Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 188: 114457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843507

RESUMO

Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.


Assuntos
Encéfalo/fisiologia , Mamíferos/fisiologia , Neurônios , Optogenética/tendências , Animais , Channelrhodopsins/metabolismo , Humanos , Microbiota/fisiologia , Neurônios/metabolismo , Optogenética/métodos , Fototerapia/tendências , Transdução de Sinais
2.
Cell Rep ; 29(13): 4349-4361.e4, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875545

RESUMO

In addition to their support role in neurotransmitter and ion buffering, astrocytes directly regulate neurotransmission at synapses via local bidirectional signaling with neurons. Here, we reveal a form of neuronal-astrocytic signaling that transmits retrograde dendritic signals to distal upstream neurons in order to activate recurrent synaptic circuits. Norepinephrine activates α1 adrenoreceptors in hypothalamic corticotropin-releasing hormone (CRH) neurons to stimulate dendritic release, which triggers an astrocytic calcium response and release of ATP; ATP stimulates action potentials in upstream glutamate and GABA neurons to activate recurrent excitatory and inhibitory synaptic circuits to the CRH neurons. Thus, norepinephrine activates a retrograde signaling mechanism in CRH neurons that engages astrocytes in order to extend dendritic volume transmission to reach distal presynaptic glutamate and GABA neurons, thereby amplifying volume transmission mediated by dendritic release.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Astrócitos/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Norepinefrina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Comunicação Celular , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/ultraestrutura , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Microtomia , Receptores da Corticotropina/genética , Receptores da Corticotropina/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
3.
Sci Rep ; 9(1): 17837, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780740

RESUMO

Brain µ-opioid receptors (MOR) mediate reward and help coping with pain, social rejection, anxiety and depression. The dorsal midline thalamus (dMT) integrates visceral/emotional signals and biases behavior towards aversive or defensive states through projections to the amygdala. While a dense MOR expression in the dMT has been described, the exact cellular and synaptic mechanisms of µ-opioidergic modulation in the dMT-amygdala circuitry remain unresolved. Here, we hypothesized that MORs are important negative modulators of dMT-amygdala excitatory networks. Using retrograde tracers and targeted channelrhodopsin expression in combination with patch-clamp electrophysiology, we found that projections of dMT neurons onto both basal amygdala principal neurons (BA PN) and central amygdala (CeL) neurons are attenuated by stimulation of somatic or synaptic MORs. Importantly, dMT efferents to the amygdala drive feedforward excitation of centromedial amygdala neurons (CeM), which is dampened by MOR activation. This downregulation of excitatory activity in dMT-amygdala networks puts the µ-opioid system in a position to ameliorate aversive or defensive behavioral states associated with stress, withdrawal, physical pain or social rejection.


Assuntos
Tonsila do Cerebelo/metabolismo , Neurônios/metabolismo , Receptores Opioides mu/metabolismo , Tálamo/metabolismo , Potenciais de Ação , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Receptores Opioides mu/genética , Tálamo/citologia , Tálamo/fisiologia
4.
Cell Rep ; 29(5): 1381-1395.e4, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665647

RESUMO

Optogenetic stimulation of inhibitory interneurons has become a commonly used strategy for silencing neuronal activity. This is typically achieved using transgenic mice expressing excitatory opsins in inhibitory interneurons throughout the brain, raising the question of how spatially extensive the resulting inhibition is. Here, we characterize neuronal silencing in VGAT-ChR2 mice, which express channelrhodopsin-2 in inhibitory interneurons, as a function of light intensity and distance from the light source in several cortical and subcortical regions. We show that light stimulation, even at relatively low intensities, causes inhibition not only in brain regions targeted for silencing but also in their subjacent areas. In contrast, virus-mediated expression of an inhibitory opsin enables robust silencing that is restricted to the region of opsin expression. Our results reveal important constraints on using inhibitory interneuron activation to silence neuronal activity and emphasize the necessity of carefully controlling light stimulation parameters when using this silencing strategy.


Assuntos
Channelrhodopsins/metabolismo , Inativação Gênica , Interneurônios/metabolismo , Inibição Neural , Optogenética , Animais , Hipocampo/metabolismo , Luz , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Opsinas/metabolismo , Córtex Somatossensorial/metabolismo , Tálamo/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
5.
Cell Rep ; 27(8): 2249-2261.e7, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116972

RESUMO

Channelrhodopsin2 (ChR2) optogenetic excitation is widely used to study neurons, astrocytes, and circuits. Using complementary approaches in situ and in vivo, we found that ChR2 stimulation leads to significant transient elevation of extracellular potassium ions by ∼5 mM. Such elevations were detected in ChR2-expressing mice, following local in vivo expression of ChR2(H134R) with adeno-associated viruses (AAVs), in different brain areas and when ChR2 was expressed in neurons or astrocytes. In particular, ChR2-mediated excitation of striatal astrocytes was sufficient to increase medium spiny neuron (MSN) excitability and immediate early gene expression. The effects on MSN excitability were recapitulated in silico with a computational MSN model and detected in vivo as increased action potential firing in awake, behaving mice. We show that transient, physiologically consequential increases in extracellular potassium ions accompany ChR2 optogenetic excitation. This coincidental effect may be important to consider during astrocyte studies employing ChR2 to interrogate neural circuits and animal behavior.


Assuntos
Channelrhodopsins/metabolismo , Optogenética/métodos , Potássio/metabolismo , Animais , Camundongos
6.
Pain ; 160(2): 334-344, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30325872

RESUMO

Neuropathic pain represents a challenge to clinicians because it is resistant to commonly prescribed analgesics due to its largely unknown mechanisms. Here, we investigated a descending dopaminergic pathway-mediated modulation of trigeminal neuropathic pain. We performed chronic constriction injury of the infraorbital nerve from the maxillary branch of trigeminal nerve to induce trigeminal neuropathic pain in mice. Our retrograde tracing showed that the descending dopaminergic projection from hypothalamic A11 nucleus to spinal trigeminal nucleus caudalis is bilateral. Optogenetic/chemogenetic manipulation of dopamine receptors D1 and D2 in the spinal trigeminal nucleus caudalis produced opposite effects on the nerve injury-induced trigeminal neuropathic pain. Specific excitation of dopaminergic neurons in the A11 nucleus attenuated the trigeminal neuropathic pain through the activation of D2 receptors in the spinal trigeminal nucleus caudalis. Conversely, specific ablation of the A11 dopaminergic neurons exacerbated such pain. Our results suggest that the descending A11-spinal trigeminal nucleus caudalis dopaminergic projection is critical for the modulation of trigeminal neuropathic pain and could be manipulated to treat such pain.


Assuntos
Encéfalo/patologia , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/patologia , Receptores de Dopamina D2/metabolismo , Espiperona/uso terapêutico , Doenças do Nervo Trigêmeo/terapia , Animais , Benzazepinas/uso terapêutico , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Condicionamento Operante/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Lateralidade Funcional , Hiperalgesia/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Limiar da Dor/fisiologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Doenças do Nervo Trigêmeo/fisiopatologia
8.
Brain Struct Funct ; 223(6): 2999-3006, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29623428

RESUMO

The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.


Assuntos
Gânglios da Base/fisiologia , Mapeamento Encefálico , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Potenciais de Ação/fisiologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Feminino , Giro do Cíngulo/fisiologia , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Lobo Parietal/citologia , Sinapsinas/genética , Sinapsinas/metabolismo , Córtex Visual/fisiologia
9.
Brain Struct Funct ; 223(6): 2627-2639, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29550939

RESUMO

Functional deactivation of the prefrontal cortex (PFC) is a critical step in the neuropathic pain phenotype. We performed optogenetic circuit dissection to study the properties of ventral hippocampal (vHipp) and thalamic (MDTh) inputs to L5 pyramidal cells in acute mPFC slices and to test whether alterations in these inputs contribute to mPFC deactivation in neuropathic pain. We found that: (1) both the vHipp and MDTh inputs elicit monosynaptic excitatory and polysynaptic inhibitory currents. (2) The strength of the excitatory MDTh input is uniform, while the vHipp input becomes progressively stronger along the dorsal-ventral axis. (3) Synaptic current kinetics suggests that the MDTh inputs contact distal, while the vHipp inputs contact proximal dendritic sections. (4) The longer delay of inhibitory currents in response to vHipp compared to MDTh inputs suggests that they are activated by feedback and feed-forward circuitries, respectively. (5) One week after a peripheral neuropathic injury, both glutamatergic inputs are modified: MDTh responses are smaller, without evidence of presynaptic changes, while the probability of release at vHipp-mPFC synapses becomes lower, without significant change in current amplitude. Thus, dysregulation of both these inputs likely contributes to the mPFC deactivation in neuropathic pain and may impair PFC-dependent cognitive tasks.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/patologia , Rede Nervosa/patologia , Neuralgia/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional , Masculino , Inibição Neural/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Tálamo/patologia , Valina/análogos & derivados , Valina/farmacologia
10.
Nat Biomed Eng ; 2(7): 485-496, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30948823

RESUMO

Technologies for peripheral nerve stimulation have conventionally relied on the anatomic placement of electrodes adjacent to subsets of sensory fibres or motor fibres that selectively target an end effector. Here, we demonstrate the use of optogenetics to directly target the innervating fibres of an end effector by relying on retrograde transfection of adeno-associated virus serotype 6 to restrict axonal opsin expression to the desired fibre targets. By using an in vivo screen in rats, we identify the first channelrhodopsins as well as a halorhodopsin that respond to red light in the peripheral nerve. Combining two channelrhodopsins with spectrally distinct activation profiles allowed us to drive opposing muscle activity via two-colour illumination of the same mixed nerve. We also show halorhodopsin-mediated reductions in electrically evoked muscle tremor spectrally optimized for deep peripheral nerves. Our non-invasive peripheral neurostimulator with targeted multi-fascicle resolution enables scientific and clinical exploration, such as motor control in paralysis, biomimetic sensation feedback for amputees and targeted inhibition of muscle tremor.


Assuntos
Channelrhodopsins/metabolismo , Optogenética , Nervos Periféricos/metabolismo , Animais , Axônios/metabolismo , Channelrhodopsins/genética , Cor , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Membro Posterior/patologia , Luz , Opsinas/genética , Opsinas/metabolismo , Nervos Periféricos/efeitos da radiação , Ratos , Ratos Endogâmicos F344 , Estimulação Elétrica Nervosa Transcutânea
11.
J Neurosci Methods ; 293: 347-358, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042259

RESUMO

BACKGROUND: In non-human primate (NHP) optogenetics, infecting large cortical areas with viral vectors is often a difficult and time-consuming task. Previous work has shown that parenchymal delivery of adeno-associated virus (AAV) in the thalamus by convection-enhanced delivery (CED) can lead to large-scale transduction via axonal transport in distal areas including cortex. We used this approach to obtain widespread cortical expression of light-sensitive ion channels. NEW METHOD: AAV vectors co-expressing channelrhodopsin-2 (ChR2) and yellow fluorescent protein (YFP) genes were infused into thalamus of three rhesus macaques under MR-guided CED. After six to twelve weeks recovery, in vivo optical stimulation and single cell recording in the cortex was carried out using an optrode in anesthetized animals. Post-mortem immunostaining against YFP was used to estimate the distribution and level of expression of ChR2 in thalamus and cortex. RESULTS: Histological analysis revealed high levels of transduction in cortical layers. The patterns of expression were consistent with known thalamo-cortico-thalamic circuits. Dense expression was seen in thalamocortiocal axonal fibers in layers III, IV and VI and in pyramidal neurons in layers V and VI, presumably corticothalamic neurons. In addition we obtained reliable in vivo light-evoked responses in cortical areas with high levels of expression. COMPARISON WITH EXISTING METHODS: Thalamic CED is very efficient in achieving large expressing areas in comparison to convectional techniques both in minimizing infusion time and in minimizing damage to the brain. CONCLUSION: MR-guided CED infusion into thalamus provides a simplified approach to transduce large cortical areas by thalamo-cortico-thalamic projections in primate brain.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Macaca mulatta , Optogenética/métodos , Tálamo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Convecção , Dermoscopia , Feminino , Imageamento Tridimensional , Imuno-Histoquímica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Vias Neurais/citologia , Vias Neurais/fisiologia , Estimulação Luminosa , Tálamo/citologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
12.
J Physiol ; 596(2): 181-196, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193078

RESUMO

KEY POINTS: Optogenetics has emerged as a potential alternative to electrotherapy for treating heart rhythm disorders, but its applicability for terminating atrial arrhythmias remains largely unexplored. We used computational models reconstructed from clinical MRI scans of fibrotic patient atria to explore the feasibility of optogenetic termination of atrial tachycardia (AT), comparing two different illumination strategies: distributed vs. targeted. We show that targeted optogenetic stimulation based on automated, non-invasive flow-network analysis of patient-specific re-entry morphology may be a reliable approach for identifying the optimal illumination target in each individual (i.e. the critical AT isthmus). The above-described approach yields very high success rates (up to 100%) and requires dramatically less input power than distributed illumination We conclude that simulations in patient-specific models show that targeted light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT if the human atria can be successfully light-sensitized via gene delivery of ChR2. ABSTRACT: Optogenetics has emerged as a potential alternative to electrotherapy for treating arrhythmia, but feasibility studies have been limited to ventricular defibrillation via epicardial light application. Here, we assess the efficacy of optogenetic atrial tachycardia (AT) termination in human hearts using a strategy that targets for illumination specific regions identified in an automated manner. In three patient-specific models reconstructed from late gadolinium-enhanced MRI scans, we simulated channelrhodopsin-2 (ChR2) expression via gene delivery. In all three models, we attempted to terminate re-entrant AT (induced via rapid pacing) via optogenetic stimulation. We compared two strategies: (1) distributed illumination of the endocardium by multi-optrode grids (number of optrodes, Nopt  = 64, 128, 256) and (2) targeted illumination of the critical isthmus, which was identified via analysis of simulated activation patterns using an algorithm based on flow networks. The illuminated area and input power were smaller for the targeted approach (19-57.8 mm2 ; 0.6-1.8 W) compared to the sparsest distributed arrays (Nopt  = 64; 124.9 ± 6.3 mm2 ; 3.9 ± 0.2 W). AT termination rates for distributed illumination were low, ranging from <5% for short pulses (1/10 ms long) to ∼20% for longer stimuli (100/1000 ms). When we attempted to terminate the same AT episodes with targeted illumination, outcomes were similar for short pulses (1/10 ms long: 0% success) but improved for longer stimuli (100 ms: 54% success; 1000 ms: 90% success). We conclude that simulations in patient-specific models show that light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT in atria light-sensitized via gene delivery. We show that targeted optogenetic stimulation based on analysis of AT morphology may be a reliable approach for defibrillation and requires less power than distributed illumination.


Assuntos
Potenciais de Ação , Simulação por Computador , Átrios do Coração/citologia , Optogenética/métodos , Taquicardia/terapia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos da radiação , Humanos
13.
Nat Neurosci ; 21(1): 29-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180747

RESUMO

Excitation of accumbal D2 cells governs vital actions, including avoidance of learned risks, but the origins of this excitation and roles of D2 cells in innate risk-avoidance are unclear. Hypothalamic neurons producing orexins (also called hypocretins) enhance innate risk-avoidance via poorly understood neurocircuits. We describe a direct orexin→D2 excitatory circuit and show that D2 cell activity is necessary for orexin-dependent innate risk-avoidance in mice, thus revealing an unsuspected hypothalamus-accumbens interplay in action selection.


Assuntos
Aprendizagem da Esquiva/fisiologia , Instinto , Neurônios/fisiologia , Orexinas/metabolismo , Transdução de Sinais/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Melaninas/genética , Melaninas/metabolismo , Camundongos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Orexinas/genética , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/genética
14.
Mol Brain ; 10(1): 42, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865483

RESUMO

Deep brain stimulation in thalamic regions has been proposed as a treatment for epilepsy. The electrical current excites thalamocortical activity which is controlled by γ-aminobutyric acid (GABA)ergic interneurons in the reticular thalamic nucleus (nRT). Previous studies showed that enhancing GABAergic inhibitory strength in the nRT reduces the duration and power of seizures, indicating that the thalamus plays an important role in modulating cortical seizures. The aim of the present study was to apply optogenetics to study the role of the nRT in modulating cortical seizures. We used PV-ChR2-EYFP transgenic mice from Jackson Laboratories, in which only Channelrhodopsin-2 (ChR2) is expressed in parvalbumin-expressing interneurons. Cortical seizure-like activity was induced by electrical stimulation of the corpus callosum after applying 4-aminopyridine. ChR2 expression was abundant in the nRT and cerebellum in PV-ChR2-EYFP transgenic mice. Light stimulation in the nRT caused burst firing in regions of the thalamus and nRT in vitro. Multi-unit activity increased during high-frequency (100 and 50 Hz) light stimulation in the S1 region and thalamus in vivo. Corpus callosum stimulation-induced seizure-like activity was effectively suppressed by high-frequency (100 Hz) and long-duration (10 s) light stimulation. The suppressive effects were reversed by applying a GABAB receptor antagonist but not a GABAA receptor antagonist in the cortex. The results indicated that light stimulation affected thalamocortical relay neurons by activating ChR2-expression neurons in the nRT. High-frequency and long-duration light stimulation was more effective in suppressing cortical seizure-like activity. GABAB receptors may participate in suppressing seizure-like activity.


Assuntos
Córtex Cerebral/patologia , Channelrhodopsins/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Optogenética , Parvalbuminas/metabolismo , Estimulação Luminosa , Convulsões/patologia , Tálamo/patologia , Animais , Proteínas de Bactérias/metabolismo , Estimulação Elétrica , Proteínas Luminescentes/metabolismo , Camundongos Transgênicos , Movimento , Reprodutibilidade dos Testes , Ácido gama-Aminobutírico/farmacologia
15.
Glia ; 64(12): 2263-2273, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658520

RESUMO

Emerging evidence shows that hypothalamic astrocytes react to and counteract energy surfeit produced by high-fat diet (HFD) feeding. However, the functional role of astrocytes in the control of energy states and the underlying molecular mechanism(s) during physiological conditions remain largely underexplored. In the present study, by taking advantage of spatiotemporally precise optogenetic approaches, real-time measurements of extracellular adenosine, and behavioral assays, we find that optogenetic stimulation of astrocytes localized in the medial basal hypothalamus (MBH) suppresses food intake in a frequency dependent manner with high frequency, but not low frequency, stimulation of astrocytes reducing food intake. Furthermore, stimulation of MBH astrocytes diminishes orexigenic ghrelin or fasting-induced hyperphagia without effecting anxiety-related behavior. Consistent with a frequency dependent role for MBH astrocytes in feeding behavior, optogenetic stimulation of MBH astrocytes increases extracellular levels of adenosine in a frequency dependent manner. Collectively, our results provide new insights into the role of astrocytes in physiological functions during naturally occurring behaviors, such as feeding. GLIA 2016;64:2263-2273.


Assuntos
Astrócitos/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo/citologia , Adenosina/metabolismo , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dieta Hiperlipídica , Emoções/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA