Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123881, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580063

RESUMO

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.


Assuntos
Araceae , Biomassa , Chlorella , Metais Pesados , Microalgas , Radioisótopos , Metais Pesados/análise , Metais Pesados/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Araceae/metabolismo , Microalgas/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Clorofila/metabolismo
2.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474825

RESUMO

Chlorella supplementation is reported to improve V˙O2max following extended supplementation periods (~3 weeks). However, there is little research on its impact over submaximal exercise intensities and following shorter supplementation regimens. This study aimed to investigate the efficacy of 6 g/day 2-day chlorella supplementation on exercise performance in healthy young adults. Twenty young healthy adults (Males = 16, Females = 4) (Age 22 ± 6 years, V˙O2max 42.7 ± 9.6 mL/(kg·min)) were recruited for this double-blinded, randomised cross-over study. Participants ingested 6 g/day of chlorella or a placebo for 2 days, with a one-week washout period between trials. Exercise testing consisted of a 20 min submaximal cycle at 40% of their work rate max (WRmax) (watts), followed by an incremental V˙O2max test. Lactate (mmol/L), heart rate (b/min), oxygen consumption (mL/(kg·min)), O2 pulse (mL/beat), respiratory exchange ratio (RER), and WRmax were compared across conditions. Following chlorella supplementation, blood lactate levels were significantly lower (p < 0.05) during submaximal exercise (3.05 ± 0.92 mmol/L vs. 2.67 ± 0.79 mmol/L) and following V˙O2max tests (12.79 ± 2.61 mmol/L vs. 11.56 ± 3.43 mmol/L). The O2 pulse was significantly higher (p < 0.05) following chlorella supplementation during submaximal (12.6 ± 3.5 mL/beat vs. 13.1 ± 3.5 mL/beat) and maximal exercise intensity (16.7 ± 4.6 mL/beat vs. 17.2 ± 4.5 mL/beat). No differences existed between conditions for oxygen consumption, RER, V˙O2max, or WRmax. A total of 2 days of 6 g/day chlorella supplementation appears to lower the blood lactate response and increase O2 pulse during both submaximal and maximal intensity exercise but did not lead to any improvements in V˙O2max.


Assuntos
Chlorella , Ácido Láctico , Masculino , Adulto Jovem , Feminino , Humanos , Adolescente , Adulto , Frequência Cardíaca , Estudos Cross-Over , Consumo de Oxigênio/fisiologia , Teste de Esforço , Suplementos Nutricionais
3.
Bioresour Technol ; 398: 130512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437960

RESUMO

The reuse of wastewater after seawater cultivation is critically important. In this study, a phosphorus-supplemented seawater-wastewater cyclic system (PSSWCS) based on Chlorella pyrenoidosa SDEC-35 was developed. With the addition of phosphorus, the algal biomass and the ability to assimilate nitrogen and carbon were improved. At the nitrogen to phosphorus ratio of 20:1, the biomass productivity per mass of nitrogen reached 3.6 g g-1 (N) day-1 in the second cycle. After the third cycle the protein content reached 35.7% of dry mass, and the major metabolic substances in PSSWCS reached the highest content level of 89.5% (35.7% protein, 38.3% lipid, and 15.5% carbohydrate). After the fourth cycle the lipid content maintained at 40.1%. Furthermore, 100.0% recovery of wastewater in PSSWCS increased the nitrogen and carbon absorption to 15.0 and 396.8 g per tonne of seawater. This study achieved seawater-wastewater recycle and produced high-lipid and high-protein algae by phosphorus addition.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Biomassa , Nitrogênio/metabolismo , Água do Mar , Fósforo/metabolismo , Lipídeos , Carbono/metabolismo
4.
J Environ Manage ; 355: 120441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430879

RESUMO

Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 µg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Estudos Prospectivos , Proteínas/metabolismo , Microalgas/metabolismo , Biomassa , Lipídeos , Suplementos Nutricionais , Ácido gama-Aminobutírico/metabolismo
5.
Bioresour Technol ; 399: 130566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467262

RESUMO

The low-cost carbon source, acetate, was utilized to feed a linoleic acid-rich Chlorella sorokiniana for microalgal biomass and lipid accumulation. Remarkably high tolerance capability to high acetate dosage up to 30 g/L was observed, with heterotrophy being the preferred trophic mode for algal growth and lipogenesis when supplemented 20 g/L acetate. Transcriptome analysis revealed a marked activation of pathways involved in acetate bioconversion and lipogenesis upon exposure to high-level of acetate. However, the enhancement of photorespiration inhibited photosynthesis, which ultimately led to a decrease in biomass and lipid under mixotrophy. Heterotrophic acetate-feeding generated more superior amino acid profiling of algal biomass and a predominant linoleic acid content (50 %). Heterotrophic repeat fed-batch strategy in 5 L fermenter significantly increased the growth performance and lipid titer, with the highest levels achieved being 23.4 g/L and 7.0 g/L, respectively. This work provides a viable approach for bio-products production through acetate-based heterotrophic algal cultivation.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Ácido Linoleico/metabolismo , Microalgas/metabolismo , Processos Heterotróficos , Biomassa , Acetatos
6.
Int J Biol Macromol ; 264(Pt 2): 130705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458300

RESUMO

The mitochondria are known to exert significant influence on various aspects of cancer cell physiology. The suppression of mitochondrial function represents a novel avenue for the advancement of anti-cancer pharmaceuticals. The heat shock protein HSP90 functions as a versatile regulator of mitochondrial metabolism in cancer cells, rendering as a promising target for anticancer interventions. In this work, a novel acid polysaccharide named as XQZ3 was extracted from Chlorella pyrenoidosa and purified by DEAE-cellulose and gel-filtration chromatography. The structural characteristic of XQZ3 was evaluated by monosaccharides composition, methylation analysis, TEM, FT-IR, and 2D-NMR. It was found that XQZ3 with a molecular weight of 29.13 kDa was a complex branched polysaccharide with a backbone mainly composed of galactose and mannose. It exhibited good antitumor activity in vitro and in vivo by patient-derived 3D organoid models and patient-derived xenografts models. The mechanistic investigations revealed that XQZ3 specifically interacted with HSP90, impeding the activation of the HSP90/AKT/mTOR signaling cascade. This, in turn, led to the induction of mitochondrial dysfunction, autophagy, and apoptosis, ultimately resulting in the demise of cancer cells due to nutrient deprivation. This study offers a comprehensive theoretical foundation for the advancement of XQZ3, a novel polysaccharide inhibitor targeting HSP90, with potential as an effective therapeutic agent against cancer.


Assuntos
Chlorella , Neoplasias , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Chlorella/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Transdução de Sinais , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Metabolismo Energético , Mitocôndrias/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
7.
Sci Total Environ ; 924: 171320, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458453

RESUMO

Anaerobic digestion of organic waste produces effluent (ADE) that requires further treatment. Biofilm-based microalgal cultivation is a favoured approach to ADE treatment. This study compared Chlorella sp. MUR 268 and Scenedesmus sp. MUR 269 in biofilm and suspension cultures to treat anaerobic digestate food effluent (ADFE). Chlorella sp. MUR 268 biofilm had significantly higher biomass (50.38 g m-2) than Scenedesmus sp. biofilm (9.39 g m-2). Conversely, Scenedesmus sp. yielded 1.5 times more biomass (1.2 g L-1) than Chlorella sp. in suspension. Chlorella sp. biofilm had 49.3 % higher areal productivity than suspension, while Scenedesmus sp. showed 87.3 % higher areal growth in suspension. Chlorella sp. MUR 268 and Scenedesmus sp. MUR 269 significantly removed nutrients in ADFE. In suspension, COD, ammoniacal nitrogen, and phosphate were reduced to 94.9, 5.2, and 5.98 mg L-1 for Chlorella sp. MUR 268, and 245, 2.89, and 3.22 mg L-1 for Scenedesmus sp. MUR 269, respectively. In biofilm, Chlorella sp. MUR 268 achieved reductions to 149.9, 1.16, and 3.57 mg L-1, while Scenedesmus sp. MUR 269 achieved 100.2, 6.9 and 2.07 mg L-1. Most of these values are below the recommended effluent discharge standard, highlighting the efficacy of this system in ADFE treatment. Biofilm cultures fixed 68-81 % of removed nitrogen in biomass, while in suspension, only 55-71 % ended in the biomass. Chlorella sp. MUR 268 biofilm fixed 88 % of removed phosphorus, while Scenedesmus sp. MUR 269 suspension fixed more phosphorus (55 %) than the biofilm counterpart (34 %). This biofilm design offers advantages like simplified, cost-effective operation, easy biomass recovery, and reduced water usage.


Assuntos
Chlorella , Microalgas , Scenedesmus , Anaerobiose , Fósforo , Biomassa , Nitrogênio
8.
Sci Rep ; 14(1): 2809, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307932

RESUMO

Microalgae species are of economic importance regarded as "green gold" being rich in bioactive compounds. Spirulina and Chlorella are the most popular microalgal species and are marketed as healthy food supplements. At the same time, Amphora holds potential as a source of healthy lipids and essential fatty acids. Yet, there are considerable variations in their reported chemical composition, and less is known about their compositional differences. A multiplexed metabolomic approach was adopted for the quality control (QC) of Spirulina supplements and to compare its constitutive metabolome to Chlorella and Amphora. The adopted protocol comprised gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), and ultraviolet-visible spectrophotometry (UV/Vis) for mapping their primary and secondary metabolome. Interestingly, UPLC-HRMS/MS analysis delineated the abundance of fatty acids in Amphora versus glycolipids enrichment in Spirulina, and porphyrins were the main pigments identified in Spirulina, with scarce occurrence in Chlorella. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) analysis of GC-MS data set revealed palmitic acid, 3-mannobiose, and glyceryl-glycoside as being most enriched in Spirulina, versus sucrose and leucine in Chlorella and Amphora, respectively. Despite being of low discriminatory potential, UV/Vis OPLS-DA modeling showed that Spirulina was distinguished with the UV absorbances of carotenoids and chlorophyll pigments, as indicated by its OPLS-DA derived S-plot. Our study provides a QC approach for the analysis of the microalgal species and poses alternative spectral and compositional markers for their discrimination.


Assuntos
Chlorella , Microalgas , Spirulina , Chlorella/química , Spirulina/química , Quimiometria , Suplementos Nutricionais
9.
Sci Total Environ ; 919: 170465, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290681

RESUMO

Individual biological water treatment techniques often prove ineffective in removing accumulated high concentrations of nitrogen and phosphorus in the late stages of biofloc aquaculture. To address this issue, we integrated a previously developed autotrophic denitrification and nitrification integrated constructed wetland (ADNI-CW) with a microalgal membrane photobioreactor (MPBR). Under high nitrogen and phosphorus pollution loads in the influent, the standalone ADNI-CW system achieved removal rates of only 24.17 % ± 2.82 % for total nitrogen (TN) and 25.30 % ± 2.59 % for total phosphorus (TP). The optimal conditions for TN and TP degradation and microalgal biomass production in the Chlorella MPBR, determined using response surface methodology, were an inoculum OD680 of 0.394, light intensity of 161.583 µmol/m2/s, and photoperiod of 16.302 h light:7.698 h dark. Under the optimal operating conditions, the integrated ADNI-CW-MPBR system achieved remarkable TN and TP removal rates of 92.63 % ± 2.8 % and 77.46 % ± 8.41 %, respectively, and a substantial microalgal biomass yield of 54.58 ± 6.8 mg/L/day. This accomplishment signifies the successful achievement of efficient nitrogen and phosphorus removal from high-pollution-load marine aquaculture wastewater along with the acquisition of valuable microalgal biomass. A preliminary investigation of the microbial community composition and algal-bacterial interactions in different operational stages of the MPBR system revealed that unclassified_d__Bacteria, Chlorophyta, and Planctomycetes were predominant phyla. The collaborative relationships between bacteria and Chlorella surpassed competition, ensuring highly efficient nitrogen and phosphorus removal in the MPBR system. This study laid the foundation for the green and sustainable development of the aquaculture industry.


Assuntos
Doença de Alzheimer , Chlorella , Microalgas , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Fotobiorreatores/microbiologia , Áreas Alagadas , Nitrogênio/análise , Fósforo/metabolismo , Biomassa , Aquicultura
10.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294202

RESUMO

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Assuntos
Chlorella , Águas Residuárias , Nitrificação , Desnitrificação , Fósforo/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Dióxido de Carbono , Chlorella/metabolismo , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia
11.
Chemosphere ; 352: 141322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296212

RESUMO

Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.


Assuntos
Chlorella , Urânio , Purificação da Água , Filtração , Ultrafiltração/métodos , Poluição da Água , Adsorção , Purificação da Água/métodos
12.
World J Microbiol Biotechnol ; 40(3): 81, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285224

RESUMO

An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Ácidos Graxos , Têxteis
13.
Appl Biochem Biotechnol ; 196(3): 1255-1271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382791

RESUMO

Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.


Assuntos
Chlorella , Microalgas , Spirulina , Chlorella/metabolismo , Spirulina/metabolismo , Suplementos Nutricionais , Carotenoides/metabolismo , Ficocianina , Microalgas/metabolismo
14.
Bioresour Technol ; 393: 130057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984669

RESUMO

A novel vertical rotating microalgae-bacteria symbiotic biofilm reactor was built to treat the mixed wastewater containing municipal and soybean soaking wastewater. The reactor was operated in both sequential batch and semi-continuous modes. Under the sequential batch operation mode, the maximum removal rates for Chemical Oxygen Demand (COD), Total Nitrogen (TN), Total Phosphorus (TP), and Ammonia Nitrogen (NH4+-N) of the mixed wastewater were 95.6 %, 96.1 %, 97.6 %, and 100 %, respectively. During the semi-continuous operation, the water discharge indices decreased gradually and eventually stabilized. At stabilization, the removal rates of COD, TN, and NH4+-N achieved 98 %, 95 %, and 99.9 %, respectively. The maximum biomass productivity of the biofilm was 2.69 g·m-2·d-1. Additionally, the carbohydrate, protein and lipid comprised approximately 22 %, 51 % and 10 % of the dry weight of Chlorella. This study demonstrates the great potential of the microalgae-bacteria symbiotic biofilm system to treat food and domestic wastewater while harvesting microalgal biomass.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Bactérias , Biofilmes , Nitrogênio , Fósforo , Biomassa
15.
Nanoscale ; 16(2): 635-644, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38087964

RESUMO

Photodynamic therapy (PDT) is a light-activated local treatment modality that has promising potential in cancer therapy. However, ineffective delivery of photosensitizers and hypoxia in the tumor microenvironment severely restrict the therapeutic efficacy of PDT. Herein, phototactic Chlorella (C) is utilized to carry photosensitizer-encapsulated nanoparticles to develop a near-infrared (NIR) driven green affording-oxygen microrobot system (CurNPs-C) for enhanced PDT. Photosensitizer (curcumin, Cur) loaded nanoparticles are first synthesized and then covalently attached to C through amide bonds. An in vitro study demonstrates that the developed CurNPs-C exhibits continuous oxygen generation and desirable phototaxis under NIR treatment. After intravenous injection, the initial 660 nm laser irradiation successfully induces the active migration of CurNPs-C to tumor sites for higher accumulation. Upon the second 660 nm laser treatment, CurNPs-C produces abundant oxygen, which in turn induces the natural product Cur to generate more reactive oxygen species (ROS) that significantly inhibit the growth of tumors in 4T1 tumor-bearing mice. This contribution showcases the ability of a light-driven green affording-oxygen microrobot to exhibit targeting capacity and O2 generation for enhancing photodynamic therapy.


Assuntos
Chlorella , Nanopartículas , Neoplasias , Fotoquimioterapia , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Oxigênio , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio , Nanopartículas/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral
16.
J Diet Suppl ; 21(1): 99-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36905653

RESUMO

This study investigated the effects of chlorella supplementation on submaximal endurance, time trial performance, lactate threshold, and power indices during a repeated sprint performance test by fourteen male trained cyclists. Participants ingested 6 g/day of chlorella or placebo for 21-days in a double-blinded randomized counter-balanced cross-over design, with a fourteen-day washout period between trials. Each completed a 2-day testing period comprising a 1-hour submaximal endurance test at 55% external power output max and a 16.1 km time trial (Day-1), followed by a lactate threshold (Dmax) and repeated sprint performance tests (3 X 20 s sprints interspersed by 4-mins) (Day-2). Heart rate (b.min-1), RER, V̇O2 (ml·kg-1·min-1), lactate and glucose (mmol/L), time (secs), power output (W/kg), and hemoglobin (g/L) were compared across conditions. Following chlorella supplementation (chlorella vs. placebo for each measurement) average lactate and heart rate were significantly lower (p < 0.05) during submaximal endurance tests (1.68 ± 0.50 mmol/L vs. 1.91 ± 0.65 mmol/L & 138 ± 11b.min-1 vs. 144 ± 10b.min-1), average power and peak power (W/kg) were significantly higher during repeated sprint bouts (9.5 ± 0.7 W/kg vs. 9.0 ± 0.7 W/kg & 12.0 ± 1.2 W/kg vs. 11.4 ± 1.4 W/kg), hemoglobin significantly increased (149.1 ± 10.3 g/L) in comparison to placebo (143.4 ± 8.7 g/L) (p = 0.05). No differences existed between conditions for all oxygen consumption values, 16.1 km time trial measures and lactate threshold tests (p > 0.05). In conclusion, chlorella may pose as an additional supplement for cyclists to consider, particularly for those cyclists who want to improve their sprinting.


Assuntos
Chlorella , Humanos , Masculino , Ciclismo/fisiologia , Suplementos Nutricionais , Hemoglobinas , Ácido Láctico , Estudos Cross-Over
17.
J Environ Manage ; 351: 119839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104464

RESUMO

Photo-enhanced Biological Phosphorus Removal (PEBPR) systems, promising wastewater treatment technology, offer efficient phosphorus removal without external oxygen. However, comprehending the impact of sludge retention time (SRT) on the system is crucial for successful implementation. This study investigated the SRT effect on nutrient fate, microbial community, and bacterial phototolerance in PEBPR systems. PEBPR systems exhibited good bacterial phototolerance at SRT of 10, 15, and 20 d, with optimal phosphorus-accumulation metabolism observed at SRT of 10 and 15d. However, at SRT of 5d, increased light sensitivity and glycogen-accumulating organisms (GAOs) growth resulted in poor P removal (71.9%). Accumulibacter-IIC were the dominant P accumulating organisms (PAOs) at SRT of 10, 15, and 20 d. Accumulibacter-I, IIC and IIF were the major PAOs at SRT of 5 d. The decrease in SRT promoted the microalgal population diversity, and Dictyosphaerium and Chlorella were the major microalgal species in this study. Flow cytometry results revealed high light intensity triggered intracellular Fe2+ efflux, limiting translation activity and metabolism. Moreover, PAOs had lower phototolerance than GAOs due to Poly-P bound intracellular Mg2+ affecting enzyme activity. This study provides an in-depth understanding of PEBPR systems operation strategy toward environmentally sustainable wastewater treatment.


Assuntos
Chlorella , Microbiota , Esgotos , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nutrientes
18.
World J Microbiol Biotechnol ; 40(2): 43, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105384

RESUMO

Microalgae are powerful source for nutritionally valuable components as proteins, carbohydrates and especially unsaturated fatty acids. Microalgae may be employed in pharmaceutical, food, cosmetic, health industries, and biofuels. In this study for looking at high-level unsaturated fatty acids species, from 31 strains, by comparing growth curves, the best strain with a high growth rate and lipid content was selected by red Nile staining. It was determined by molecular identification that this strain belongs to the genus Chlorella sp. and is deposited into the Agricultural Biotechnology Research Institute of Iran Culture collection with culture collection number ABRIICC 30,041. Biomass analysis after growth optimization by response surface methodology showed that the selected strain had a specific growth rate of 0.216 ± 0.008 d-1, biomass productivity of 142.58 ± 4.41 mg/Ld, and lipid content of 13.9 ± 0.26% with a high level of unsaturated fatty acids of 53.15%. It also included 51.3 ± 0.53% protein with a very high quality essential amino acids of 40.36%, the most lysine (8.77%) and arginine (13.31%) has been reported until now, and 26.9 ± 0.23% carbohydrates in photoautotroph condition. By MTT assay, there is no effect of cytotoxicity. This research introduces a potent native strain comparable with commercial strains that can be a hopeful source for food supplements and valuable bioactive ingredients in functional foods.


Assuntos
Chlorella , Microalgas , Ácidos Graxos/análise , Lisina/metabolismo , Microalgas/metabolismo , Arginina/metabolismo , Ácidos Graxos Insaturados/metabolismo , Carboidratos , Proteínas/metabolismo , Suplementos Nutricionais/análise , Biomassa , Biocombustíveis
19.
Chemosphere ; 342: 140162, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709062

RESUMO

Incorporation of wastewater from industrial sectors into the design of microalgal biorefineries has significant potential for advancing the practical application of this emerging industry. This study tested various food industrial wastewaters to assess their suitability for microalgal cultivation. Among these wastewaters, defective soy sauce (DSS) and soy sauce wastewater (SWW) were chosen but DSS exhibited the highest nutrient content with 13,500 ppm total nitrogen and 3051 ppm total phosphorus. After diluting DSS by a factor of 50, small-scale cultivation of microalgae was conducted to optimize culture conditions. SWW exhibited optimal growth at 25-30 °C and 300-500 µE m-2 s-1, while DSS showed optimal growth at 30-35 °C. Based on a 100-mL lab-scale and 3-L outdoor cultivation with an extended cultivation period, DSS outperformed SWW, exhibiting higher final biomass productivity. Additionally, nutrient-concentrated nature of DSS is advantageous for transportation at an industrial scale, leading us to select it as the most promising feedstock for microalgal cultivation. With further optimization, DSS has the potential to serve as an effective microalgal cultivation feedstock for large-scale biomass production.


Assuntos
Chlorella , Microalgas , Alimentos de Soja , Águas Residuárias , Chlorella/metabolismo , Fósforo/metabolismo , Alimentos , Microalgas/metabolismo , Biomassa , Nitrogênio/análise
20.
Environ Sci Pollut Res Int ; 30(43): 98048-98062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37599345

RESUMO

The discovery of unexplored, robust microalgal strains will assist in treating highly polluted industrial effluent, including petroleum effluent. In the current analysis, a newly isolated microalgal strain, Diplosphaera mucosa VSPA, was used to treat petroleum effluent in a lab-scale raceway bioreactor. Its treatment efficiency was compared with a well-known species, Chlorella pyrenoidosa. The D. mucosa VSPA strain proliferated in petroleum effluent at a high growth rate, with final biomass, and lipid concentrations reaching 6.93 g/L and 2.72 g/L, respectively. Treatment efficiency was calculated based on the final removal efficiency of ammonium nitrogen, phosphate phosphorus, and chemical oxygen demand, which was more than 90%. Control experiments suggested that the maximum removal of pollutants from petroleum effluent was due to microalgae growth. Some growth models, including the Gompertz, Logistic, Stannard, Richard, and Schnute, were used to simulate the experimental data, verifying the results. Good fitting of all models was obtained, with the R2 value reaching more than 0.90. The development of a suitable model can help in decreasing the efforts required for the scale-up of the process.


Assuntos
Chlorella , Clorofíceas , Microalgas , Petróleo , Biomassa , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA