity. We also found that the increased galactan content leads to fewer spatial contacts of cellulose with xyloglucan and the backbone of pectin. Hence, we propose that the elongated galactan side chains compete with xyloglucan and the pectic backbone for cellulose interactions. Due to the galactan topology, this may result in comparatively weak interactions and disrupt the cell wall architecture. Therefore, introduction of this strategy into trees or other bioenergy crops would benefit from cell-specific expression strategies to avoid negative effects on plant growth.


Assuntos
Arabidopsis , Celulose , Celulose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Galactanos/metabolismo , Pectinas/metabolismo , Parede Celular/metabolismo , Carbono/metabolismo
13.
C R Biol ; 345(4): 41-60, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36847119

RESUMO

One of the many legacies of the work of Michel Caboche is our understanding of plant cell wall synthesis and metabolism thanks to the use of Arabidopsis mutants. Here I describe how he was instrumental in initiating the genetic study of plant cell walls. I also show, with a few examples for cellulose and pectins, how this approach has led to important new insights in cell wall synthesis and how the metabolism of pectins contributes to plant growth and morphogenesis. I also illustrate the limitations of the use of mutants to explain processes at the scale of cells, organs or whole plants in terms of the physico-chemical properties of cell wall polymers. Finally, I sketch how new approaches can cope with these limitations.


L'un des nombreux héritages des travaux de Michel Caboche est notre compréhension de la synthèse et du métabolisme des parois cellulaires végétales grâce à l'utilisation de mutants d'Arabidopsis. Je décris ici comment il a joué un rôle déterminant dans le lancement de l'étude génétique des parois cellulaires végétales. Je montre également, avec quelques exemples pour la cellulose et les pectines, comment cette approche a conduit à de nouvelles connaissances importantes sur la synthèse de la paroi cellulaire et comment le métabolisme des pectines contribue à la croissance et à la morphogenèse des plantes. J'illustre également les limites de l'utilisation de mutants pour expliquer des processus à l'échelle de cellules, d'organes ou de plantes entières en termes de propriétés physico-chimiques de polymères de parois cellulaires. Enfin, j'esquisse comment de nouvelles approches peuvent faire face à ces limitations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Celulose/análise , Celulose/metabolismo , Plantas , Pectinas/análise , Pectinas/química , Pectinas/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
14.
PLoS One ; 18(1): e0280890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701410

RESUMO

Co-fermentation of lignite and biomass has been considered as a new approach in achieving clean energy. Moreover, the study of the characteristics of solid phase in the synergistic degradation process is of great significance in revealing their synergistic relationship. Accordingly, in order to produce biogas, lignite, straw, and the mixture of the two were used as the substrates, the solid phase characteristics of which were analyzed before and after fermentation using modern analytical methods. The results revealed that the mixed fermentation of lignite and straw promoted the production of biomethane. Moreover, the ratios of C/O and C/H were found to be complementary in the co-fermentation process. Furthermore, while the relative content of C-C/C-H bonds was observed to be significantly decreased, the aromatics degree of lignite was weakened. Also, while the degree of branching increased, there found to be an increase in the content of cellulose amorphous zone, which, consequently, led to an increase in the crystallinity index of the wheat straw. Hence, the results provide a theoretical guidance for the efficient utilization of straw and lignite.


Assuntos
Celulose , Carvão Mineral , Fermentação , Celulose/metabolismo , Triticum/metabolismo , Biomassa
15.
Bioresour Technol ; 369: 128382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423754

RESUMO

Lignocellulose is resistant to degradation and requires pretreatment before hydrolytic enzymes can release fermentable sugars. Sulfuric acid has been widely used for biomass pretreatment, but high amount of degradation products usually occurred when using this method. To enhance accessibility to cellulose, we studied the performances of several dilute organic acid pretreatments of sugarcane bagasse and oil palm empty fruit bunch fiber. The results revealed that pretreatment with maleic acid yields the highest xylose and glucose release among other organic acids. The effects of concentration, duration of heating and heating temperature were further studied. Dilute maleic acid 1 % (w/w) pretreatment at 180 °C was the key to its viability as a substitute for sulfuric acid. Moreover, maleic acid did not seem to highly promote the formation of either furfural or 5-HMF in the liquid hydrolysate after pretreatment.


Assuntos
Celulose , Saccharum , Celulose/metabolismo , Frutas/metabolismo , Saccharum/metabolismo , Carboidratos , Ácidos , Ácidos Sulfúricos/farmacologia , Hidrólise , Óleo de Palmeira
16.
Enzyme Microb Technol ; 164: 110171, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36549094

RESUMO

The increased demand for energy has sparked a global search for renewable energy sources that could partly replace fossil fuel resources and help mitigate climate change. Cellulosic biomass is an ideal feedstock for renewable bioethanol production, but the process is not currently economically feasible due to the high cost of pretreatment and enzyme cocktails to release fermentable sugars. Lytic polysaccharide monooxygenases (LPMOs) and cellobiose dehydrogenases (CDHs) are auxiliary enzymes that can enhance cellulose hydrolysis. In this study, four LPMO and two CDH genes were subcloned and expressed in the Saccharomyces cerevisiae Y294 laboratory strain. SDS-PAGE analysis confirmed the extracellular production of the LPMOs and CDHs in the laboratory S. cerevisiae Y294 strain. A rudimentary cellulase cocktail (cellobiohydrolase 1 and 2, endoglucanase and ß-glucosidase) was expressed in the commercial CelluX™ 4 strain and extracellular production of the individual cellulases was confirmed by SDS-PAGE analysis. In vitro cooperation of the CDHs and LPMOs with the rudimentary cellulases produced by strain CelluX™ 4[F4-1] was demonstrated on Whatman filter paper. The significant levels of soluble sugars released from this crystalline cellulose substrate indicated that these auxiliary enzymes could be important components of the CBP yeast cellulolytic system.


Assuntos
Celulases , Celulose , Suplementos Nutricionais , Proteínas Recombinantes , Celulases/química , Celulases/metabolismo , Celulose/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
J Basic Microbiol ; 63(1): 75-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336635

RESUMO

This study includes the utilization of sweet lemon peel (SLP) and sugarcane bagasse (SB) in solid-state fermentation using Kluyveromyces marxianus for bioflavor compounds production adopting response surface methodology. The major flavor compounds, 2-phenylethanol (2-PE) and 2-phenylethyl acetate (2-PEA) were quantified using gas chromatography-mass spectrometry with and without adding any supplements. Quantification of flavor compounds indicated that without adding any accessory in the substrate, the concentration of 2-PE using SLP and SB was 0.15 ± 0.003 mg/g and 0.14 ± 0.002 mg/g, respectively. Whereas 2-PEA concentration using SLP and SB was observed as 0.01 ± 0.008 mg/g and 0.02 ± 0.001 mg/g, respectively. The addition of l-phenylalanine (l-phe) in the substrates showed 30%-75% enhancement in the production of 2-PE and 2-PEA. The present study indicates that the K. marxianus is a potential microbial cell factory for the production of 2-PE and 2-PEA with the addition of synthetic l-phe having a plethora of applications in food and pharmaceutical industries.


Assuntos
Celulose , Saccharum , Fermentação , Celulose/metabolismo , Fenilalanina/metabolismo , Saccharum/metabolismo
18.
Food Chem ; 399: 133997, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037687

RESUMO

The effect of hydrogen-rich water (HRW) treatment on softening, cell wall components and cell wall metabolic genes in okras after harvest was studied. The results showed that HRW treatment could maintain fruit firmness and delay softening, thereby prolonging shelf life in okras during storage. The treated okras displayed significantly lower levels water- and chelate-soluble pectins while higher contents of Na2CO3-soluble pectin, hemicellulose and cellulose. The cell wall biosynthesis was maintained by HRW treatment via up-regulating genes involved in biosynthesis of pectin, hemicellulose and cellulose at the beginning of storage. On the contrary, the treatment could inhibit the cell wall disassembly due to the down-regulation of numerous cell wall degradative genes including AePME, AeGAL and AeCX at the end of storage. Taken together, our results suggested that HRW treatment delayed softening and extended shelf life in postharvest okras through modifying cell wall biosynthesis and disassembly at different times of storage.


Assuntos
Abelmoschus , Frutas , Abelmoschus/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Frutas/metabolismo , Hidrogênio/farmacologia , Pectinas/metabolismo , Água/metabolismo
19.
Methods Mol Biol ; 2566: 269-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152259

RESUMO

The plant cell wall comprises various types of macromolecules whose abundance and spatial distribution change dynamically and are crucial for plant architecture. High-resolution live cell imaging of plant cell wall components is, therefore, a powerful tool for plant cell biology and plant developmental biology. To acquire suitable data, the experimental setup for staining and imaging of non-fixed samples must be straightforward and avoid creating stress-induced artifacts. We present a detailed sample preparation and live image acquisition protocol for fluorescence visualization of cell wall components using commercially available probes and stains.


Assuntos
Celulose , Pectinas , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Células Vegetais/metabolismo
20.
Microb Ecol ; 86(2): 1189-1199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36123554

RESUMO

Litter decomposition is the main source of soil organic carbon (SOC) pool, regarding as an important part of terrestrial ecosystem C dynamics. The turnover of SOC is mainly regulated by extracellular enzymes secreted by microorganisms. However, the response mechanism of soil C-degrading enzymes and SOC in litter decomposition remains unclear. To clarify how SOC fraction dynamics respond to C-degrading enzymes in litter decomposition, we used field experiments to collect leaf litter and SOC fractions from the underlying layer in Robinia pseudoacacia plantations on the Loess Plateau. Our results showed that SOC, easily oxidizable organic C, dissolved organic C, and microbial biomass C increased significantly during the decomposition process. Litter decomposition significantly decreased soil hydrolase activity, but slightly increased oxidase activity. Correlation analysis results showed that SOC fractions were significantly positively correlated with the litter mass, lignin, soil moisture, and oxidase activity, but significantly negatively correlated with cellulose content and soil pH. Partial least squares path models revealed that soil C-degrading enzymes can directly or indirectly affect the changes of soil C fractions. The most direct factors affecting the SOC fractions of topsoil during litter decomposition were litter lignin and cellulose degradation, soil pH, and C-degrading enzymes. Furthermore, regression analysis showed that the decrease of SOC stability in litter decomposition was closely related to the decrease of soil hydrolase to oxidase ratio. These results highlighted that litter degradation-induced changes in C-degrading enzyme activity significantly affected SOC fractions. Furthermore, the distribution of soil hydrolases and oxidases affected the stability of SOC during litter decomposition. These findings provided a theoretical framework for a more comprehensive understanding of C turnover and stabilization mechanisms between plant and soil.


Assuntos
Robinia , Solo , Solo/química , Ecossistema , Carbono/metabolismo , Lignina/metabolismo , Celulose/metabolismo , Hidrolases/metabolismo , Microbiologia do Solo , Oxirredutases , Florestas , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA