Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1140886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077353

RESUMO

Introduction: Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. Design: Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12µg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48µg/kg.d; KTZ 3-12-48mg/kg.d). Results: Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. Conclusion: nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.


Assuntos
Fungicidas Industriais , Gravidez , Ratos , Animais , Feminino , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Cetoconazol/farmacologia , Maturidade Sexual/fisiologia , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
2.
BMC Complement Med Ther ; 21(1): 286, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814913

RESUMO

BACKGROUND: Oral candidiasis is an opportunistic disease caused by fungi of the Candida genus. The occurrence of Candida spp. resistance to the commercial antifungal drugs points to the search for alternative treatments. Propolis has been successfully used in the treatment of infectious diseases for centuries. It has been proposed that an ultrasound pretreatment in the propolis extraction protocol can enhance the concentrations of molecules with antimicrobial activities in the final extract. Thus, this study aimed to compare the antifungal activity against oral Candida spp. isolates of green and red propolis extracts submitted or not to an ultrasound pretreatment before the extraction procedure. METHODS: Candida spp. were isolated from denture stomatitis lesions and identified by sequencing. Oral Candida spp. isolates and reference strains were submitted to broth microdilution assays using commercial antifungals and Brazilian green and red propolis extracts submitted or not to an ultrasound pretreatment. Minimal Inhibitory Concentrations (MIC) and Minimal Fungicide Concentrations (MFC) were determined and biofilm formation interference was evaluated for resistant isolates. RESULTS: C. albicans, Candida tropicalis and Candida dubliniensis were isolated from denture stomatitis lesions. Growth inhibition was observed in all Candida isolates incubated with all green and red propolis extracts. At lower doses, red propolis extracts presented significant antifungal activity. The ultrasound pretreatment did not promote an increase in the antifungal activity of green or red propolis. Three isolates, which were highly resistant to fluconazole and itraconazole, were susceptible to low doses of red propolis extracts. These same three specimens had their biofilm formation inhibted by red propolis ethanolic extract. CONCLUSIONS: Thus, red propolis can be faced as a promising natural product to be used in the auxiliary antifungal therapy of denture stomatitis.


Assuntos
Antifúngicos/farmacologia , Candidíase Bucal/tratamento farmacológico , Extratos Vegetais/farmacologia , Própole/farmacologia , Estomatite sob Prótese/tratamento farmacológico , Fluconazol/farmacologia , Humanos , Itraconazol/farmacologia , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768755

RESUMO

Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.


Assuntos
Antifúngicos/farmacologia , Géis/química , Cetoconazol/farmacologia , Poloxâmero/química , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia , Adesividade , Animais , Antifúngicos/química , Candida parapsilosis/efeitos dos fármacos , Química Farmacêutica , Liberação Controlada de Fármacos , Cetoconazol/química , Cinética , Lecitinas/química , Camundongos , Microscopia Eletrônica de Varredura , Modelos Biológicos , Modelos Teóricos , Reologia , Pele/metabolismo
4.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477259

RESUMO

Over the past 20-30 years, Trichophyton rubrum represented the most widespread dermatophyte with a prevalence accounting for 70% of dermatophytosis. The treatment for cutaneous infections caused by Trichophyton spp. are imidazoles (ketoconazole (KTZ)) and triazoles (itraconazole (ITZ)). T. rubrum can develop resistance to azoles after prolonged exposure to subinhibitory concentrations resulting in therapeutic failures and chronic infections. These problems have stimulated the search for therapeutic alternatives, including essential oils, and their potential use in combination with conventional antifungals. The purpose of this study was to evaluate the antifungal activity of tea tree oil (TTO) (Melaleuca alternifolia essential oil) and the main components against T. rubrum and to assess whether TTO in association with KTZ/ITZ as reference drugs improves the antifungal activity of these drugs. We used a terpinen-4-ol chemotype (35.88%) TTO, and its antifungal properties were evaluated by minimum inhibitory and minimum fungicidal concentrations in accordance with the CLSI guidelines. The interaction between TTO and azoles was evaluated through the checkerboard and isobologram methods. The results demonstrated both the fungicide activity of TTO on T. rubrum and the synergism when it was used in combination with azoles. Therefore, this mixture may reduce the minimum effective dose of azole required and minimize the side effects of the therapy. Synergy activity offered a promise for combination topical treatment for superficial mycoses.


Assuntos
Antifúngicos , Arthrodermataceae/crescimento & desenvolvimento , Itraconazol , Cetoconazol , Melaleuca/química , Óleo de Melaleuca , Antifúngicos/química , Antifúngicos/farmacologia , Sinergismo Farmacológico , Itraconazol/agonistas , Itraconazol/química , Itraconazol/farmacologia , Cetoconazol/agonistas , Cetoconazol/química , Cetoconazol/farmacologia , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia
5.
J Clin Endocrinol Metab ; 106(3): 843-857, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33212489

RESUMO

CONTEXT: Disorders affecting adrenal steroidogenesis promote an imbalance in the normally tightly controlled secretion of mineralocorticoids, glucocorticoids, and androgens. This may lead to differences/disorders of sex development in the fetus, as seen in virilized girls with congenital adrenal hyperplasia (CAH). Despite the important endocrine function of human fetal adrenals, neither normal nor dysregulated adrenal steroidogenesis is understood in detail. OBJECTIVE: Due to significant differences in adrenal steroidogenesis between human and model species (except higher primates), we aimed to establish a human fetal adrenal model that enables examination of both de novo and manipulated adrenal steroidogenesis. DESIGN AND SETTING: Human adrenal tissue from 54 1st trimester fetuses were cultured ex vivo as intact tissue fragments for 7 or 14 days. MAIN OUTCOME MEASURES: Model validation included examination of postculture tissue morphology, viability, apoptosis, and quantification of steroid hormones secreted to the culture media measured by liquid chromatography-tandem mass spectrometry. RESULTS: The culture approach maintained cell viability, preserved cell populations of all fetal adrenal zones, and recapitulated de novo adrenal steroidogenesis based on continued secretion of steroidogenic intermediates, glucocorticoids, and androgens. Adrenocorticotropic hormone and ketoconazole treatment of ex vivo cultured human fetal adrenal tissue resulted in the stimulation of steroidogenesis and inhibition of androgen secretion, respectively, demonstrating a treatment-specific response. CONCLUSIONS: Together, these data indicate that ex vivo culture of human fetal adrenal tissue constitutes a novel approach to investigate local effects of pharmaceutical exposures or emerging therapeutic options targeting imbalanced steroidogenesis in adrenal disorders, including CAH.


Assuntos
Glândulas Suprarrenais/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feto/citologia , Cultura Primária de Células/métodos , Esteroides/biossíntese , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/metabolismo , Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Hiperplasia Suprarrenal Congênita/metabolismo , Hiperplasia Suprarrenal Congênita/patologia , Hormônio Adrenocorticotrópico/farmacologia , Androgênios/metabolismo , Sobrevivência Celular , Meios de Cultura/química , Feminino , Glucocorticoides/farmacologia , Humanos , Cetoconazol/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Gravidez , Esteroides/análise , Esteroides/metabolismo
6.
Curr Drug Metab ; 21(4): 281-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32394829

RESUMO

BACKGROUND: Maytenus ilicifolia is a Brazilian popular medicine commonly used to treat ulcer and gastritis. Despite the absence of toxicity regarding its consumption, possible interactions when co-administrated with conventional drugs, are unknown. OBJECTIVE: This study aimed to evaluate the effects of M. ilicifolia extracts on Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp) activities. METHODS: The extracts were obtained by infusion (MI) or turbo-extraction using hydro-acetonic solvent (MT70). The content of polyphenols in each extract was determined. To assess the modulation of M. ilicifolia on P-gp activity, the uptake of fexofenadine (FEX) by Caco-2 cells was investigated in the absence or presence of MI or MT70. The effect on CYP3A activity was evaluated by the co-administration of midazolam (MDZ) with each extract in male Wistar rats. The pharmacokinetic parameters of the drug were determined and compared with those from the control group. The content of total phenolic compounds, tannins, and flavonoids on MT70 extract was about double of that found in MI. RESULTS: In the presence of the extracts, the uptake of the P-gp marker (FEX) by Caco-2 cells increased from 1.7 ± 0.4 ng.mg-1 protein (control) to 3.5 ± 0.2 ng.mg-1 protein (MI) and 4.4 ± 0.5 ng.mg-1 protein (MT70), respectively. When orally co-administrated with MDZ (substrate of CYP3A), the extracts augmented the AUC(0-∞) (Control: 911.7 ± 215.7 ng.h.mL-1; MI: 1947 ± 554.3 ng.h.mL-1; MT70: 2219.0 ± 506.3 ng.h.mL-1) and the Cmax (Control: 407.7 ± 90.4 ng.mL-1; MI: 1770.5 ± 764.5 ng.mL-1; MT70: 1987.2 ± 544.9 ng.mL-1) of the drug in rats indicating a 50% reduction of the oral Cl. No effect was observed when midazolam was given intravenously. CONCLUSION: The results suggest that M. ilicifolia can inhibit the intestinal metabolism and transport of drugs mediated by CYP3A and P-gp, respectively, however, the involvement of other transporters and the clinical relevance of such interaction still need to be clarified.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Maytenus/química , Extratos Vegetais/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/agonistas , Animais , Células CACO-2 , Linhagem Celular , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Humanos , Cetoconazol/farmacologia , Masculino , Midazolam/farmacocinética , Quinolinas/farmacologia , Ratos , Ratos Wistar , Terfenadina/análogos & derivados
7.
Biomed Chromatogr ; 34(8): e4864, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32330997

RESUMO

Triptolide (TP), one of the main bioactive diterpenes of the herbal medicine Tripterygium wilfordii Hook F, is used for the treatment of autoimmune diseases in the clinic and is accompanied by severe hepatotoxicity. CYP3A4 has been reported to be responsible for TP metabolism, but the mechanism remains unclear. The present study applied a UPLC-QTOF-MS-based metabolomics analysis to characterize the effect of CYP3A4 on TP-induced hepatotoxicity. The metabolites carnitines, lysophosphatidylcholines (LPCs) and a serious of amino acids were found to be closely related to liver damage indexes in TP-treated female mice. Metabolomics analysis further revealed that the CYP3A4 inducer dexamethasone improved the level of LPCs and amino acids, and defended against oxidative stress. On the contrary, pretreatment with the CYP3A4 inhibitor ketoconazole increased liver damage with most metabolites being markedly altered, especially carnitines. Among these metabolites, except for LPC18:2, LPC20:1 and arginine, dexamethasone and ketoconazole both affected oxidative stress induced by TP. The current study provides new mechanistic insights into the metabolic alterations, leading to understanding of the role of CYP3A4 in hepatotoxicity induced by TP.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP3A , Diterpenos/efeitos adversos , Metabolômica/métodos , Fenantrenos/efeitos adversos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Dexametasona/farmacologia , Compostos de Epóxi/efeitos adversos , Feminino , Cetoconazol/farmacologia , Fígado/metabolismo , Fígado/patologia , Espectrometria de Massas/métodos , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
8.
Drug Dev Ind Pharm ; 45(4): 689-693, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632818

RESUMO

We investigated the effect of azole antifungal drugs (ketoconazole, voriconazole, and itraconazole) on the pharmacokinetics of apatinib in rats. The rats in ketoconazole, voriconazole, and itraconazole groups received single-dose apatinib 30 mg/kg after the oral administration of ketoconazole, voriconazole, and itraconazole, respectively. Co-administration of ketoconazole or voriconazole significantly increased the apatinib Cmax and AUC(0-t) and decreased the clearance. Co-administration of itraconazole did not significantly affect the pharmacokinetics parameters of apatinib. It could be concluded that both ketoconazole and voriconazole significantly increase the exposure of apatinib, and affect the pharmacokinetics of apatinib in rat. Apatinib can be co-administered with itraconazole, but ketoconazole and voriconazole should be avoided if possible or be underwent therapeutic drug monitoring of apatinib. A further clinical study should be conducted to investigate the inhibitory effect of azole antifungal drugs on the apatinib plasma concentration.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Piridinas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Monitoramento de Medicamentos , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Cetoconazol/farmacologia , Cetoconazol/uso terapêutico , Masculino , Micoses/tratamento farmacológico , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Neoplasias Gástricas/tratamento farmacológico , Voriconazol/farmacologia , Voriconazol/uso terapêutico
9.
Med Mycol ; 57(3): 346-350, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800467

RESUMO

In the case presented here, we describe the isolation of an azole-resistant strain of M. pachydermatis from a canine Malassezia dermatitis. The isolate (NUBS18001) from this case exhibited a minimum inhibitory concentration (MIC) of 320 µg/ml to itraconazole (ITZ) by broth microdilution (BM) assay, >32 µg/ml to ITZ by E-test, and >32 µg/ml to KTZ by E-test. Synergistic effects between FK506 and ITZ in the azole-resistant strain was evaluated using the microdilution checker-board method. The ITZ-resistant strain exhibited MICs of 320 µg/mL of ITZ alone and 5 µg/ml of FK506 alone; the addition of FK506 attenuated the ITZ MIC to 2.5 µg/ml, yielding an ITZ FICI value of 0.507. This result suggested that the combination of ITZ and FK506 exerted an additive effect against the ITZ-resistant strain. To understand the other mechanism inferred to be present in our multi-azole-resistant strain, we sequenced the ERG11 gene from this isolate, and detected missense mutations (A412G and C905T) in the sequence of the ERG11 open reading frame (ORF). To the best of our knowledge, this work is the first report that a multi-azole-resistant M. pacydermatis strain contains mutations in ERG11.


Assuntos
Antifúngicos/uso terapêutico , Azóis/farmacologia , Dermatite/veterinária , Dermatomicoses/veterinária , Farmacorresistência Fúngica Múltipla/genética , Malassezia/efeitos dos fármacos , Animais , Sistema Enzimático do Citocromo P-450/genética , Dermatite/tratamento farmacológico , Dermatite/microbiologia , Dermatomicoses/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Cães/microbiologia , Sinergismo Farmacológico , Fluconazol/farmacologia , Cetoconazol/farmacologia , Malassezia/genética , Testes de Sensibilidade Microbiana , Mutação de Sentido Incorreto , Fases de Leitura Aberta , Voriconazol/farmacologia
10.
Toxicol Appl Pharmacol ; 364: 68-76, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578885

RESUMO

Cortex Dictamni is extensively used as an herbal medicine worldwide, but is believed to induce hepatotoxicity and even causes mortality in many Asian and European countries. As the most abundant furoquinoline alkaloid ingredient of Cortex Dictamni, dictamnine (DIC) can be metabolically activated by CYP3A to an epoxide metabolite, which possesses the potential to induce hepatotoxicity by covalent binding with proteins. As yet, the hepatotoxicity of DIC and the role played by metabolic activation remain unknown. Here, we found that DIC caused acute liver injury in a time- and dose-dependent manner in mice. The hepatic and urinary DIC epoxide intermediates were observed in DIC-treated mice. Ketoconazole, a CYP3A inhibitor, significantly reduced the hepatotoxicity of DIC and inhibited the formation of reactive metabolites of DIC. Moreover, treatment with 2,3-dihydro-DIC, a DIC analog synthesized by selective reduction of the furan moiety, produced no hepatotoxicity in mice, and no reactive metabolite was formed, suggesting a structural necessity of furan moiety in DIC hepatotoxicity. A time course of gradual hepatic glutathione consumption was observed in DIC-treated mice, while depletion of hepatic glutathione by L-buthionine-S,R-sulfoximine enhanced the hepatotoxicity of DIC. Collectively, this study demonstrates that DIC induces acute hepatocellular injury in mice, and that metabolic activation of furan plays a crucial role in DIC-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Furanos/metabolismo , Fígado/efeitos dos fármacos , Preparações de Plantas/toxicidade , Quinolinas/toxicidade , Ativação Metabólica , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Cetoconazol/farmacologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Tempo , Toxicocinética
11.
Phytother Res ; 32(10): 1967-1974, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29806225

RESUMO

Curcumin, a natural diarylheptanoid, is extensively used as a food additive or dietary supplement on the regular basis. It is known to have potential to encumber the drug transporters and hepatic drug metabolizing enzymes that lead to pharmacokinetic interactions with drug or food. Daclatasvir is a new orally acting drug for the treatment of chronic Hepatitis C Virus infections. This is a substrate of P-glycoprotein and CYP3A4 that are involved in the major pharmacokinetic interaction. Hence, the studies' aim is to assess for any possible pharmacokinetic interactions. Pharmacokinetic studies of daclatasvir in presence or absence of curcumin were carried out in Wistar rats following oral administration. Parallelly, the oral pharmacokinetics of daclatasvir was also determined in the presence of ketoconazole or quinidine. Studies revealed that plasma level of daclatasvir was not altered significantly during concomitant single dose administration of curcumin, whereas significantly decreased upon pretreatment for 7 days with curcumin at high dose level. Ketoconazole and quinidine markedly increase daclatasvir exposure following concomitant administration with daclatasvir. It can be concluded that dose adjustment is unlikely to be required for intermittent use of curcumin at low dose but cautious for chronic and concomitant use of curcumin at a high dose.


Assuntos
Antivirais/farmacocinética , Curcumina/farmacologia , Imidazóis/farmacocinética , Administração Oral , Animais , Carbamatos , Interações Medicamentosas , Cetoconazol/farmacologia , Masculino , Pirrolidinas , Quinidina/farmacologia , Ratos , Ratos Wistar , Valina/análogos & derivados
12.
Artigo em Inglês | MEDLINE | ID: mdl-29061761

RESUMO

Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.


Assuntos
Amidinas/farmacologia , Antiprotozoários/farmacologia , Furanos/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Amidinas/farmacocinética , Animais , Antiprotozoários/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Furanos/farmacocinética , Cetoconazol/farmacocinética , Cetoconazol/farmacologia , Leishmania donovani/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/metabolismo , Triazóis/farmacocinética , Triazóis/farmacologia
13.
Microb Pathog ; 110: 66-72, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645774

RESUMO

The genus Malassezia comprises of extremely lipophilic yeasts secreting lipases as a vital factor for survival. They are emerging as opportunistic pathogens in medical microbiology and dermatology by causing recurring and recalcitrant infection. Combinatorial therapy is a constructive way to combat infectious diseases. In that prospect, totally 16 Indian medicinal plants were screened, among which a maximum degree of antimicrobial activity was ascertained in Embelia ribes. Subsequently embelin was identified as the bioactive principle with antagonistic potential by comparative antimicrobial assay and FTIR analysis. The MIC of embelin was determined as 400 µg/ml exhibiting ∼75% of growth inhibition. Further, a fungistatic activity based on anti-lipase potential (65-89%) of embelin has been clearly substantiated by XTT and lipase assay. In addition, embelin exhibited a synergistic effect with the antifungal drug ketoconazole (KTZ) against four different Malassezia spp. with FIC index of 0.5. Therefore, the combinations of embelin and KTZ may represent a promising therapeutic regimen to treat Malassezia infections with subjugated clinical and environmental toxicity. To the best of our knowledge, this is the first report delineating the anti-lipase activity of embelin and in vitro synergistic interaction between embelin and KTZ against Malassezia spp.


Assuntos
Antifúngicos/farmacologia , Benzoquinonas/farmacologia , Cetoconazol/farmacologia , Malassezia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Benzoquinonas/química , Benzoquinonas/isolamento & purificação , Combinação de Medicamentos , Sinergismo Farmacológico , Embelia/química , Humanos , Índia , Lipase/efeitos dos fármacos , Malassezia/crescimento & desenvolvimento , Malassezia/patogenicidade , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
14.
J Mycol Med ; 27(2): 195-202, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28189377

RESUMO

The aim of this study was to investigate the activity of the monoterpene linalool against clinical isolates of Trichophyton rubrum. Initially, a sensitivity assay for commercial antifungals with solid disks in diffusion medium was performed. Minimum inhibitory concentration (MIC) of linalool and ketoconazole (positive control) were determined by microdilution in RPMI 1640 medium (CLSI M38-A2). We then evaluated the action of linalool and ketoconazole at different concentrations (1/2MIC, MIC and 2×MIC) on mycelial growth (radial mycelial growth), conidia production and conidia germination using a hemacytometer. The effects on cell membrane (release of intracellular material) were also investigated. Finally, changes in fungal morphology as induced by the test drugs were analyzed. Based on the sensitivity tests, the fungal strains showed resistance to 5-fluorocytosine and fluconazole. The linalool MIC values ranged from 256µg/mL to 512µg/mL, whereas ketoconazole showed values of 4µg/mL to 8µg/mL. For the LM 305 strain, the test drugs showed the following MIC values: linalool 256µg/mL and ketoconazole 8µg/mL. The mycelial growth of T. rubrum LM 305 was inhibited by linalool (2×MIC) and ketoconazole (1/2MIC, MIC, 2×MIC), in 7 days of treatment (P<0.05). The test-drugs also inhibited conidial germination and conidiogenesis (P<0.05). Linalool also caused leakage of intracellular material (P<0.05). Finally, we verified the effectiveness of linalool and ketoconazole to induce micro-morphological changes, forming abnormal, wide, short and crooked hyphae. Based on these results, we conclude that linalool presents as an antifungal agent with anti-Trichophyton rubrum potential, an important dermatophytosis agent.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/uso terapêutico , Monoterpenos/farmacologia , Tinha/microbiologia , Trichophyton/efeitos dos fármacos , Monoterpenos Acíclicos , Humanos , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Terpenos/farmacologia , Trichophyton/crescimento & desenvolvimento , Trichophyton/isolamento & purificação
15.
Int J Med Mushrooms ; 18(5): 397-404, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27649601

RESUMO

The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 µg gallic acid equivalents/mL) and flavonoids (42.20 µg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Meios de Cultura/química , Ganoderma/química , Antibacterianos/química , Antifúngicos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Fermentação , Fungos/efeitos dos fármacos , Cetoconazol/farmacologia , Estreptomicina/farmacologia , Consumo de Álcool por Menores
16.
Sci Rep ; 6: 27690, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291783

RESUMO

Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 µM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min(-1), 5.6 min(-1) and 3.4 min(-1). CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 µM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 µM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 µM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 µM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development.


Assuntos
Antifúngicos/farmacologia , Família 51 do Citocromo P450/metabolismo , Proteínas Fúngicas/metabolismo , Malassezia/enzimologia , Esterol 14-Desmetilase/metabolismo , Azóis/farmacologia , Candida albicans/metabolismo , Clotrimazol/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fluconazol/farmacologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Cinética , Lipídeos/química , Malassezia/efeitos dos fármacos , Espectrofotometria , Esteróis/química , Voriconazol/farmacologia
17.
Chem Res Toxicol ; 29(3): 359-66, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26886724

RESUMO

8-Epidiosbulbin E acetate (EEA), a furanoid, was unexpectedly found to be the most abundant diterpenoid lactone in certain varieties of Dioscorea bulbifera L. (DB), a traditional herbal medicine widely used in Asian nations. This herb has been reported to cause liver injury in humans and experimental animals. The occurrence of EEA in DB was dependent on its commercial source. The present study shows that EEA exhibits time- and dose-dependent liver injury in mice. Pretreatment with ketoconazole prevented the animals from developing EEA-induced liver injury, caused 7- and 13-fold increases in the plasma Cmax and AUC of EEA, and decreased urinary excretion of glutathione conjugates derived from EEA. Pretreatment with buthionine sulfoximine exacerbated EEA-induced hepatotoxicity. In order to define the role of EEA's furan moiety in EEA-induced hepatotoxicity, we synthesized tetrahydro-EEA by catalytic hydrogenation of the furan moiety. No liver injury was observed in the animals given the same doses of tetrahydro-EEA as those used with EAA. The results indicate that EEA itself does not appear to be hepatotoxic but that the electrophilic intermediate generated by the metabolic activation of the furan ring mediated by cytochromes P450 is responsible for EEA-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Diterpenos/metabolismo , Diterpenos/toxicidade , Ativação Metabólica/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Cetoconazol/administração & dosagem , Cetoconazol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Fatores de Tempo
18.
J Mycol Med ; 26(1): e6-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26849903

RESUMO

Candida albicans is the common cause of some infectious diseases such as vaginal candidiasis or candidemia. Due to the emergence of drug resistant isolates of C. albicans, finding a new anti-Candida agent is a new strategy for current treatments. This study evaluated the anti-candidal activity of Satureja khuzistanica ethanol extract against clinical isolates of C. albicans. S. khuzistanica ethanol extract from aerial parts of plant at full flowering stage was evaluated against 30 clinical isolates and two ATCC reference strains of C. albicans by disc diffusion and micro-broth dilution assay. Also, in this study we evaluated the synergistic effects of amphotericin B, clotrimazole and ketoconazole with S. khuzistanica ethanol extract. The means of MIC and MFC of S. khuzistanica ethanol extract against clinical isolates were 299.4 and 722.6 (µg/mL), respectively. S. khuzistanica ethanol extract increased the anti-candidal effect of amphotericin B and ketoconazole, while it had no synergistic effect on clotrimazole against clinical isolates of C. albicans. Therefore, S. khuzistanica ethanol extract can be introduced as a new source of anti-candidal agent against clinical isolates of C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Extratos Vegetais/farmacologia , Satureja/química , Síndrome da Imunodeficiência Adquirida/complicações , Anfotericina B/farmacologia , Candidíase/microbiologia , Clotrimazol/farmacologia , Complicações do Diabetes/microbiologia , Interações Medicamentosas , Feminino , Humanos , Cetoconazol/farmacologia , Masculino , Testes de Sensibilidade Microbiana/métodos , Componentes Aéreos da Planta/química , Vagina/microbiologia
19.
Mycoses ; 59(3): 157-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26671603

RESUMO

Superficial mycoses are limited to the most external part of the skin and hair and caused by Malassezia sp., Trichophyton sp. and Candida sp. We report extracellular biosynthesis of silver nanoparticles (AgNPs) by acidophilic actinobacteria (SF23, C9) and its in vitro antifungal activity against fungi-causing superficial mycoses. The phylogenetic analysis based on the 16S rRNA gene sequence of strains SF23 and C9 showed that they are most closely related to Pilimelia columellifera subsp. pallida GU269552(T). The detection of AgNPs was confirmed by visual observation of colour changes from colourless to brown, and UV-vis spectrophotometer analysis, which showed peaks at 432 and 427 nm, respectively. These AgNPs were further characterised by nanoparticle tracking analysis (NTA), Zeta potential, Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The FTIR analysis exhibited the presence of proteins as capping agents. The TEM analysis revealed the formation of spherical and polydispersed nanoparticles in the size range of 4-36 nm and 8-60 nm, respectively. The biosynthesised AgNPs were screened against fungi-causing superficial mycoses viz., Malassezia furfur, Trichophyton rubrum, Candida albicans and C. tropicalis. The highest antifungal activity of AgNPs from SF23 and C9 against T. rubrum and the least against M. furfur and C. albicans was observed as compared to other tested fungi. The biosynthesised AgNPs were found to be potential anti-antifungal agent against fungi-causing superficial mycoses.


Assuntos
Actinobacteria/metabolismo , Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Nanopartículas Metálicas/química , Actinobacteria/classificação , Actinobacteria/genética , Algoritmos , Antifúngicos/farmacologia , Sequência de Bases , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Dermatomicoses/microbiologia , Sinergismo Farmacológico , Humanos , Cetoconazol/farmacologia , Cetoconazol/uso terapêutico , Malassezia/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , RNA Ribossômico 16S/genética , Prata , Nitrato de Prata/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Trichophyton/efeitos dos fármacos
20.
Arch Toxicol ; 90(4): 863-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25851819

RESUMO

Diosbulbin B (DIOB), a furanoid, is a major constituent of herbal medicine Dioscorea bulbifera L. Exposure to DIOB caused liver injury in humans and experimental animals. The mechanisms of DIOB-induced hepatotoxicities remain unknown. The present study demonstrated that DIOB induced hepatotoxicities in a time- and dose-dependent manner in mice. H&E stained histopathologic image showed the occurrence of necrosis in the liver obtained from the mice treated with DIOB at dose of 200 mg/kg. Pretreatment with KTC protected the animals from hepatotoxicities and hepatic GSH depletion induced by DIOB, increased area under the concentration-time curve of blood DIOB, decreased urinary excretion of GSH conjugates derived from DIOB, and increased urinary excretion of parent drug. Pretreatment with BSO exacerbated DIOB-induced hepatotoxicities. In order to define the role of furan moiety in DIOB-induced liver toxicities, we replaced the furan of DIOB with a tetrahydrofuran group by chemical hydrogenation of the furan ring of DIOB. No liver injury was observed in the animals given the same doses of tetrahydro-DIOB. The furan moiety was essential for DIOB-induced hepatotoxicities. The results implicate the cis-enedial reactive metabolite of DIOB was responsible for the observed toxicities. The observed modest depletion of hepatic GSH in DIOB-treated animals suggests the actions of one or more reactive metabolites, and the hepatic injury observed could be due at least in part to reactions of these metabolites with crucial biomolecules. Cytochrome P450 3A enzymes are implicated in DIOB-induced hepatotoxicities by catalyzing the formation of the reactive metabolite of DIOB.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Fígado/efeitos dos fármacos , Ativação Metabólica , Animais , Butionina Sulfoximina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Furanos/química , Furanos/toxicidade , Glutationa/metabolismo , Glutationa/urina , Compostos Heterocíclicos de 4 ou mais Anéis/química , Cetoconazol/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA