Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612966

RESUMO

Relative to carbohydrate (CHO) alone, exogenous ketones followed by CHO supplementation during recovery from glycogen-lowering exercise have been shown to increase muscle glycogen resynthesis. However, whether this strategy improves subsequent exercise performance is unknown. The objective of this study was to assess the efficacy of ketone monoester (KME) followed by CHO ingestion after glycogen-lowering exercise on subsequent 20 km (TT20km) and 5 km (TT5km) best-effort time trials. Nine recreationally active men (175.6 ± 5.3 cm, 72.9 ± 7.7 kg, 28 ± 5 y, 12.2 ± 3.2% body fat, VO2max = 56.2 ± 5.8 mL· kg BM-1·min-1; mean ± SD) completed a glycogen-lowering exercise session, followed by 4 h of recovery and subsequent TT20km and TT5km. During the first 2 h of recovery, participants ingested either KME (25 g) followed by CHO at a rate of 1.2 g·kg-1·h-1 (KME + CHO) or an iso-energetic placebo (dextrose) followed by CHO (PLAC + CHO). Blood metabolites during recovery and performance during the subsequent two-time trials were measured. In comparison to PLAC + CHO, KME + CHO displayed greater (p < 0.05) blood beta-hydroxybutyrate concentration during the first 2 h, lower (p < 0.05) blood glucose concentrations at 30 and 60 min, as well as greater (p < 0.05) blood insulin concentration 2 h following ingestion. However, no treatment differences (p > 0.05) in power output nor time to complete either time trial were observed vs. PLAC + CHO. These data indicate that the metabolic changes induced by KME + CHO ingestion following glycogen-lowering exercise are insufficient to enhance subsequent endurance time trial performance.


Assuntos
Glicogênio , Estado Nutricional , Masculino , Humanos , Ácido 3-Hidroxibutírico , Cetonas , Ingestão de Alimentos
2.
Sci Rep ; 14(1): 5092, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429369

RESUMO

Upon both acute and prolonged alcohol intake, the brain undergoes a metabolic shift associated with increased acetate metabolism and reduced glucose metabolism, which persists during abstinence, putatively leading to energy depletion in the brain. This study evaluates the efficacy of ketogenic treatments to rescue psychiatric and neurochemical alterations during long-term alcohol withdrawal. Female mice were intermittently exposed to alcohol vapor or air for three weeks, during which mice were introduced to either a ketogenic diet (KD), control diet supplemented with ketone ester (KE) or remained on control diet (CD). Withdrawal symptoms were assessed over a period of four weeks followed by re-exposure using several behavioral and biochemical tests. Alcohol-exposed mice fed CD displayed long-lasting depressive-like symptoms measured by saccharin preference and tail suspension, as well as decreased norepinephrine levels and serotonin turnover in the hippocampus. Both KD and KE rescued anhedonia for up to three weeks of abstinence. KD mice showed higher latency to first immobility in the tail suspension test, as well as lower plasma cholesterol levels. Our findings show promising effects of nutritional ketosis in ameliorating alcohol withdrawal symptoms in mice. KD seemed to better rescue these symptoms compared to KE.


Assuntos
Alcoolismo , Cetose , Síndrome de Abstinência a Substâncias , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Etanol , Cetonas , Cetose/terapia
3.
Clin Nutr ; 43(3): 692-700, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320460

RESUMO

BACKGROUND & AIMS: Ketone supplementation is gaining popularity. Yet, its effects on exercise performance when muscle glycogen cannot be used remain to be determined. McArdle disease can provide insight into this question, as these patients are unable to obtain energy from muscle glycogen, presenting a severely impaired physical capacity. We therefore aimed to assess the effects of acute ketone supplementation in the absence of muscle glycogen utilization (McArdle disease). METHODS: In a randomized cross-over design, patients with an inherited block in muscle glycogen breakdown (i.e., McArdle disease, n = 8) and healthy controls (n = 7) underwent a submaximal (constant-load) test that was followed by a maximal ramp test, after the ingestion of a placebo or an exogenous ketone ester supplement (30 g of D-beta hydroxybutyrate/D 1,3 butanediol monoester). Patients were also assessed after carbohydrate (75 g) ingestion, which is currently considered best clinical practice in McArdle disease. RESULTS: Ketone supplementation induced ketosis in all participants (blood [ketones] = 3.7 ± 0.9 mM) and modified some gas-exchange responses (notably increasing respiratory exchange ratio, especially in patients). Patients showed an impaired exercise capacity (-65 % peak power output (PPO) compared to controls, p < 0.001) and ketone supplementation resulted in a further impairment (-11.6 % vs. placebo, p = 0.001), with no effects in controls (p = 0.268). In patients, carbohydrate supplementation resulted in a higher PPO compared to ketones (+21.5 %, p = 0.001) and a similar response was observed vs. placebo (+12.6 %, p = 0.057). CONCLUSIONS: In individuals who cannot utilize muscle glycogen but have a preserved ability to oxidize blood-borne glucose and fat (McArdle disease), acute ketone supplementation impairs exercise capacity, whereas carbohydrate ingestion exerts the opposite, beneficial effect.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Glicogênio , Humanos , Glicemia , Suplementos Nutricionais , Cetonas , Músculos , Estudos Cross-Over
4.
J Mater Chem B ; 12(9): 2294-2303, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38344907

RESUMO

Diketopyrrolopyrrole (DPP) is an excellent photosensitizer and photothermal agent with the advantages of good planarity, strong electron affinity, high electron mobility, easy purification, easy structural modification and high molar absorption coefficient. It is regarded as one of the ideal choices for the design and synthesis of efficient organic photovoltaic materials. Therefore, two kinds of donor-acceptor (D-A) conjugated polymers were designed and synthesized with DPP as the acceptor, and their optical properties and applications in the near-infrared region were studied. The quantum yield (QY) of PBDT-DPP is 0.46%, and the highest temperature reached within 10 minutes after irradiation with a 660 nm laser is 60 °C. Another polymer, EDOT-DPP, has a QY of 0.48%, and its semiconductor polymer nanoparticle aqueous solution can reach 60 °C within 12 minutes under laser irradiation, achieving photothermal treatment of nude mice tumors. Both polymer NPs have good biocompatibility and promising applications in bioimaging and photothermal therapy.


Assuntos
Cetonas , Fototerapia , Polímeros , Pirróis , Animais , Camundongos , Fototerapia/métodos , Polímeros/química , Camundongos Nus , Imagem Óptica/métodos
5.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315678

RESUMO

BACKGROUND: Previous preclinical and human studies have shown that a high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. METHODS: In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-ß-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 minutes before an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 minutes after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 minutes later by an oral alcohol dose (0.8 g/kg). BAL was monitored for 240 minutes after alcohol exposure. RESULTS: In humans, the intake of KS before alcohol significantly blunted breath alcohol concentration and BAL, reduced ratings of alcohol liking and wanting more, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. CONCLUSION: KS altered physiological and subjective responses to alcohol in both humans and rats, and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating effects of alcohol.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Masculino , Humanos , Ratos , Feminino , Animais , Estudos Cross-Over , Cetonas/farmacologia , Voluntários Saudáveis , Método Simples-Cego , Ratos Wistar , Etanol/farmacologia , Edulcorantes , Concentração Alcoólica no Sangue , Suplementos Nutricionais , Água
6.
J Mech Behav Biomed Mater ; 152: 106436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325168

RESUMO

Due to the unique lamellar structures, physicochemical and biological properties, electronegative two-dimensional (2D) materials have been explored for surface modification of carbon fibers reinforced polyetheretherketone (CFR-PEEK) composite. Deposition of electronegative 2D materials based on a porous surface created by concentrated H2SO4 has been studied to promote osteogenesis of CFR-PEEK. Generally, a porous layer will be pre-built on CFR-PEEK through severe corrosion of concentrated sulfuric acid to help the loading of 2D materials. However, the severe corrosion will greatly reduce surface mechanical strength, especially wear resistance and hardness, which increases the risk of collapse or even peeling of the bioactive coating by external force. Herein, instead of the severe corrosion, a mild corrosion by concentrated HNO3 was applied to modify the surface of CFR-PEEK to pre-create a dense transition layer for the further surface decoration of electronegative 2D materials (graphene oxide (GO) and black phosphorus (BP), representatively). The results indicated that hardness and wear resistance of the dense transition layer were markedly higher than those of the porous layer. Although GO and BP can be both loaded on these two transition layers, -SO3H on the porous transition layer showed moderate cytotoxicity, while -NO2 on the dense transition layer showed good cytocompatibility. The dense transition layer displayed higher mineralized deposition in vitro and new bone formation rate in vivo than the porous transition layer, moreover, GO and BP coatings improved osteogenesis. This work offers inspirations for the construction of electronegative 2D material coating on CFR-PEEK based on chemical transition layers.


Assuntos
Benzofenonas , Grafite , Osteogênese , Polímeros , Próteses e Implantes , Fibra de Carbono , Cetonas , Fósforo , Polietilenoglicóis
7.
Anticancer Agents Med Chem ; 24(2): 125-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957872

RESUMO

AIM: This study aims to explore the potential of Osmundacetone (OSC) as a new treatment for infantile hemangiomas (IH), the most common benign tumors in infancy. Currently, propranolol serves as the primary treatment for IH, but its effectiveness is limited, and it poses challenges of drug resistance and side effects. Therefore, there is a pressing need to identify alternative therapies for IH. METHODS: The effects of OSC on the proliferation and apoptosis of HemECs (endothelial cells from hemangiomas) were assessed using CCK-8 assay, colony formation assay, HOCHEST 33342 staining, and flow cytometry. Western blot analysis was performed to investigate OSC's influence on Caspases and angiogenesis-related proteins. Animal models were established using HemECs and BALB/c mice, and histological and immunohistochemical staining were conducted to evaluate the impact of OSC on mouse hemangiomas, VEGFR2, and MMP9 expression. RESULTS: OSC treatment significantly reduced HemECs' viability and colony-forming ability, while promoting apoptosis, as indicated by increased HOCHEST 33342 staining. OSC upregulated the protein expression of Bax, PARP, Caspase9, Caspase3, AIF, Cyto C, FADD, and Caspase8 in HemECs. In animal models, OSC treatment effectively reduced hemangioma size and improved histopathological changes. OSC also suppressed VEGFR2 and MMP9 expression while elevating Caspase3 levels in mouse hemangiomas. CONCLUSION: OSC demonstrated promising results in inhibiting HemECs' proliferation, inducing apoptosis, and ameliorating pathological changes in hemangiomas in mice. Moreover, it influenced the expression of crucial caspases and angiogenesis-related proteins. These findings suggest that OSC holds potential as a novel drug for clinical treatment of IH.


Assuntos
Células Endoteliais , Hemangioma , Cetonas , Animais , Camundongos , Caspases/metabolismo , Transdução de Sinais , Metaloproteinase 9 da Matriz/metabolismo , Angiogênese , Proliferação de Células , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Hemangioma/patologia
8.
Int J Sport Nutr Exerc Metab ; 34(1): 1-10, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751902

RESUMO

The present randomized study investigated the effect of acute supplementation of 800 mg/kg of ketone monoester ingestion (KE) or placebo (PL) and 210 mg/kg of NaHCO3 co-ingestion on cycling performance of WorldTour cyclists during a road cycling stage simulation. Twenty-eight cyclists participated in the study (27.46 ± 4.32 years; 1.80 ± 0.06 m; 69.74 ± 6.36 kg). Performance, physiological, biochemical, and metabolism outcomes, gut discomfort, and effort perceived were assessed during a road cycling simulation composed of an 8-min time-trial (TT) performance + 30-s TT + 4.5 hr of outdoor cycling + a second 8-min TT + a second 30-s TT. Greater absolute and relative mean power during the first 8-min TT (F = 5.067, p = .033, ηp2=.163, F = 5.339, p = .029, ηp2=.170, respectively) was observed after KE than after PL (KE: 389 ± 34, PL: 378 ± 44 W, p = .002, d = 0.294 and KE: 5.60 ± 0.42, PL: 5.41 ± 0.44 W/kg, p = .001, d = 0.442). Additionally, greater concentration of ß-hydroxybutyrate blood concentration (F = 42.195, p < .001, ηp2=.619) was observed after KE than after PL during the first steps of the stage (e.g., after warm-up KE: 1.223 ± 0.642, PL: 0.044 ± 0.058 mM, p < .001, d = 2.589), although the concentrations returned to near baseline after 4.5 hr of outdoor cycling. Moreover, higher values of anion gap were observed (F = 2.333, p = .026, ηp2=.080) after KE than after PL ingestion, after the warm-up and after the first 8-min and 30-s TT. Additionally, lower concentrations of HCO3- were reported in the KE condition after warm-up and after the first 8-min and 30-s TT. During the initial phase of the stage simulation, acute supplementation with KE + NaHCO3 co-ingestion enhanced 8-min TT cycling performance (3.1%) in WorldTour cyclists with a concomitant hyperketonaemia.


Assuntos
Desempenho Atlético , Bicarbonatos , Humanos , Ciclismo , Cetonas , Bicarbonato de Sódio/farmacologia , Ingestão de Alimentos , Método Duplo-Cego
9.
Am J Physiol Endocrinol Metab ; 326(1): E61-E72, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991451

RESUMO

Acute ingestion of the exogenous ketone monoester supplement [(R)-3-hydroxybutyl-(R)-3-hydroxybutyrate] lowers blood glucose, suggesting therapeutic potential in individuals with impaired glucose metabolism. However, it is unknown how acute or repeated ingestion of exogenous ketones affects blood glucose control in individuals with type 2 diabetes (T2D). We conducted two randomized, counterbalanced, double-blind, placebo-controlled crossover trials to determine if 1) acute exogenous ketone monoester (0.3 g/kg body mass; N = 18) or 2) 14-day thrice daily premeal exogenous ketone monoester (15 g; N = 15) supplementation could lower blood glucose in individuals living with T2D. A single dose of the ketone monoester supplement elevated blood ß-OHB to ∼2 mM. There were no differences in the primary outcomes of plasma glucose concentration (acutely) or serum fructosamine (glycemic control across 14 days) between conditions. Ketone monoester ingestion acutely increased insulin and lowered nonesterified fatty acid concentrations; plasma metabolomics confirmed a reduction in multiple free fatty acids species and select gluconeogenic amino acids. In contrast, no changes were observed in fasting metabolic outcomes following 14 days of supplementation. In the context of these randomized controlled trials, acute or repeated ketone monoester ingestion in adults with T2D did not lower blood glucose when consumed acutely in a fasted state and did not improve glycemic control following thrice daily premeal ingestion across 14 days. Future studies exploring the mechanistic basis for the (lack of) glucose-lowering effect of exogenous ketone supplementation in T2D and other populations are warranted.NEW & NOTEWORTHY Exogenous ketone supplements can acutely lower blood glucose, suggesting therapeutic potential in individuals with impaired glucose metabolism. However, the effect of exogenous ketones on glucose metabolism in adults with type 2 diabetes has not been investigated in a controlled setting. In adults with type 2 diabetes, ketone monoester ingestion did not lower blood glucose acutely in a fasted state and did not improve glycemic control across thrice daily premeal ingestion across 14 days.


Assuntos
Diabetes Mellitus Tipo 2 , Cetonas , Humanos , Adulto , Cetonas/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Controle Glicêmico , Ácido 3-Hidroxibutírico , Ensaios Clínicos Controlados Aleatórios como Assunto , Suplementos Nutricionais
10.
Am J Physiol Cell Physiol ; 326(1): C143-C160, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982172

RESUMO

Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-ß-hydroxybutyrate (ßHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.


Assuntos
Corpos Cetônicos , Cetonas , Humanos , Corpos Cetônicos/metabolismo , Exercício Físico/fisiologia , Ácido 3-Hidroxibutírico , Suplementos Nutricionais
11.
J Diet Suppl ; 21(3): 408-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38145410

RESUMO

Exogenous ketone supplements have been suggested to have potential cardiovascular benefits, but their overall effect on blood pressure is unclear. Our objective was to perform a systematic review and meta-analysis on the effects of exogenous ketone supplements on blood pressure (BP) and concomitant changes in resting heart rate (HR). Five databases were searched on January 27th, 2023, for randomized and non-randomized studies. A random-effects model meta-analysis was performed including all studies jointly and separately for acute and chronic ingestion of ketone supplements. Out of 4012 studies identified in the search, 4 acute and 6 chronic studies with n = 187 participants were included. Pooled results (n = 10) showed no change in systolic (SMD [95% CI]= -0.14 [-0.40; 0.11]; I2= 30%; p = 0.17) or diastolic BP (-0.12 [-0.30; 0.05]; I2= 0%; p = 0.69), with a potential tendency observed toward increased resting heart rate (0.17 [-0.14; 0.47]; I2= 40%; p = 0.10). Similar results for systolic and diastolic BP were observed when assessing separately the effect of acute and chronic ingestion of ketone supplements (p ≥ 0.33). Supplement dosage was found to modulate the increase in resting heart rate (0.019 ± 0.006; p = 0.013; R2=100%), suggesting that higher supplement doses lead to a higher resting heart rate. Based on currently available data, acute or prolonged ingestion of ketone supplements does not seem to modulate BP. However, a tendency for HR to increase after acute ingestion was observed, particularly with higher doses. Higher quality studies with appropriate standardized measurements are needed to confirm these results.


Assuntos
Suplementos Nutricionais , Cetonas , Humanos , Pressão Sanguínea , Cetonas/farmacologia , Ingestão de Alimentos
12.
J Diet Suppl ; 21(1): 38-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36847287

RESUMO

Exogenous ketone monoesters can raise blood ß-OHB and lower glucose without other nutritional modifications or invasive procedures. However, unpleasant taste and potential gastrointestinal discomfort may make adherence to supplementation challenging. Two novel ketone supplements promise an improved consumer experience but differ in their chemical properties; it is currently unknown how these affect blood ß-OHB and blood glucose compared to the ketone monoester. In a double-blind randomized cross-over pilot study, N=12 healthy individuals (29 ± 5 years, BMI = 25 ± 4 kg/m2, 42% female) participated in three experimental trials with a different ketone supplement providing 10 grams of active ingredient in each; (i) the monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, (ii) D-ß-hydroxybutyric acid with R-1,3-butanediol, and (iii) R-1,3-butanediol. Blood ß-OHB and glucose were measured via finger prick capillary blood samples at baseline and across 240 minutes post-supplementation. Supplement acceptability, hunger, and gastrointestinal distress were assessed via questionnaires. ß-OHB was elevated compared to baseline in all conditions. Total and incremental area under the curve (p < 0.05) and peak ß-OHB (p < 0.001) differed between conditions with highest values seen in the ketone monoester condition. Blood glucose was reduced after consumption of each supplement, with no differences in total and incremental area under the curve across supplements. Supplement acceptability was greatest for D-ß-hydroxybutyric acid with R-1,3-butanediol, with no effect on hunger or evidence of gastrointestinal distress across all supplements. All ketone supplements tested raised ß-OHB with highest values seen after ketone monoester ingestion. Blood glucose was lowered similarly across the assessed time frame with all three supplements.


Assuntos
Glicemia , Cetonas , Feminino , Humanos , Masculino , Ácido 3-Hidroxibutírico , Suplementos Nutricionais , Glucose , Projetos Piloto , Método Duplo-Cego
13.
Environ Pollut ; 343: 123215, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145635

RESUMO

The cooking fumes generated from thermal cooking oils contains various of hazardous components and shows deleterious health effects. The edible oil refining is designed to improve the oil quality and safety. While, there remains unknown about the connections between the characteristics and health risks of the cooking fumes and oils with different refining levels. In this study, the hazardous compounds, including aldehydes, ketones, polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) in the fumes emitted from heated soybean oils with different refining levels were characterized, and their health risks were assessed. Results demonstrated that the concentration range of aldehydes and ketones (from 328.06 ± 24.64 to 796.52 ± 29.67 µg/m3), PAHs (from 4.39 ± 0.19 to 7.86 ± 0.51 µg/m3), and PM (from 0.36 ± 0.14 to 5.08 ± 0.15 mg/m3) varied among soybean oil with different refining levels, respectively. The neutralized oil showed the highest concentration of aldehydes and ketones, whereas the refined oil showed the lowest. The highest concentration levels of PAHs and PM were observed in fumes emitted from crude oil. A highly significant (p < 0.001) positive correlation between the acid value of cooking oil and the concentrations of PM was found, suggesting that removing free fatty acids is critical for mitigating PM concentration in cooking fumes. Additionally, the incremental lifetime cancer risk (ILCR) values of PAHs and aldehydes were 5.60 × 10-4 to 8.66 × 10-5 and 5.60 × 10-4 to 8.66 × 10-5, respectively, which were substantially higher than the acceptable levels (1.0 × 10-6) established by US EPA. The present study quantifies the impact of edible oil refining on hazardous compound emissions and provides a theoretical basis for controlling the health risks of cooking fumes via precise edible oil processing.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Óleo de Soja , Óleo de Soja/análise , Óleos de Plantas , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado , Gases/análise , Medição de Risco , Culinária/métodos , Aldeídos/análise , Cetonas/análise
14.
Nutrients ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068734

RESUMO

Exogenous ketone ester and ketone ester mixed with ketone free acid formulations are rapidly entering the commercial marketspace. Short-term animal and human studies using these products suggest significant potential for primary or secondary prevention of a number of chronic disease conditions. However, a number of questions need to be addressed by the field for optimal use in humans, including variable responses among available exogenous ketones at different dosages; frequency of dosing; and their tolerability, acceptability, and efficacy in long-term clinical trials. The purpose of the current investigation was to examine the tolerability, acceptability, and circulating R-beta-hydroxybutyrate (R-ßHB) and glucose responses to a ketone monoester (KME) and ketone monoester/salt (KMES) combination at 5 g and 10 g total R-ßHB compared with placebo control (PC). Fourteen healthy young adults (age: 21 ± 2 years, weight: 69.7 ± 14.2 kg, percent fat: 28.1 ± 9.3%) completed each of the five study conditions: placebo control (PC), 5 g KME (KME5), 10 g KME (KME10), 5 g (KMES5), and 10 g KMES (KMES10) in a randomized crossover fashion. Circulating concentrations of R-ßHB were measured at baseline (time 0) following an 8-12 h overnight fast and again at 15, 30, 60, and 120 min following drink ingestion. Participants also reported acceptability and tolerability during each condition. Concentrations of R-ßHB rose to 2.4 ± 0.1 mM for KME10 after 15 min, whereas KMES10 similarly peaked (2.1 ± 0.1 mM) but at 30 min. KME5 and KMES5 achieved similar peak R-ßHB concentrations (1.2 ± 0.7 vs. 1.1 ± 0.5 mM) at 15 min. Circulating R-ßHB concentrations were similar to baseline for each condition by 120 min. Negative correlations were observed between R-ßHB and glucose at the 30 min time point for each condition except KME10 and PC. Tolerability was similar among KME and KMES, although decreases in appetite were more frequently reported for KMES. Acceptability was slightly higher for KMES due to the more frequently reported aftertaste for KME. The results of this pilot investigation illustrate that the KME and KMES products used increase circulating R-ßHB concentrations to a similar extent and time course in a dose-dependent fashion with slight differences in tolerability and acceptability. Future studies are needed to examine variable doses, frequency, and timing of exogenous ketone administration for individuals seeking to consume ketone products for health- or sport performance-related purposes.


Assuntos
Hidroxibutiratos , Cetonas , Humanos , Adulto Jovem , Ácido 3-Hidroxibutírico , Suplementos Nutricionais , Ésteres , Glucose , Cloreto de Sódio , Cloreto de Sódio na Dieta
15.
Eur Rev Med Pharmacol Sci ; 27(20): 9639-9647, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916329

RESUMO

OBJECTIVE: To evaluate the effects of various surface pretreatment methods, including H2SO4, Riboflavin, and Al2O3, as well as different luting cement types, namely Methyl Methacrylate based Cement (MMBC) and composite-based cement (CBC), on the extrusion bond strength (EBS) of poly-ether-ether-ketone (PEEK) posts bonded to canal dentin. MATERIALS AND METHODS: This study involved 120 single-rooted human premolar teeth that underwent endodontic treatment. Following root canal preparation, PEEK posts were fabricated from PEEK blanks using a CAD-CAM system, resulting in a total of 120 posts. The posts were randomly assigned to one of four groups based on their post-surface conditioning: Group A H2SO4, Group B RF, Group C Al2O3, and Group D (NC), each consisting of 30 posts. Within each group, there were two subgroups based on the type of luting cement used for bonding. Subgroups A1, B1, C1, and D1 (n=15 each) utilized CBC, while Subgroups A2, B2, C2, and D2 (n=15 each) used MMBC.The bond strength between the PEEK posts and root dentin was assessed using a universal testing machine, and the failure modes were examined under a stereomicroscope. Statistical analysis, including one-way analysis of variance (ANOVA) and Tukey's Post Hoc test with a significance level of p=0.05, was performed to analyze the data and evaluate the effects of surface treatment and luting cement type on the bond strength. RESULTS: Group B2, which underwent RF conditioning followed by Super-Bond C&B cement application, exhibited the highest bond strength scores at the coronal section (9.57±0.67 MPa). On the other hand, Group D1, which had no conditioning (NC) and used Panavia® V5 cement, showed the lowest EBS at the apical third (2.39±0.72 MPa). The overall results indicate that the different conditioning regimens and luting cement types did not significantly influence the bond strength of PEEK posts to root dentin (p>0.05). CONCLUSIONS: Riboflavin activated by photodynamic therapy (PDT) and H2SO4 can be effective surface conditioners for PEEK posts. These treatments have shown potential for enhancing the bond strength between PEEK and resin cement. Additionally, the study revealed that MMA-based cement outperformed composite-based cement in terms of bond integrity with PEEK posts.


Assuntos
Alumínio , Polimetil Metacrilato , Humanos , Óxido de Alumínio , Cimentos Ósseos , Resinas Compostas/química , Dentina , Éter , Éteres , Etil-Éteres , Vidro/química , Cetonas , Teste de Materiais , Riboflavina
16.
Food Res Int ; 173(Pt 2): 113461, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803791

RESUMO

The increasing demand for tea consumption calls for the development of more products with distinct characteristics. The sensory quality of tencha is significantly determined by innate differences among tea cultivars. However, the correlations between the chemical composition and sensory traits of tencha are still unclear. To enhance the understanding of the flavor formation mechanism in tencha and further to develop new cultivars resources, we investigated non-volatiles and volatile metabolites as well as sensory traits in tencha from different tea cultivars (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1); the relationships between the flavor traits and non-volatiles/volatiles were further evaluated by partial least squares - discriminate analysis (PLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. A total of 64 non-volatiles and 116 volatiles were detected in all samples, among which 71 metabolites were identified as key flavor-chemical contributors involving amino acids, flavonol glycosides, flavones, catechins, ketones, alcohols, hydrocarbons, aldehydes, esters and acids. The levels of taste-related amino acids, flavonol glycosides and gallic acid varied significantly among the tencha samples made from different tea cultivars. All the samples exhibited typical quality characteristics of tencha. The tencha from Camellia sinensis cv. Longjing 43 and Camellia sinensis cv. Baiye 1 (cultivated in the open) exhibited higher levels of amino acids and gallic acid, which were associated with the umami taste and mellow taste of tea infusion. Abundant flavonol glycosides were related to the astringency, while partial tri-glycosides specifically quercetin-3-O-galactoside-rhamnoside-glucoside and total of flavonol galactoside-rhamnoside-glucoside were associated with mellow taste. The floral alcohols were identified as significant contributors to the refreshing aroma traits of tencha. The green, almond-like, acidic and fruity odorants were associated with a green and fresh aroma, while the green, cheesy and waxy odorants such as ketones, esters, acids and hydrocarbons were associated with seaweed-like aroma. This study provides insight into sensory-related chemical profiles of tencha from different tea cultivars, supplying valuable information on flavor and quality identification for tencha.


Assuntos
Camellia sinensis , Camellia sinensis/química , Chá/química , Quimiometria , Flavonóis/análise , Aminoácidos/metabolismo , Glicosídeos/análise , Ácidos , Álcoois/análise , Ácido Gálico/análise , Glucosídeos/metabolismo , Cetonas/análise
17.
Nutrients ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836512

RESUMO

In recent years, ketogenic diets and ketone supplements have increased in popularity, particularly as a mechanism to improve exercise performance by modifying energetics. Since the skeletal muscle is a major metabolic and locomotory organ, it is important to take it into consideration when considering the effect of a dietary intervention, and the impact of physical activity on the body. The goal of this review is to summarize what is currently known and what still needs to be investigated concerning the relationship between ketone body metabolism and exercise, specifically in the skeletal muscle. Overall, it is clear that increased exposure to ketone bodies in combination with exercise can modify skeletal muscle metabolism, but whether this effect is beneficial or detrimental remains unclear and needs to be further interrogated before ketogenic diets or exogenous ketone supplementation can be recommended.


Assuntos
Dieta Cetogênica , Cetonas , Cetonas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Suplementos Nutricionais
18.
Nutrients ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892486

RESUMO

While one-third of the population can be affected by anxiety disorders during their lifetime, our knowledge of the pathophysiology of these disorders is far from complete. Previously, it has been demonstrated in male animals that exogenous ketone supplement-evoked ketosis can decrease anxiety levels in preclinical rodent models, such as Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Thus, in this study, we investigated whether intragastric gavage of the exogenous ketone supplement KEMCT (mix of 1,3-butanediol-acetoacetate diester/ketone ester/KE and medium-chain triglyceride/MCT oil in 1:1 ratio) for 7 days can alter the anxiety levels of female WAG/Rij rats using the light-dark box (LDB) test. We demonstrated that a lower dose of KEMCT (3 g/kg/day) increased blood R-ßHB (R-ß-hydroxybutyrate) levels and significantly decreased anxiety levels (e.g., increased the time spent in the light compartment) in female WAG/Rij rats on the seventh day of administration. Although the higher KEMCT dose (5 g/kg/day) increased blood R-ßHB levels more effectively, compared with the lower KEMCT dose, anxiety levels did not improve significantly. We conclude that ketone supplementation might be an effective strategy to induce anxiolytic effects not only in male but also in female WAG/Rij rats. However, these results suggest that the optimal level may be moderately, not highly, elevated blood R-ßHB levels when the goal is to alleviate symptoms of anxiety. More studies are needed to understand the exact mechanism of action of ketone supplementation on anxiety levels and to investigate their use in other animal models and humans for the treatment of anxiety disorders and other mental health conditions.


Assuntos
Cetonas , Cetose , Ratos , Animais , Humanos , Masculino , Feminino , Ratos Wistar , Cetose/tratamento farmacológico , Ansiedade/tratamento farmacológico , Suplementos Nutricionais , Modelos Animais de Doenças
19.
Photobiomodul Photomed Laser Surg ; 41(10): 576-582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37870415

RESUMO

Objective: Assessment of post surface conditioners [sulfuric acid (SA), Rose Bengal (RB), and sandblasting (SB)] and different luting cements [methyl methacrylate (MMA)-based cement and composite-based cement] on pushout bond strength (PBS) of poly-ether ether-ketone (PEEK) post bonded to canal dentin. Materials and methods: Endodontic treatment was performed on 120 single-rooted human premolar teeth. The preparation of the post space was performed and 4 mm of gutta-percha was retained in the apical region of the root. One hundred and twenty PEEK posts were fabricated from a PEEK blank utilizing a Computer aided design-Computer aided manufacture (CAD-CAM) system. The PEEK posts were allocated randomly into four groups based on post surface conditioning (n = 30). Group A: SA, Group B: RB, Group C: SB, and Group D: No conditioning (NC). Each group was further divided into two subgroups based on the luting cement used for bonding (n = 15). Group A1, B1, C1, and D1 specimens were cemented using composite-based resin cement. However, Group A2, B2, C2, and D2 posts were luted with MMA-based resin cement. PBS assessment using a universal testing machine was performed. Failure modes were analyzed under a stereomicroscope. The data relating to the effects of surface treatment and luting types of cement were analyzed using one-way analysis of variance (ANOVA) and Tukey's post hoc test (p = 0.05). Results: Coronal section of Group B2: RB+Super-Bond C&B [9.61 ± 0.75 megapascals (MPa)] displayed the highest bond scores of PEEK after root dentin. Whereas it was also discovered that Group D1: NC+Panavia®V5 (2.05 ± 0.72 MPa) presented the lowest PBS scores. Intergroup comparison analysis revealed that Group A2: SA+Super-Bond C&B and Group B2: RB+Super-Bond C&B displayed no significant difference in their bond scores. Conclusions: RB and SA possess the potential to be used as a PEEK post conditioner. MMA-based cement displayed better performance than composite-based cement.


Assuntos
Fotoquimioterapia , Cimentos de Resina , Humanos , Resinas Compostas/química , Dentina , Éter , Cetonas , Metacrilatos/química , Metilmetacrilato , Cimentos de Resina/química , Rosa Bengala
20.
Nutrients ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37686710

RESUMO

The present study aimed to investigate the effect of APIC, a mixture containing soy isoflavone and L-carnitine on running endurance. Male C57BL/6 mice were orally administered APIC for 8 weeks. The APIC group exhibited a significant increase in treadmill running time until exhaustion compared to the control group. The respiratory exchange ratio in the APIC group was lower, indicating an enhancement in fatty acid oxidative metabolism. Furthermore, APIC supplementation increased the proportion of oxidative myofibers. Biochemical parameters associated with endurance capacity were also affected by APIC, as evidenced by increased muscle ATP levels and decreased levels of muscle triglycerides and blood lactate. qPCR and immunoblot analysis of C2C12 myotubes and gastrocnemius muscles indicated that APIC treatment stimulated AMPK signaling, mitochondrial biogenesis, and fatty acid metabolism. Additionally, treatment with APIC led to an increased oxygen consumption rate in C2C12 myotubes. Collectively, these findings suggest that APIC supplementation enhances mitochondrial biogenesis, promotes a switch from glycolytic to oxidative fiber types, and improves fatty acid metabolism through the activation of the AMPK signaling pathway in murine skeletal muscle. Ultimately, these effects contribute to the enhancement of running endurance.


Assuntos
Isoflavonas , Corrida , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Carnitina/farmacologia , Proteínas Quinases Ativadas por AMP , Músculo Esquelético , Cetonas , Isoflavonas/farmacologia , Ácidos Graxos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA